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Abstract:  Satellite-inferred burn severity data have become increasingly popular over the 

last decade for management and research purposes. These data typically quantify spectral 

change between pre-and post-fire satellite images (usually Landsat). There is an active 

debate regarding which of the two main equations, the delta normalized burn ratio (dNBR) 

and its relativized form (RdNBR), is most suitable for quantifying burn severity; each has 

its critics. In this study, we propose and evaluate a new Landsat-based burn severity metric, 

the relativized burn ratio (RBR), that provides an alternative to dNBR and RdNBR. For 18 

fires in the western US, we compared the performance of RBR to both dNBR and RdNBR 

by evaluating the agreement of these metrics with field-based burn severity measurements. 

Specifically, we evaluated (1) the correspondence between each metric and a continuous 

measure of burn severity (the composite burn index) and (2) the overall accuracy of each 

metric when classifying into discrete burn severity classes (i.e., unchanged, low, moderate, 

and high). Results indicate that RBR corresponds better to field-based measurements 

(average R
2
 among 18 fires = 0.786) than both dNBR (R

2
 = 0.761) and RdNBR  

(R
2
 = 0.766). Furthermore, the overall classification accuracy achieved with RBR (average 

among 18 fires = 70.5%) was higher than both dNBR (68.4%) and RdNBR (69.2%). 

Consequently, we recommend RBR as a robust alternative to both dNBR and RdNBR for 

measuring and classifying burn severity. 
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1. Introduction  

Over the last decade, substantial time, effort, and money have been invested in developing  

satellite-inferred wildfire burn severity maps. Imagery from the Landsat TM and ETM+ sensors have 

been particularly useful for this purpose due to their 30 m spatial resolution, ca. 16-day temporal 

resolution, and a deep catalogue of publicly-available images dating back to 1984. Landsat images and 

burn severity maps derived from them have been invaluable for developing an atlas of burn severity 

for large fires in the US [1], determining the drivers of burn severity [2ï4], measuring the effect of past 

disturbance and management on burn severity [5ï7], and quantifying the effects of fire on biotic 

communities [8].  

Consistent with major burn severity mapping efforts [1], we define burn severity as the degree of 

fire-induced change to vegetation and soils, as measured with Landsat-based metrics. The two most 

commonly used Landsat-based metrics of burn severity are the delta normalized burn ratio (dNBR) [9] 

and its relativized form (RdNBR) [10], both of which rely on the normalized burn ratio (NBR) 

(Equation (1)). NBR is sensitive to the amount of chlorophyll content in plants, moisture, and char or 

ash in the soil. The equations for dNBR (Equation (2)) and RdNBR (Equation (3)) use NBR derived 

from pre- and post-fire satellite images to quantify spectral change. Both metrics are sensitive to 

changes commonly caused by fire [11ï13] and are often strongly correlated to field-based measures of 

burn severity [14ï16]. Although maps of dNBR and RdNBR provide depictions of landscape change 

on a continuous scale, researchers and practitioners commonly classify these continuous metrics into 

categorical maps representing unchanged, low, moderate, and high burn severity (e.g., [10]). 

."2 
ÂÁÎÄ τ  ÂÁÎÄ χ

ÂÁÎÄ τ ÂÁÎÄ χ

ᶻ

 (1) 

Ä."2 ."2 П ."2 Пz ρπππÄ."2  (2) 

2Ä."2 
Ä."2

."2 П
Ȣ (3) 

*
 These bands are specific to Landsat 5 and 7 and are not valid for other satellites such as MODIS and Landsat 8. 

The equations for both dNBR and RdNBR make slight and important adjustments to the simple 

difference between pre- and post-fire NBR. The dNBRoffset in Equation (2) is the average dNBR value 

from pixels in relatively homogenous, unchanged areas outside the burn perimeter and is intended to 

account for differences due to phenology or precipitation between the pre- and post-fire images [10,17]. 

Although the dNBRoffset is not always used when generating dNBR maps [1], it becomes important when 

comparing dNBR among fires [17]. The denominator in Equation (3) is what makes the RdNBR a metric 

of relative, rather than absolute, change, thus emphasizing change relative to the amount of pre-fire 

vegetative cover [10].  

A relativized version of burn severity is advantageous in certain situations. Miller and Thode [10] 

clearly articulated the main argument for a relativized version of burn severity such as RdNBR: pixels 



Remote Sens. 2014, 6 1829 

 

whose pre-fire vegetative cover is low (i.e., low NBR) will generally have low dNBR values regardless 

of the degree of fire-induced mortality of the vegetation. As an absolute measure of change, dNBR 

simply does not allow for the quantification of high severity in these cases, even if all pre-fire 

vegetation is consumed. As a result, dNBR values are often correlated to pre-fire NBR. The 

denominator in the equation for RdNBR (Equation (3)) removes this correlation and allows the metric 

to be more sensitive than dNBR to changes where pre-fire vegetation cover is low. As such, a relative 

index like RdNBR is theoretically more suited to detect changes to vegetation on a consistent scale.  

