
 

Remote Sens. 2014, 6, 2239-2254; doi:10.3390/rs6032239 

 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Estimating Canopy Characteristics of Inner Mongolia’s 

Grasslands from Field Spectrometry 

Feng Zhang 
1
, Ranjeet John 

2
, Guangsheng Zhou 

1,3,
*, Changliang Shao 

1
 and Jiquan Chen 

2,4
 

1 
State Key Laboratory of Vegetation and Environmental Change, Institute of Botany,  

Chinese Academy of Sciences, Beijing 100093, China; E-Mails: zhangfeng@ibcas.ac.cn (F.Z.); 

zkyscl@ibcas.ac.cn (C.S.) 
2 

Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA;  

E-Mails: ranjeet.john@utoledo.edu (R.J.); jiquan.chen@utoledo.edu (J.C.) 
3 

Chinese Academy of Meteorological Sciences, Beijing 100081, China 
4
 International Center for Ecology, Meteorology and Environment, School of Applied Meteorology, 

Nanjing University of Information Science and Technology, Nanjing 210044, China 

* Author to whom correspondence should be addressed; E-Mail: gszhou@ibcas.ac.cn;  

Tel.: +86-10-6283-6268; Fax: +86-10-8259-5962. 

Received: 2 January 2014; in revised form: 26 February 2014 / Accepted: 3 March 2014 /  

Published: 12 March 2014 

 

Abstract: This study was designed to estimate the canopy biophysical characteristics of 

semi-arid grassland ecosystems by using in situ field spectrometry measurements to 

identify important spectral information for predictions at broader spatial scales. Spectral 

vegetation indices (VIs), reflectance spectra, continuum removal spectra, and the amplitude 

of the red edge peak (drre) based on 61 well-replicated field measurements across a large 

area in Inner Mongolia were used to develop empirical models for estimating four key 

canopy biophysical features: percent green coverage (PGC), canopy height (H), green 

aboveground biomass (GBM), and total aboveground biomass (TBM). The results showed 

that NDVI, EVI, NDSVI, and LSWI were useful for estimating canopy biophysical features, 

with NDSVI being the most significant variable. The PGC was accurately estimated with 

spectral reflectance at 441 nm and 2220 nm (R
2
 = 0.71), while the maximum depth of band 

(Dc), absorption area (Darea) in the red domain and drre were selected for estimating TBM 

and GBM (R
2
 = 0.51 and 0.44). Among the four canopy features, PGC received the highest 

confidence from all of the models (R
2
 = 0.81), while H was the most difficult to estimate 

(R
2
 = 0.49). Finally, the degree of disturbances and ecosystem types appeared to be a 

significant variable for model development. 
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1. Introduction 

Accurate quantification of vegetation canopy characteristics has been a research focus for its  

crucial role in ecosystem studies on productivity, carbon cycles, nutrient allocation, and biological 

diversity [1–3]. Despite previous efforts to quantify canopy biophysical properties using various 

methods at multiple spatial scales, the task remains challenging [3]. Remote sensing technology, 

meanwhile, viewed as a time- and cost-efficient approach among the most promising methods, allows 

scientists to proceed with large-scale monitoring of ecological properties at broader scales [4,5] and has 

been widely used to estimate the biophysical characteristics of different vegetation types on landscape 

and regional scales. However, only a limited number of applications of hyperspectral field 

spectroscopy data have been promoted due to their capability of quantifying land surface properties, 

such as canopy cover, height, leaf area index (LAI), etc. 

Hyperspectral scanners consisting of individual channels with high spectral resolution at 10 nm  

and 400–2500 nm spans have the potential to significantly improve our ability to discriminate  

between the characteristics of spectral features for analysis, classification, and monitoring of canopy 

properties [6,7]. Different vegetation types have distinct pigment concentrations, leaf characteristics, 

and canopy structures, indicating the existence of unique spectral properties of absorption and 

reflectance for each species or vegetation type [7–10]. Clearly, narrow bands of hyperspectral remote 

sensing are more useful than broad bands in the quantification of vegetative biophysical variables; in 

particular, the red portion of the electromagnetic spectrum might provide more stable information on 

canopy attributes [11]. 