Mathematically, however, there are several difficulties associated with the RdNBR denominator 

(Equation (3)). First, the square root transformation causes very small values of pre-fire NBR to 

produce extremely high or low (i.e., negative) values of RdNBR [10]. The meaning of such extreme 

values is difficult to interpret since they appear as outliers compared to most RdNBR values and are 

more due to very low pre-fire NBR values as opposed to the amount of fire-induced change. 

Furthermore, the RdNBR equation reaches infinity, and therefore fails, when the pre-fire NBR equals 

zero, requiring that pre-fire NBR values of zero be replaced with 0.001 ([18]). Lastly, the absolute 

value transformation of the pre-fire NBR term converts negative pre-fire NBR values to positive 

values. This transformation adds ambiguity to the resulting RdNBR values by not fully accounting for 

the variation in pre-fire NBR. Negative pre-fire NBR values comprise a small proportion of most fires 

(<1%) and correspond to areas with very little to no vegetation [10]; in dry ecosystems, such values 

occasionally comprise over 10% of the area within a fire perimeter [1].  

The use of dNBR vs. RdNBR is actively debated [19ï21] and results regarding which metric better 

corresponds to field-based burn severity data have been inconclusive [11,19]. Some studies have 

concluded that RdNBR provides higher classification accuracies than dNBR when discrete classes 

(i.e., low, moderate, and high) of burn severity are required [10,21]. Other studies have concluded that 

dNBR generally performs better than RdNBR, both in terms of correspondence with field 

measurements and classification accuracies [12,19].  

The goal of this study was to propose and evaluate an alternative relativized burn severity metric 

that is sensitive to changes where pre-fire vegetation cover is low but avoids the difficulties associated 

with the RdNBR equation; we call this new metric the relativized burn ratio (RBR). We examine 

18 fires from across the western US and evaluate the ability of RBR to characterize burn severity in 

terms of its correspondence to a continuous field-based measure of burn severity and its overall 

accuracy when classifying into discrete burn severity classes (i.e., unchanged, low, moderate, and high). 

We also conducted parallel analyses using dNBR and RdNBR in order to determine if RBR improves 

upon either metric. 

2. Methods 

2.1. Study Area and Field Data 

Our study is focused primarily on coniferous and mixed broadleaf-coniferous forests in the 

conterminous western US (Figure 1). To acquire field-sampled burn severity data with the widest 

possible geographic coverage across this range, we solicited other researchers for data collected 

throughout the western US and collected data on one fire in New Mexicoôs Gila Wilderness. In all 
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cases, data were either collected in the field or standardized post-collection to meet protocols of the 

composite burn index (CBI), a widely-used field measurement of burn severity [9]. Under the CBI 

protocol, individual rating factors in each of several vertically arranged strata from substrates (soil and 

rock) up through litter and surface fuels, low herbs and shrubs, tall shrubs, and trees within increasing 

height categories are assessed on a continuous 0 to 3 scale indicating the magnitude of fire effects. 

A rating of 0 reflects no change due to fire, while 3 reflects the highest degree of change. Factors 

assessed include soil char, surface fuel consumption, vegetation mortality, and scorching of trees. 

Typically, ratings are averaged for each strata and then across all strata to arrive at an overall CBI 

severity rating for an entire plot. We acquired our data from numerous sources, and as such, we were 

often provided with only the overall CBI rating with no information on other factors or strata 

(though they were measured and incorporated into the overall CBI rating).  

Figure 1. Location of the 18 fires included in this study. Forested areas in the western US 

are shown in gray shading. 

 

We assembled CBI data from over 3000 field plots, and we selected a subset to include in this study. 

Burn severity patterns are often highly heterogeneous and we wanted to ensure that our sample for 

each fire in our study included this variability. As a first criterion, we selected fires with Ó 40 CBI 

plots. Secondly, to ensure adequate samples from across the range of CBI values, we further selected 

fires where at least 15% of the plots fell in each of three rangesðunchanged or low severity  
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(CBI Ò 1.25), moderate severity (1.25 < CBI Ò 2.25), and high severity (CBI > 2.25). Our final field 

dataset, therefore, consisted of CBI data from 1,681 plots from 18 fires (Figure 1; Table 1). 

Table 1. Summary of fires analyzed in this study. 

Region Fire Name Year Plots Overstory Species (in Order of Prevalence) 

Historical Fire Regime  

(Rollins 2009) 

Surface Mixed Replace 

Northwest  

and  

Northern Rockies 

Tripod Cx  

(Spur Peak) 1 2006 328 

Douglas-fir, ponderosa pine, subalpine fir,  

Engelmann spruce 80ï90% <5% 5ï10% 

Tripod Cx  

(Tripod) 1 2006 160 

Douglas-fir, ponderosa pine, subalpine fir,  

Engelmann spruce >90% <5% <5% 

Robert 2 2003 92 

Subalpine fir, Engelmann spruce, lodgepole pine,  

Douglas-fir, grand fir, western red cedar, western larch 5ï10% 30ï40% 40ï50% 

Falcon 3 2001 42 

Subalpine fir, Engelmann spruce, lodgepole pine,  

whitebark pine 0% 30ï40% 60ï70% 

Green Knoll 3 2001 54 

Subalpine fir, Engelmann spruce, lodgepole pine,  

Douglas-fir, aspen 0% 20ï30% 70ï80% 

Southwest 

Puma 4 2008 45 Douglas-fir, white fir, ponderosa pine 20ï30% 70ï80% 0% 

Dry Lakes Cx 3 2003 49 

Ponderosa pine, Arizona pine, Emory oak,  

alligator juniper >90% 0% 0% 

Miller  5 2011 94 

Ponderosa pine, Arizona pine, Emory oak,  

alligator juniper 80ï90% 5ï10% 0% 

Outlet 6 2000 54 

Subalpine fir, Engelmann spruce, lodgepole pine,  

ponderosa pine, Douglas-fir, white fir 30ï40% 5ï10% 50ï60% 

Dragon Cx WFU 6 2005 51 

Ponderosa pine, Douglas-fir, white fir, aspen,  

subalpine fir, lodgepole pine 60ï70% 20ï30% 5ï10% 

Long Jim 6 2004 49 Ponderosa pine, Gambel oak >90% 0% 0% 

Vista 6 2001 46 

Douglas-fir, white fir, ponderosa pine, aspen,  

subalpine fir 20ï30% 70ï80% 0% 

Walhalla6 2004 47 

Douglas-fir, white fir, ponderosa pine, aspen,  

subalpine fir, lodgepole pine 60ï70% 20ï30% <5% 

Poplar 6 2003 108 

Douglas-fir, white fir, ponderosa pine, aspen,  

subalpine fir, lodgepole pine 20ï30% 20ï30% 40ï50% 

Sierra Nevada 

Power 7 2004 88 

Ponderosa/Jeffrey pine, white fir,  

mixed conifers, black oak >90% 0% 0% 

Cone 7 2002 59 Ponderosa/Jeffrey pine, mixed conifers 80ï90% <5% <5% 

Straylor 7 2004 75 Ponderosa/Jeffrey pine, western juniper >90% 0% <5% 

McNally 7 2002 240 

Ponderosa/Jeffrey pine, mixed conifers,  

interior live oak, scrub oak, black oak 70ï80% 10ï20% 0% 

Note: Composite Burn Index (CBI) data sources: 1 Susan Prichard, USDA Forest Service, Pacific Northwest Research Station; 2 Mike McClellan, Glacier 

National Park; 3 Zack Holden, USDA Forest Service, Northern Region; 4 Joel Silverman, Bryce Canyon National Park; 5 Sean Parks, USDA Forest Service, 

Rocky Mountain Research Station, Aldo Leopold Wilderness Research Institute; 6 Eric Gdula, Grand Canyon National Park; 7 Jay Miller, USDA Forest 

Service, Pacific Southwest Region. 
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Fires selected for this study were distributed in three regions of the western US: the Northwest and 

Northern Rockies, the Southwest, and the Sierra Nevada mountains (Figure 1; Table 1). The four fires in 

the Northwest and Northern Rockies varied from relatively dry ponderosa pine and mixed conifer forests 

(Tripod complex) to mesic montane (Robert) and subalpine forests (Falcon and Green Knoll) [22]. The 

nine Southwest fires also included dry forests and woodlands dominated by ponderosa pine, alligator 

juniper and Gambel oak (Dry Lakes, Miller, Long Jim), as well as montane mixed conifer (Puma, 

Dragon Complex, Vista, Walhalla) and subalpine conifer forests (Outlet, Poplar). The four fires in the 

Sierra Nevada were a mixture of relatively dry ponderosa pine, Jeffrey pine, and California mixed 

conifer forests, with small amounts of western juniper and California oak species. 

In terms of historical fire regimes (LANDFIRE Fire Regime Group version 1.1.0) [22], fires in the 

Northwest and Northern Rockies represented mostly mixed-severity and stand replacement regimes, 

with the exception of the Tripod Complex fires, which burned mostly in a forest with a historically 

high-frequency surface fire regime (Table 1). Our selected fires in the Southwest ranged from 

predominantly low-severity surface regimes (Dry Lakes and Long Jim) to fairly even mixtures of low-, 

mixed-, and high-severity regimes (Poplar). The four Sierra Nevada fires all represented a 

predominantly low-severity surface fire regime. 