Hyperspectral studies have been widely conducted in laboratories, aiming toward their ultimate  

use in actual fields. Several challenges remain for their effective use. First, canopy reflectance in the 

field is complex for its similarity of biochemical composition among species, overlapping of their 

absorption features for biochemical constituents in live vegetation [7], high atmospheric absorption 

interruption [12–14], and variation of vegetation canopy water content caused by incident precipitation 

that is particularly vital in semi-arid vegetation [12]. Secondly, there is no consensus about the 

relationship between canopy properties and the reflectance that can be used to scale up to the entire 

canopy because each measure within the sensor view angle includes variable vegetation, mosaics of the 

soil background, and other non-photosynthetically active vegetation [5,12,15,16]. Finally, spectral 

variations may also occur for the same species under different conditions of age, microclimate, soil 

characteristics, precipitation, topography, phenology, and stressors [17–22]. Clearly, substantial and 

extensive in situ spectral data are needed to promote the uses of hyperspectral reflectance from a 

remote sensing perspective before it can be linked with satellite data for applications at broader 

temporal and spatial scales [14,23]. 

Here, an intensive field campaign was conducted to explore the usefulness of in situ hyperspectral 

data across a large area of semi-arid landscape in Inner Mongolia, China. Grasslands are the most 
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dominant ecosystems on the Mongolian Plateau [24] and the most important natural resources for its 

large livestock population and economic development. Grassland degradation in recent years has 

occurred due to increasing climate extremes (e.g., cold winter) [25] and growing human pressures [26]. 

Therefore, accurate monitoring and estimating canopy biophysical features of grasslands by using 

high-resolution spectral measurements becomes an urgent demand. 

In this study, our objectives were set to: (1) investigate the potential uses of field spectrometry in 

estimating the biophysical characteristics of different grassland types with different human 

disturbances across a large spatial area in the arid and semi-arid areas of Inner Mongolia; (2) depict the 

sensitive spectral properties and any quantitative measures generated from these spectral properties 

that can be used to estimate biophysical characteristics by developing empirical models;  

and (3) develop empirical models by identifying significant remote sensing signals to estimate community 

functions such as biomass. 

2. Methods 

2.1. Study Area 

The study area was located between 38.28°–46.60°N and 107.65°–118.12°E in Inner Mongolia, 

China (Figure 1). The region is characterized by an arid and semi-arid continental climate with a strong 

climate gradient and various land use practices. The annual precipitation ranges from 150 mm to 400 mm 

and the dominant vegetation types include a typical steppe and a desert steppe [27], both under 

intensive human disturbances. Among the 61 sampling sites, 28 were measured in 2006 and 33 were 

measured in 2007. Considering the variations in grassland types and human activities, 11 sites were 

recorded as having ―low human disturbance‖ for the typical steppes (i.e., Class I) and 24 sites as 

having ―intermediate human disturbance‖ (i.e., Class II). The remaining 26 sites were in the desert 

steppe and assigned as Class III. The typical steppe has an annual precipitation of 250–400 mm, annual 

accumulated temperature of 2600–2800 °C, and is dominated by Stipa krylovii, Leymus chinensis, 

Cleistogenes squarrosa, Koeleria cristata, Artemisia spp., and Potentilla spp., while the desert steppe 

has an annual precipitation of 150–250 mm, annual accumulated temperature of 2200–2500 °C, and is 

dominated by Stipa klemenvii, S. breviflora, and S. glareosa [27]. 

2.2. Field Spectral Measurement 

Field reflectance spectra measurements were conducted from 11 July to 25 August 2006 and  

25 June to 24 July 2007. All spectral measurements were taken between 10.5 h and 14.5 h on clear and 

sunny days. A GER3700 (Geophysical and Environmental Research Corporation, Buffalo, NY, USA) 

spectroradiometer was used for taking in situ spectral data. The GER 3700 is a three-dispersion grating 

spectroradiometer using Si and PbS detectors with a single field of view of 25°. It has 647 wave bands 

and a wavelength range of 350–2500 nm with sampling intervals of 1.5 nm in the 350–1050 nm, 6.2 nm 

in the 1050–1900 nm, and 9.5 nm in the 1900–2500 nm. The spectral resolution is 3 nm  

over the range of 300–1050 nm, 11 nm over the range of 1050–1900 nm, and 16 nm over the range of 

1900–2500 nm. The sensor was hand-held approximately one meter above the ground at the nadir 

position. Three replicates were conducted at each plot and five samplings (north, south, east, west, and 
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center positions) were conducted in each of the 61 sites within a 250 m × 250 m area. Altogether, we  

had 915 measurements in 2006 and 2007. 