From a management perspective, most fires in our study were managed as suppression fires, with a 

few exceptions. Two fires were prescribed burns (Long Jim and Walhalla) and one was an escaped 

prescribed burn (Outlet). Two others, Dry Lakes Complex and Dragon Complex were managed as 

ñWildland Fire Useò, a management strategy that allows wildfires to burn without suppression actions 

within designated boundaries. 

2.2. Remotely-Sensed Severity Metrics 

We generated the dNBR and RdNBR burn severity metrics for all fires except the Miller Fire using 

Landsat imagery acquired from the Monitoring Trends in Burn Severity program (MTBS) [1]. Although 

MTBS produces and distributes dNBR and RdNBR grids, we chose to calculate dNBR and RdNBR 

directly from Landsat imagery (Equations (1ï3)) to ensure that we made parallel comparisons among 

metrics (for example, dNBR as distributed by MTBS does not include the dNBRoffset (Equation (2))). For 

|NBRprefire| values < 0.001, we substituted 0.001 in place of NBRprefire (Equation (3)), as per the 

previously described suggestion of J. Miller [18]. MTBS data were not available for the Miller Fire, so 

we obtained Landsat 5 imagery from the US Geological Survey Center for Earth Resources Observation 

and Science (USGS-EROS) and generated the dNBR and RdNBR grids using MTBS protocol. 

Next, we developed the relativized burn ratio (RBR) (Equation (4)), which is very similar in 

concept to the RdNBR. The RBR is a relativized version of dNBR: 

2"2 
Ä."2

."2 П  ρȢππρ
 (4) 

Simply put, RBR is the dNBR divided by a simple adjustment to the pre-fire NBR. Adding 1.001 to 

the denominator ensures that the denominator will never be zero, thereby preventing the equation from 

reaching infinity and failing. We did not evaluate adjustment values < 1.001 because we did not want 

the equation to fail under any circumstance; however, we did evaluate adjustment values > 1.001 and 

found that these resulted in decreased correspondence with field data.  
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For each CBI plot location, we extracted values for the three burn severity metrics using bilinear 

interpolation, as suggested by Cansler [23]. Bilinear interpolation is a common sampling approach for 

continuous data in which the resultant value is a weighted average of the four nearest pixel centroids, 

where closer pixel centroids are given higher weight than distant pixel centroids. This type of sampling 

approach was necessary because CBI plot locations are unlikely to fall within the center of a 30 m 

Landsat pixel. We did not use the approach of Miller and Thode [10], who used the average from a  

3 × 3 pixel window around each plot location, because we felt that bilinear interpolation would provide 

more precise and spatially-specific values for plot locations. 

2.3. Data Analysis 

We compared the performance of RBR to dNBR and RdNBR by evaluating the (1) correspondence 

of the continuous values to field-measured CBI values, and (2) overall classification accuracy relative 

to CBI. Although our primary objective was to determine if RBR was a viable alternative to dNBR and 

RdNBR, we also wanted to ensure that RBR more or less mimicked the relationship between pre-fire 

NBR and CBI; this was a primary criterion in developing RdNBR [10]. As such, we also evaluated the 

correlation of pre-fire NBR to CBI and each of the three metrics using Pearsonôs correlations.  

To evaluate the performance of the satellite-derived indices as continuous metrics of burn severity, 

we tested their correspondence to CBI using nonlinear regression (cf. [10]). In previous studies, simple 

linear and various non-linear regression forms have been used to model the relationship between CBI 

and dNBR or RdNBR (e.g., [4,10,16,21]). To facilitate comparison between our results and those of 

Miller and Thode [10], we chose to use their non-linear model of the form: 

Ù Áz Âz ÅØÐ#")zÃ (5) 

where y is the satellite-derived metric being evaluated. We quantified the correspondence of each 

metric to CBI as the coefficient of determination (i.e., R
2
 of a linear regression between predicted and 

observed values). We conducted the regression for each of the 18 fires and for all 1,681 plots lumped 

together. We also conducted a five-fold cross-validation on all plots; five evaluations were conducted 

with 80% of the data used to train the nonlinear model and the remaining 20% used to test the model. 

The resulting coefficients of determination for the five testing datasets were averaged. 