Figure 1. Spatial locations of 61 sampling sites in the study area overlaid on land cover 

types in Inner Mongolia, China. The land cover types were from the 1:4,000,000 Vegetation 

Atlas of China compiled by the Editorial Board of Vegetation Maps of China, 2001. 

 

2.3. Vegetation Sampling 

After taking a spectral measurement, percent green cover (PGC, %), canopy height (H, cm), green 

aboveground biomass (GBM, g∙m
−2

), and total aboveground biomass (TBM, g∙m
−2

) were measured or 

harvested using three 50 cm × 50 cm plots. PGC is the percentage of the ground area that is covered by 

green leaves and measured through visual estimations. The harvested green plants and non-green plants 

were oven-dried at 65 °C for 48 h and then weighed for green aboveground biomass (GBM) and total 

(green plus non-green) aboveground biomass (TBM). 

2.4. Data Analysis 

A moving Savitzky-Golay filter [28] with a frame size of 15 (second-degree polynomial)  

was applied to the averaged reflectance spectra to eliminate noise from the sensor using MATLAB 

2007. Moreover, the reflectance of the following wavelengths was excluded due to high levels of noise 

or atmospheric water vapor absorption: <400 nm, >2400 nm, 1350–1590 nm, and 1780–1970 nm [7,12]. 

Ultimately, 517 valid wavebands were obtained from each spectrum. 

We first calculated the following quantitative metrics that are widely used in remote sensing 

studies: normalized difference vegetation index (NDVI): NDVI = (Rnir − Rred)/(Rnir + Rred) [29]; 

enhanced vegetation index (EVI): EVI = 2.5 × (Rnir − Rred)/(Rnir + 6 × Rred − 7.5 × Rblue + 1.0) [30]; 

normalized difference senescence vegetation index (NDSVI): NDSVI = (Rswir − Rred)/(Rswir + Rred) [31]; 

and land surface water index (LSWI): LSWI = (Rnir − Rswir)/(Rnir + Rswir) [32,33], where Rnir, Rred, Rblue, 

and Rswir are the averaged reflectance among the waveband range to match MODIS data in the 
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near-infrared (841–876 nm), red (620–670 nm), blue (459–479 nm), and shortwave infrared 

(SWIR1: 1628–1652 nm) wavelengths, respectively. 

The amplitude of the red edge peak (drre) was determined as the maximum first derivative of the 

reflectance between 680 and 750 nm [34]. The continuum removal analysis, a way of normalizing the 

reflectance spectra, was applied for the absorption features from 550 nm to 750 nm in the visible 

domain, the maximum band depth (Dc), the area under the curve (Darea), and the normalization of Dc by 

the absorption feature (Dc/Darea) were calculated as follows: the Dc was the maximum band depth (BD) 

at the band center. The BD was calculated by subtracting the continuum-removed reflectance at a certain 

wavelength from 1 and, thus, the value of the BD is between zero and one. The continuum-removed 

reflectance is obtained by dividing the reflectance value for each waveband in the absorption feature by 

the reflectance level of the continuum line at the corresponding wavelength. The Darea was calculated as 

the integration of the BD over the spectral interval of interest. The Dc/Darea was calculated by dividing 

the Dc by Darea, i.e., the normalization of the Dc by the absorption feature [35–37]. 

2.5. Statistical Analysis 

Radiative transfer models, being functions of canopy, leaf, and soil background characteristics, had 

theoretically physical foundations. However, they had the ill-posed nature of model inversion [38]. 

Statistical approaches, being sensor-specific and dependent on site and sampling conditions,  

but easy to implement, were used in this study. Descriptive statistics and univariate and multivariate 

analyses were applied to initially explore the statistical properties of each dataset. Although, the ―full 

spectrum‖ methods, such as partial least squares regression, had better predictive powers for 

biophysical variables [39]. Here, a stepwise linear regression, which can establish a minimum set of 

wavelengths and permit an optimum modeling of the target variable, was used to select wavelengths 

from spectral property variables. To ensure the normality of residuals and to improve the statistical 

models, vegetation parameters were transformed by natural logarithmic and square root arithmetic and a 

general linear model was used to examine the effects of class variables on the grass canopy properties 

(SAS 9.1 TS level XP-PRO platform). In this model, spectral information and the class variable were set 

as the independent variables, while canopy characteristics were set as the dependent variables. 