Next, we evaluated each remotely sensed burn severity metricôs classification accuracy relative to 

CBI. Four distinct categories are commonly used when mapping burn severity: unchanged (CBI Ò 0.1), 

low (>0.1 and Ò1.25), moderate (>1.25 and Ò2.25), and high (>2.25). We calculated the values of each 

burn severity metric that corresponded to the CBI breakpoints of 0.1, 1.25, and 2.25 using the 

nonlinear regressions described above. This approach resulted in a unique set of thresholds for each 

severity metric for each fire as well as threshold values for all plots analyzed simultaneously. Using 

these thresholds, we calculated the classification accuracy for each metric as the percent of plots 

correctly classified into each burn severity class relative to field-measured CBI; this was conducted for 

each fire individually and all plots together. Therefore, our evaluation of RBR from a classification 

perspective involves (1) the average overall classification accuracy among all individual fires and 

(2) the classification accuracy of all plots analyzed simultaneously. Though the CBI breakpoints used 

for this classification are arbitrary, as they are in most applications that categorize continuous data, 
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they are based on ecological conditions defining Key and Bensonôs [9] CBI scale and allow for 

consistent interpretation of classes across multiple fires. These CBI thresholds also facilitate 

comparison to previous studies (e.g., [10,19,21]).  

Although the dNBRoffset for each fire is provided within the MTBS metadata, it may be 

inconvenient or difficult to generate for those not using MTBS data. We therefore conducted parallel 

analyses, for comparative purposes, omitting the dNBRoffset from Equation (2); these results are 

presented in the Appendix. 

3. Results  

3.1. Correspondence to Field-Measured CBI: Nonlinear Regressions 

The nonlinear regression equation we used to model the relationship between satellite-derived 

severity metrics and CBI fit the data reasonably well (Figure 2). Averaged among all fires, the 

correspondence between CBI and RBR was higher (R
2
 = 0.786) than both dNBR (R

2
 = 0.761) and 

RdNBR (R
2
 = 0.766) (Figure 2). Similarly, when all plots were evaluated simultaneously, RBR 

performed best (R
2
 = 0.705), followed by RdNBR (R

2
 = 0.677) and dNBR (R

2
 = 0.646). The results of 

the five-fold cross-validation were similar: RBR performed best (R
2
 = 0.703), followed by RdNBR  

(R
2
 = 0.675) and dNBR (R

2
 = 0.643). For the majority of fires, the correspondence between each of the 

three metrics and CBI was well above 0.7. Only two fires (Tripod Cx [Spur Peak] and McNally) had 

R
2
 values as low as 0.45ï0.55, while six fires (Outlet, Dragon Cx, Walhalla, Poplar, Power, and 

Straylor) had R
2
 of Ó0.85 for at least one of the three metrics. For 13 of the 18 fires, RBR had the 

highest correspondence to CBI, whereas RdNBR had the highest correspondence to CBI in the 

remaining five fires. RBR also outperformed both dNBR and RdNBR when the dNBRoffset was 

excluded from Equation (2) (Figure A1, Appendix). 

3.2. Correlation to Pre-Fire NBR 

Correlation of each burn severity metric to pre-fire NBR shows that the relativized burn severity 

metrics (RBR and RdNBR) are less correlated to pre-fire NBR than to dNBR (Figure 3). When 

evaluating all 1681 plots, we found little correlation (r = 0.19) between CBI and pre-fire NBR 

(Figure 3a). In contrast, the correlation between dNBR and pre-fire NBR is relatively high (r = 0.44; 

Figure 3b). The correlation between RdNBR (r = 0.09) and RBR (r = 0.30) to pre-fire NBR more 

closely resembles what we observe for CBI and pre-fire NBR (Figure 3c,d). When evaluating 

correlations on individual fires, a similar pattern emerged: correlation to pre-fire NBR is always 

highest for dNBR, lowest for RdNBR, and intermediate for RBR (data not shown). Extreme values in 

RdNBR as pre-fire NBR nears zero are evident (Figure 3c). 
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Figure 2. Scatterplots depicting the relationship between three remotely sensed severity 

metrics (y-axis) and composite burn index (CBI) (x-axis). The state abbreviation and year 

in which the fire occurred are shown in parentheses. The red lines represent the nonlinear 

fits. The coefficient of determination (R
2
) is shown for each fit. Boxplots in the lower right 

summarize the R
2
 of all fires for each metric; boxes represent the inter-quartile range, 

whiskers extend to the 5th and 95th percentiles, horizontal lines represent the median, solid 

dots the mean, and asterisks indicate the R
2
 of 1681 plots with a single model. All fits are 

statistically significant (p < 0.001). 
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Figure 3. Correlations between pre-fire NBR (x-axis) and CBI (a), dNBR (b), RdNBR (c), 

and RBR (d), using all 1,681 plots. Pearsonôs correlation is shown in the upper right of 

each pane. Plots are colored and symbolized by their field-measured CBI severity class: 

unchanged (gray inverted triangles), low (green boxes), moderate (yellow asterisks), and 

high (red diamonds). Horizontal lines are the burn severity class thresholds for each metric 

(calculated with all plots for dNBR, RdNBR, and RBR). 

 

3.3. Classification Accuracy 

Overall classification accuracies for individual fires ranged from 50.0% (RdNBR, Miller) to 86.7% 

(RBR and dNBR, Puma) (Table 2). When averaged among fires, RBR had the highest average overall 

classification accuracy (70.5%), followed by RdNBR (69.2%) and dNBR (68.4%). When all plots 

were analyzed and classified simultaneously, a similar pattern emerged: RBR had the highest overall 

classification accuracy (66.2%), followed by RdNBR (65.5%) and dNBR (64.2%). Although not a 

primary objective of this study, we were also able to evaluate the variability in thresholds among fires. 

We found that, among the 18 fires, the variability (i.e., the coefficient of variation) in thresholds was 

lower for RBR compared to RdNBR (Table 3); compared to dNBR, the variability was lower for two 

out of three thresholds. Similar results were found when the dNBRoffset was excluded from the burn 

severity equations (Tables A1 and A2, Appendix). Classification accuracies of individual severity 

classes are also presented (Table A3). 
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Table 2. Overall classification accuracy when classifying plots into discrete severity classes 

of unchanged, low, moderate, and high. The last two rows depict the average classification 

accuracy among the 18 fires and of all plots analyzed simultaneously, respectively. 

Fire Name dNBR RdNBR RBR 

Tripod Cx (Spur Peak) 63.4 71.6 70.1 

Tripod Cx (Tripod) 58.8 58.8 61.3 

Robert 68.5 75.0 75.0 

Falcon 64.3 71.4 66.7 

Green Knoll 63.0 63.0 63.0 

Puma 86.7 75.6 86.7 

Dry Lakes Cx
 
 75.5 77.6 81.6 

Miller  53.2 50.0 53.2 

Outlet 66.7 68.5 68.5 

Dragon Cx WFU 66.7 66.7 70.6 

Long Jim 67.3 69.4 71.4 

Vista 76.1 80.4 78.3 

Walhalla 70.2 68.1 70.2 

Poplar 75.9 68.5 75.9 

Power 75.0 76.1 77.3 

Cone 71.2 71.2 69.5 

Straylor 77.3 76.0 74.7 

McNally 50.8 57.1 54.2 

Average of 18 fires 68.4 69.2 70.5 

All plots (n = 1681) 64.2 65.5 66.2 

4. Discussion 

Overall, RBR better corresponded to field-based burn severity measurements and had higher 

classification accuracy compared to dNBR and RdNBR. Although there were individual fires where 

other metrics (particularly RdNBR) performed better than RBR, when the evaluations were averaged 

among the 18 fires and when all plots were lumped and analyzed simultaneously (including the  

five-fold cross-validation), RBR always performed best. Our evaluation included fires throughout the 

western US in forests with fire regimes ranging from predominately low-severity surface (e.g., Miller) 

to stand-replacing (e.g., Green Knoll), suggesting that RBR is a robust severity metric that can be used 

across broad geographic regions and fire regimes. 

Like RdNBR, RBR is a relativized version of dNBR, designed to detect change even where pre-fire 

vegetation cover is low. We demonstrated that both RBR and RdNBR are less correlated to pre-fire 

NBR than is dNBR, indicating that the relativized metrics are better at detecting high severity effects 

across the full range of pre-fire vegetation cover. Areas of relatively sparse or spatially discontinuous 

vegetation are fairly common throughout the western US and will potentially become more common as 

climate becomes more arid and fire becomes more frequent [24,25]. Accurately characterizing burn 

severity in such areas will become increasingly important. Our study supports the use of a relativized 

form of the dNBR equation; on average, RBR or RdNBR performed better than dNBR. However, the 

choice between using an absolute (i.e., dNBR) vs. relativized (e.g., RBR) remotely sensed measure of 
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burn severity should depend upon the objectives of any particular study, paying special attention to 

what is being measured by each metric. 

Table 3. Thresholds for the three remotely sensed burn severity metrics corresponding to 

CBI = 0.1 (unchanged/low), 1.25 (low/moderate) and 2.25 (moderate/high) for each fire. 

Region Fire Name 

dNBR RdNBR RBR 

unch/ 

low 

Low 

/mod 

mod/ 

high 

unch/ 

low 

low/ 

mod 

mod/ 

high 

unch/ 

low 

low/ 

mod 

mod/ 

high 

Northwest  

and  

Northern Rockies 

Tripod Cx (Spur Peak) 52 168 433 109 310 696 40 123 304 

Tripod Cx (Tripod)
 