3. Results 

3.1. Variation in the Canopy Properties and Reflectance Spectrum 

The canopy characteristics among the sampled grasslands were highly variable (Table 1). PGC 

ranged from 3.0% to 78.8% with an average (standard deviation or SD) of 28.0(21.77)%, H ranged  

from 4.3 cm to 45.0 cm with an average (SD) of 19.1(10.69) cm, GBM from 4.8 g∙m
−2

 to 336.4 g∙m
−2

 

with an average (SD) of 72.6(72.23) g∙m
−2

, and TBM from 7.6 g∙m
−2

 to 362.7 g∙m
−2

 with an average 

(SD) of 91.5(88.18) g∙m
−2

. The Class I steppe, which experienced relatively fewer human disturbances, 

had the highest PGC with an average (SD) of 56.1(16.01) %, the highest average (SD) H of 27.5(9.07) 

cm, GBM of 150.4(69.95) g∙m
−2

, and TBM of 212.4(84.53) g∙m
−2

. Class III in the desert steppe had the  

lowest average (SD) canopy cover of 11.6(7.28), and relatively lower H of 17.4(10.45) cm, GBM of 

58.7(81.29) g∙m
−2

, and TBM of 65.6(83.68) g∙m
−2

. 
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Vegetation reflectance based on spectral measurements also showed a considerable difference 

between the two years and among the three vegetation classes (Figure 2). The reflectance spectra in 

2007 were higher than those in 2006 in visible and near-infrared regions, excluding shortwave infrared 

regions. Class III, mostly in the desert steppe with short and sparse vegetation, had higher reflectance in 

the visible and near-infrared domains than Class I and Class II in typical steppes (Figure 2). Additionally, 

there were noticeable spectral differences between Class I and Class II for their different disturbance 

degrees, especially in the visible region. The reflectance in the second shortwave infrared domain 

(1900–2450 nm) of Class II was higher than that of Class I, which was higher than that of Class III. 

This pattern corresponded well to the canopy development conditions (Table 1). The visible region 

captures the changes of chlorophyll absorption, the near-infrared region reflects optical properties of 

leaves, the first shortwave infrared region (1500–1900 nm) is related to leaf biochemical 

characteristics, and the second shortwave infrared bands for the development of cellulose and lignin as 

a plant ages. 

Table 1. Summary statistics of the biophysical characteristics from 61 sampled 

communities in Inner Mongolia. 

 Min Mean Max SD Coefficient of Variation 

 The whole study area (n = 61) 

PGC (%) 3.0 28.0 78.8 21.77 0.78 

H (cm) 4.3 19.1 45.0 10.69 0.56 

GBM (g∙m
−2

) 4.8 72.6 336.4 72.23 1.00 

TBM (g∙m
−2

) 7.6 91.5 362.7 88.18 0.96 

 Class I: less disturbances in typical steppe (n = 11) 

PGC (%) 28.3 56.1 78.8 16.01 0.29 

H (cm) 13.7 27.5 41.7 9.07 0.33 

GBM (g∙m
−2

) 70.6 150.4 302.9 69.95 0.47 

TBM (g∙m
−2

) 127.4 212.4 362.7 84.53 0.40 

 Class II: more disturbances in typical steppe (n = 24) 

PGC (%) 5.0 32.9 75.0 18.96 0.58 

H (cm) 4.3 17.0 39.7 10.10 0.59 

GBM (g∙m
−2

) 12.4 51.3 142.0 28.02 0.55 

TBM (g∙m
−2

) 13.9 63.1 142.0 31.25 0.50 

 Class III: desert steppe (n = 26) 

PGC (%) 3.0 11.6 41.7 7.28 0.63 

H (cm) 5.0 17.4 45.0 10.45 0.60 

GBM (g∙m
−2

) 4.8 58.7 336.4 81.29 1.39 

TBM (g∙m
−2

) 7.6 65.6 360.0 83.68 1.28 

3.2. Estimations from VIs 

Among the four vegetation indices, NDSVI and EVI were selected as the significant independent 

variables through stepwise regression for estimating transformed PGC (R
2
 = 0.64; p < 0.001), while 

NDSVI alone was selected to estimate transformed GBM and TBM (R
2
 = 0.24, 0.32 and p < 0.001, 

0.001, respectively). The transformed H was linearly correlated with NDVI (R
2
 = 0.40), while NDSVI 

correlated well with transformed GBM and TBM, with R
2
 of 0.24 and 0.32, respectively (Figure 3). 
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Figure 2. Changes in spectral reflectance of (a) 2006 and 2007; and (b) Class I, Class II, 

and Class III in Inner Mongolia. 