 96 238 484 204 408 752 76 173 336 

Robert 109 225 522 129 286 648 63 139 316 

Falcon 152 248 471 200 383 755 98 172 334 

Green Knoll ī27 203 518 ī37 258 666 ī18 125 322 

Southwest 

Puma 36 144 352 52 479 938 30 126 295 

Dry Lakes Cx
 
 71 153 341 132 360 714 53 129 276 

Miller  122 165 320 294 400 785 102 139 268 

Outlet ī30 126 399 -65 201 633 ī24 90 284 

Dragon Cx WFU 19 121 368 20 211 622 11 91 271 

Long Jim 51 151 274 122 437 787 43 132 238 

Vista ī69 130 466 ī111 209 716 ī48 93 325 

Walhalla 30 156 417 66 259 701 25 114 307 

Poplar 60 185 425 178 312 688 50 132 308 

Sierra Nevada 

Power 38 161 475 56 211 590 26 101 287 

Cone ī35 124 398 ī214 309 727 -35 101 298 

Straylor 36 138 346 94 273 612 30 107 258 

McNally 91 167 379 73 366 717 54 128 281 

 Coefficient of variation 1.32 0.23 0.17 1.69 0.27 0.11 1.33 0.20 0.09 

 All plots (n = 1681) 42 180 422 99 319 704 35 130 298 

Excluding the dNBRoffset from the burn severity equations can affect performance of the remotely 

sensed burn severity metrics. When dNBRoffset was excluded, we found lower correspondence to CBI 

field data for all three burn severity metrics when plots from all 18 fires were evaluated simultaneously 

(Figure A1, Appendix). Furthermore, classification accuracies were generally lower when the 

dNBRoffset was excluded. These findings support the assertion by Miller and Thode [10] that, when 

making comparisons among fires, regardless of which burn severity metric is used, incorporating the 

dNBRoffset should be considered.  

The RBR is an improvement upon RdNBR in terms of correspondence to field measures of burn 

severity and overall classification accuracy. Although this improvement may appear marginal, one of the 

key strengths of the RBR equation is that it avoids some of the mathematical difficulties associated with 

the RdNBR equation. That is, the RBR equation (1) does not fail (i.e., reach infinity) for any pre-fire 

NBR value (including zero), (2) does not result in extremely high or low values when pre-fire NBR is 

near zero, and (3) retains the sign of pre-fire NBR, thereby avoiding potential arbitrary bias of taking the 

absolute value. Furthermore, the reduced variability in RBR thresholds values among fires indicates that 
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RBR thresholds are more ñstableò compared to RdNBR thresholds and are thus more transferable among 

fires and ecoregions. 

There have been several recent developments relating to remote sensing of fire effects, such as 

hyperspectral analysis [14,26], linear spectral unmixing [27], and the use of other satellite 

platforms [28]. While there is promise in these new remote sensing methods that may lead to a more 

ecologically-linked metric for remotely sensing burn severity in the long run, these other approaches 

have not been shown to perform better than Landsat-based dNBR or RdNBR when validated with CBI 

field data (e.g., [14,28]). For the time being, therefore, Landsat-based severity metrics such as RBR, 

dNBR, and RdNBR remain relatively robust compared to these emerging approaches. 

It has also been noted that differences in geography, ecosystem type, and pre-fire soils can influence 

satellite-inferred burn severity metrics [29ï31]. As such, some have suggested that a suite of methods 

will ultimately be needed to adequately quantify burn severity, with different approaches optimized for 

different settings [27]. Indeed, our data indicate that all remotely-sensed burn severity metrics 

evaluated in this study had higher correspondence to field data in the southwestern US compared to the 

other geographic regions we analyzed. This said, even when we lumped all our data, the 

correspondence of RBR and field data was strikingly high (r
2
 = 0.705 for all plots), indicating that 

RBR is a useful metric across the range of geography and ecosystem types covered in our study. 

Because we limited our study to forested areas in the western US, it is unclear if RBR is a valid burn 

severity metric in other geographic regions (e.g., southeastern US, Canada, and Alaska). 

5. Conclusion  

The relativized burn ratio (RBR) is a Landsat-based burn severity metric that is an alternative to 

both dNBR and RdNBR. The correspondence between RBR and field-based measures of burn severity 

indicates an improvement over dNBR and RdNBR. The overall classification accuracy of RBR into 

discrete classes of burn severity also indicates that RBR improves upon dNBR and RdNBR. Another 

strength of RBR is that it avoids some of the mathematical difficulties associated with the RdNBR 

equation. Given the number of fires analyzed in this study and the large geographic extent, we 

demonstrated that RBR is a robust metric for measuring and classifying burn severity over a broad 

range of fire-regime types. As such, the use of RBR should help facilitate the description and study of 

burn severity patterns, as well as their drivers and consequences in forests like those of the 

conterminous western US.  
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Appendix 

Table A1. Overall classification accuracy when classifying plots into discrete severity 

classes of unchanged, low, moderate, and high when the dNBRoffset term was excluded 

from the equations. The last two rows depict the average classification accuracy among the 

18 fires and of all plots analyzed simultaneously, respectively. 

Fire Name dNBR RdNBR RBR 

Tripod Cx (Spur Peak) 63.4 71.0 70.7 

Tripod Cx (Tripod) 58.8 58.1 60.6 

Robert 68.5 75.0 75.0 

Falcon 64.3 71.4 66.7 

Green Knoll 63.0 63.0 63.0 

Puma 86.7 77.8 86.7 

Dry Lakes Cx
 
 75.5 77.6 81.6 

Miller  53.2 51.1 52.1 

Outlet 66.7 68.5 68.5 

Dragon Cx WFU 66.7 66.7 70.6 

Long Jim 67.3 71.4 71.4 

Vista 76.1 80.4 78.3 

Walhalla 70.2 66.0 70.2 

Poplar 75.9 69.4 75.9 

Power 75.0 77.3 77.3 

Cone 71.2 71.2 69.5 

Straylor 77.3 76.0 76.0 

McNally 50.8 57.1 52.9 

Average of 18 fires 68.4 69.4 70.4 

All plots (n = 1681) 63.8 65.8 66.5 

Table A2. Thresholds for the three remotely sensed burn severity metrics when the 

dNBRoffset term was excluded from the equations corresponding to CBI = 0.1 

(unchanged/low), 1.25 (low/moderate) and 2.25 (moderate/high) for each fire. 

Region Fire Name 

dNBR RdNBR RBR 

unch/ 

low 

low/ 

mod 

unch/ 

low 

low/ 

mod 

mod/ 

high 

mod/ 

high 

unch/ 

low 

low/ 

mod 

mod/ 

high 

Northwest 

and northern 

Rockies 

Tripod Cx (Spur Peak) 97 213 76 158 335 478 204 396 774 

Tripod Cx (Tripod)
 
 108 250 85 182 344 496 229 429 773 

Robert
2
 105 221 60 136 313 518 124 281 643 

Falcon 134 230 87 160 321 453 177 357 726 

Green Knoll
3
 ī71 159 ī47 97 295 474 ī101 200 610 
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Table A2. Cont. 

Region Fire Name 

dNBR RdNBR RBR 

unch/ 

low 

low/ 

mod 

unch/ 

low 

low/ 

mod 

mod/ 

high 

mod/ 

high 

unch/ 

low 

low/ 

mod 

mod/ 

high 

Southwest 

Puma 37 145 30 127 296 353 48 502 973 

Dry Lakes Cx
 
 66 148 49 124 271 336 118 348 704 

Miller  145 188 122 158 287 343 337 473 876 

Outlet ī47 109 ī38 77 271 382 ī103 172 607 

Dragon Cx WFU 42 144 29 108 288 391 61 252 662 

Long Jim 21 121 16 106 212 244 20 357 715 

Vista ī43 156 ī30 111 343 492 ī70 252 757 

Walhalla ī6 120 ī3 87 280 381 ī3 197 643 

Poplar 72 197 58 141 317 437 235 347 701 

Sierra 

Nevada 

Power 38 161 25 100 286 475 55 210 589 

Cone ī42 117 ī42 95 292 391 ī234 293 715 

Straylor 19 121 15 92 244 329 24 229 584 

McNally 71 147 39 112 265 359 6 331 682 

 Coefficient of variation 1.56 0.26 0.18 2.27 0.31 0.14 1.64 0.25 0.12 

 All plots (n = 1681) 37 188 32 135 304 430 90 336 722 

Table A3. Producerôs and userôs accuracy for all plots (n = 1681) for each severity class 

for the three burn severity metrics evaluated in this study. These values use the thresholds 

developed for all plots and evaluate the burn severity grids that include the dNBRoffset. 

 Producerôs Accuracy Userôs Accuracy Overall 

 Unchanged Low Moderate High Unchanged Low Moderate High Accuracy 

dNBR 73.9 57.9 60.4 73.2 42.5 57.9 66.1 74.0 64.2 

RdNBR 70.1 46.2 65.6 80.6 36.7 56.6 67.4 78.6 65.5 

RBR 72.7 51.6 64.9 78.9 40.5 57.8 68.0 78.0 66.2 

Figure A1. Scatterplots depicting the relationship between three remotely sensed severity 

metrics (y-axis) and CBI (x-axis) when the dNBRoffset term was excluded from the equations. 

The state abbreviation and year in which the fire occurred are shown in parentheses. The red 

lines represent the nonlinear fits. The coefficient of determination (R
2
) is shown for each fit. 

Boxplots in the lower right summarize the R
2
 of all fires for each metric; boxes represent the 

inter-quartile range, whiskers extend to the 5th and 95th percentiles, horizontal lines 

represent the median, solid dots the mean, and asterisks indicate the R
2
 of 1,681 plots with a 

single model. All fits are statistically significant (p < 0.001). 

 