 

Figure 3. The relationships between transformed canopy features and selected spectral 

drivers for (a) PGC (%); (b) H (cm); (c) GBM (g∙m
−2

); and (d) TBM (g∙m
−2

) in Inner 

Mongolia. The driving factors were selected with stepwise linear regression with p < 0.05. 
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Figure 3. Cont. 

  

(c) (d) 

3.3. Estimations from Reflectance Spectra 

Using the Pearson product moment correlation function for all wavelengths of spectral measurements, 

we identified several spectra that had high correlations with canopy biophysical properties (Figure 4), 

including reflectance at 421 nm, 441 nm, 676 nm, 723 nm, 993 nm, 1210 nm, 1640 nm, and 2220 nm. 

These spectra were consequently selected to explore their roles in estimating PGC, H, GBM, and TBM 

(Figure 5) through stepwise regression. PGC could be estimated from spectra in visible (400–700 nm) 

and part-infrared (700–1200 nm) regions. Our confidence level for estimating transformed H, GBM, 

and TBM varied from 39% to 44% (Figure 5). Overall, it seemed that the canopy characteristics, except 

for H, could be more confidently estimated by reflectance spectra than by using VIs. Reflectance at 441 

nm and 2220 nm explained 71% of the transformed PGC (Figure 5).  

3.4. Estimations from Continuum-Removal Spectra and drre 

The predictive powers of canopy characteristics by continuum removal spectra and drre were further 

improved for GBM and TBM (Table 2), with R
2
 values for transformed PGC, H, GBM, and TBM that 

varied from 0.43 to 0.54. 

Figure 4. Variations of correlation coefficients of determination (R
2
) with wavelength, 

showing the important wavelengths needed for estimating PGC (%), H (cm), GBM (g∙m
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), 
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) in Inner Mongolia. 
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Figure 5. The empirical relationships between transformed (a) PGC (%); (b) H (cm);  

(c) GBM (g∙m
−2

); and (d) TBM (g∙m
−2

) and canopy reflectance in Inner Mongolia.  

The significant driving variables were selected with stepwise linear regression with p < 0.05. 
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Table 2. Empirical models and performances from stepwise regressions using 
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from 0.71 to 0.81 when disturbance intensity and grassland type were included as category variables in 

our linear models (Figure 5, Table 4). More importantly, inclusion of class variable in our model 

development reduced the number of drivers, while R
2
 increased from 0.51 to 0.63 for TBM, from 0.44  

to 0.59 for GBM, and from 0.40 to 0.49 for H (Tables 2 and 4, Figure 5). 

Table 3. Empirical models and performances of stepwise regressions based on vegetation 

indices (VIs), reflectance spectra, continuum removal spectra, and drre (n = 61). 

 Spectra1 Spectra2 Spectra3 Spectra4 R
2
 

PGC NDSVI EVI - - 0.55 

H 1640 nm - - - 0.33 

GBM 421 nm - - - 0.24 

TBM 421 nm 676 nm - - 0.32 

[ln(PGC)]
0.5

 drre 441 nm 1210 nm - 0.72 

[ln(PGC)]
0.5

 drre 441 nm 1210 nm 676 nm 0.74 

[ln(H)]
0.5

 1640 nm - - - 0.40 

[ln(GBM)]
0.5

 421 nm drre 723 nm NDVI 0.55 

[ln(TBM)]
0.5

 drre 723 nm NDVI - 0.57 

[ln(TBM)]
0.5

 drre 723 nm NDVI 676 nm 0.62 

Table 4. Empirical models and performances of the general linear model with disturbance 

as a class variable (n = 61). Class I: less human disturbances in the typical steppe, Class II: 

more disturbances in the typical steppe, and Class III: desert steppe. 

 [ln(PGC)]
0.5

 [ln(H)]
0.5

 [ln(GBM)]
0.5

 [ln(TBM)]
0.5

 

 Factors R
2
 Factors R

2
 Factors R

2
 Factors R

2
 

VIs 
NDSVI  NDVI  NDSVI  NDSVI  

EVI 0.73  0.45  0.37  0.48 

Reflectance spectra 
441 nm  1640 nm  421 nm  421 nm  

2220 nm 0.81  0.49 676 nm 0.47 676 nm 0.56 

Absorption in red domain 

Dc  Dc  Dc  Dc  

drre  Dc/Darea  drre  drre  

Darea 0.65  0.50 Darea 0.59 Darea 0.63 

Comprehensive model 

drre  Dc  421 nm  drre  

441 nm  Dc/Darea  drre  723 nm  

1210 nm    723 nm  NDVI  

676 nm 0.84  0.50 NDVI 0.65 676 nm 0.70 

4. Discussions 

In this study, VIs, reflectance spectra, continuum removal spectra, and drre based on 61 field 

measurements across a large area in Inner Mongolia were used to develop empirical models for 

estimating four key canopy characteristics: PGC, H, GBM, and TBM. Our analysis indicated that 

confidence models could be developed with careful selection of spectral drivers. These models, using 

different sets of independent drivers, provide us with alternative options (Sections 3.2–3.6). Evaluation 

of model performances is an essential premise; however, there is still a lack of a generally agreed upon 



Remote Sens. 2014, 6 2249 

 

set of ―optimal‖ statistical measures for assessing model accuracy [40]. Wide acceptance and the use 

of a coefficient of determination (R
2
) were utilized in this study. 

The conventional biometric approaches for quantifying canopy characteristics in the field are very 

accurate; however, they are labor-intensive and destructive, resulting in only a small number of 

communities that can be measured. Remote sensing technology (e.g., the hand-held spectrometer), 

consequently, becomes an appealing alternative due to its non-destructive, speedy sampling features 

and coverage of large areas. Mutanga et al. used the field spectrometer successfully to estimate canopy 

nitrogen, phosphorus, potassium, calcium, and magnesium concentrations in a savanna rangeland based 

on continuum-removed absorption features and succeeded with a R
2
 of 0.43–0.80 [14]. Similarly, 

Haboudane et al. detected canopy pigment levels (i.e., chlorophyll and carotenes) with a confidence 

level of >80% [41]. In this study, we found the highest confidence in estimating PGC and satisfactory 

confidence for GBM and TBM. The most difficult task remains the prediction of H. Nevertheless,  

it appeared that the hyperspectral spectra in this study contained rich information about  

canopy characteristics. 

Numerous studies have shown that remotely sensed VIs have close correlations with canopy 

biophysical characteristics and, at the same time, they are less sensitive to other variables such as 

canopy geometry, soil backgrounds, solar zenith angles, and atmospheric conditions [11,42]. One of our 

objectives in this study was to examine the feasibility of utilizing these widely used and available 

indices in the remote sensing community to estimate the canopy biophysical characteristics, which can 

be scaled up to broader spatial and temporal scales. Here, we confirmed that VIs could be effectively 

applied for such a purpose (Figure 3, Tables 3 and 4). Surprisingly, LSWI was not selected during the 

stepwise regression as an important variable. This is likely due to the fact that the region is very dry in 

the summer months and the surface moisture remains low and similar [43]. Our success is also due to 

the fact that we did not have the saturation problem of receiving reflectance data from sparse or  

short vegetation. 

Hypothetically, canopy characteristics could be estimated by using proper spectral information.  

We found that there was a great potential for the use of reflectance spectra in estimating PGC, but this 

use was questionable for H. Several authors concluded that the red-edge region was not sensitive to 

atmospheric or background effects [14,44], regardless of its high correlations with aboveground 

biomass and leaf area [45]. Moreover, derivative spectra are commonly used to suppress background 

signals in estimating a range of canopy properties [12], including the chlorophyll absorption feature and 

the water absorption features [46]. In addition, a study based on a laboratory experiment also showed 

that the red edge inflection point had a very poor relationship with LAI, particularly when the plant 

species were pooled together [47]. In this study, the predictive performance of drre was weaker than 

that of Dc (Table 2) when constructing empirical models based on continuum-removed spectra and drre 

to estimate canopy properties, likely due to dry climate conditions in arid and semi-arid regions [48]. 

However, when considering all possible spectral information, drre was an essential supplement for 

detecting PGC, TBM, and GBM (Tables 3 and 4). Clearly, the importance of the red-edge region for 

estimating vegetation biophysical characteristics in arid and semi-arid regions needs further investigations. 

The continuum removal approach has been effectively applied to improve the estimation of  

biomass [7,14,35,36]. The amount of green biomass, the cumulative product of photosynthetic abilities 

and ecosystem respiration, is a function of the absorption feature of electromagnetic energy at specific 
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wavelengths in the visible region [14,49]. In this study, we used continuum removal on red absorption 

features and drre to build regression models for GBM and TBM and found that absorption features in the 

red region were more closely related to biomass. As suggested by Mutanga et al., the technique of 

continuum removal on absorption features may also be applied to data acquired by airborne and 

space-borne imaging spectrometers with high-quality radiometric and geometric calibration of 

hyperspectral imagery to predict and ultimately map the quality and the quantity of grasslands [14]. 

Underwood et al. also showed that the processing techniques of continuum removal performed better 

for classifying one non-native plant of the target species using NASA’s hyperspectral imagery AVIRIS 

(Airborne Visible/Infrared Imaging Spectrometer) [50]. The best empirical models in this study, 

however, were developed using all of the above spectral information (Table 3), suggesting that a 

combination of individual spectrum, quantitative indices, and continuum removal approaches is 

needed. More importantly, selected independent variables for each combination seemed to vary by 

dependent variable, indicating different sources for our estimations. 

A major finding of this study is the importance of including disturbances in predictive models, 

which were significantly improved from their inclusion (Table 4). Logically, the structural evenness of 

the sampling community will largely determine vegetation reflectance. Disturbances, depending on 

their intensity, type and frequency, will increase the heterogeneity of the vegetation. In a highly 

heterogeneous Mediterranean grassland, Darvishzadeh et al. found that canopy chlorophyll content could 

be estimated with the highest accuracy (R
2
 = 0.70) and leaf chlorophyll content could not be estimated 

with acceptable accuracy, while LAI was estimated with intermediate accuracy (R
2
 = 0.59) [51]. 

For estimating PGC in this study, the confidence level was increased to 81% from 71% when 

disturbance was considered in the analysis. Similar degrees of model improvement were also found for 

TBM and GBM (Tables 3 and 4). Röder et al. pointed out that an estimation of biochemical and 

biophysical characteristics in heterogeneous grasslands with mixtures of different grass species can be 

challenging in remote sensing [52]. However, Darvishzadeh et al. also demonstrated that by using 

hyperspectral measurements with a large number of narrow spectral bands and powerful multivariate 

regression techniques, biophysical, and, to a lesser extent, biochemical grass characteristics could be 

retrieved with acceptable accuracy [53]. 

Finally, limited spectral measurement in a large area with higher spatial heterogeneity may affect the 

correlation between spectral properties and canopy features as well as the predictive performances of 

biophysical features based on hyperspectral field spectroscopy. Therefore, when measuring field spectral 

reflectance, each sampled area should meet a certain scale to be representative of spectral properties of 

this community type, which can be done by increasing the number of repetitive or homogeneous 

measurement—a necessity for improving the predictive accuracies based on field spectrometry. 

5. Conclusions 

Previous studies on the utility of hyperspectral field spectroscopy for detecting canopy properties 

such as LAI, chlorophyll, and foliar nutrients were conducted mainly in laboratory conditions or in 

small field regions (e.g., plot and stand levels). Here, we conducted intensive field campaigns across 

the semi-arid region of Inner Mongolia with the goal that the lessons learned from this study can be 

applied later at broader spatial and temporal scales. We found that: (1) quantitative VIs of NDVI, EVI, 
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NDSVI, and LSWI were useful for estimating canopy biophysical features, with NDSVI being the most 

significant variable; (2) PGC in our region was accurately estimated with spectral reflectance, while 

Dc, Darea, and drre were selected for estimating TBM and GBM; (3) among the four canopy features, 

PGC received the highest confidence from all of the models, while H was the most difficult parameter 

to predict; and (4) the degree of disturbances is a very significant variable in developing empirical 

models using remote sensing measurements. 
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