RemoteSens2014, 6, 1827-1844 doi:10.3390/s6031827

remotesensing

ISSN 20724292
www.mdpi.com/journal/remotesensing

Article

A New Metric for Quantifying Burn Severity: The Relativized
Burn Ratio

Sean A. Parks'*, Gregory K. Dillon 2 and Carol Miller *

1

Aldo LeopoldWildernessResearch Institute, Rocky Mountain Research Stati®DA Forest
Service, 790 East Beckwith, MissoulaTM9801, USA E-Mail: cmiller04@fs.fed.us
Missoula Fire Sciences Laboratory, Rocky Mountain Research Sta&ipA Forest Service,
5775Hwy 10 W, Missoula, M 59808, USA E-Mail: gdillon@fs.fed.us

Author to whom correspondence should be addressMBiE sean_parks@fs.fed.,us
Tel.: +1-406-542-4182

Received8 January 2014; in revised form: 17 February 2014ccepted24 February 2014
Published:27 February 2014

Abstract: Satelliteinferred burn severity data have become increasingly popular over the
last decade for management and research purposes. Thesgoutaléy quantify spectral
change between piand posffire satelliteimages(usually Landsat There is an active
debate regarding which of the two main equations, the delta normalized burn ratio (dNBR)
and its relativized form (RANBRJ}s most suitable for quantifying burn severity; each has
its critics.In this study, v propose and evaluate a new Landsaded burn severityetric

the relativized burn ratio (RBR)hat provides an alternative tNBR and RANBRFor 18

fires in the western USve compared the performance of RBR to both dNBR and RANBR
by evaluating the agement of these metrics with fididhsed burn severity measurements.
Specifically, we evaluate(ll) the correspondence between each metric and a continuous
measure of burn severity (the composite burn index)(2nthe overall accuracy of each
metric whenclassifying into discrete burn severity clasges, (unchanged, low, moderate,

and high). Results indicate that RBR corresponds better to-béddd measurements
(average R among 18 fires = 0.786) than both dNBR?(R 0.761) and RANBR

(R? = 0.766). Furthermore, the overall classification accuracy achievedRBiEh(average
among 18 fires = 70.5%as higher than both dNBR (68.4%) and RANBR (69.2%).
Consequently, we recommend RBR as a robust alternative to both dNBR and RdANBR for
measuringnd classifying burn severity.
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1. Introduction

Over the last decadesubstantial time, effort, and monéyave been invested ideveloping
satelliteinferred wildfire burn severity mapsnagery from the LandsdtM and ETM+ sensors have
been particularly useful for this purpose due to theimB8®&patial resolutionca. 16-day temporal
resolution, and a deep catalogue of publeWailable images dating back to 1984ndsat images and
burn severity maps derivedofn themhave been invaluabl®r developing an atlas of burn severity
for large fires in the U§L], determining the drivers of burn severjf 4], measuring the effect of past
disturbance and management on burn sevé¢Sity], and quantifying the effectsf fire on biotic
communitieq8].

Consistent with major burn severity mapping eff¢dty we define burn severity as the degree of
fire-induced changéo vegetation and sojlas neasured with Landsdtasedmetrics Thetwo most
commory usedLandsatbased metrics of burn severdye the delta normalized burn ratio (ANBR)
and its relativized form (RANBR]10], both of whichrely on the normalized burn ratio (NBR)
(Equation {)). NBR is sensitive téhe amount of chlorophyll content in plants, moist and char or
ash in the soilThe equations fodNBR (Equation 2)) and RANBR Equation 8)) use NBR derived
from pre and posffire satellite images to quantify spectral change. Both metrics are sensitive to
changes commonly caused by fifeli 13] andare often strongly correlated to figdhsed measures of
burn severity{14i 16]. Although maps of dNBR and RANBR provide depictions of landscape change
on a continuous scale, researchers and practitioners commonly classify these continuous metrics int
caiegorical maps representing unchanged, low, moderate, and high burn gevgri{0]).
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" These bands are specific to Landsat 5 aadd7are not valid for other satellites such as MODIS and Landsat 8.

The equations for both dNBR and RANBR make slight and important adjustments to the simple
difference between prand posfire NBR. The dNBRxse: in Equation ) is the average dNBR value
from pixels in relatively homogenous, unchanged areas outside the burn perimeter and is intended tc
account for differences due to phenology or precipitation detvihe preand posffire imageq10,17].
Although the dNBRksetiS Not always used when generating dNBR njapst becomes important when
comparing dNBR among firgd7]. The denominator ikquation 8) is what makes the RANBR a metric
of relative, rather than absolute, change, thus emphasizing change relative to the amoufiteof pre
vegetative coverlO].

A relativized version of burn severity is advantageous in certain situations. Miller and [Tl@pde
clearly articulated the main argument foredativized version of burn severity such as RdNBRels
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whose prdire vegetative cover is lovi.¢., low NBR) will generally have low dNBR values regardless
of the degree of firenduced mortality of thevegetation.As an absolute measure of change, dNBR
simply does not allow for the quantification of high severity in these cases, even if -dillepre
vegetation is consumed. As a result, dNBR values are often correlated -tioe pNBR. The
denominator irthe equation for RANBREguation 8)) removes this correlation aradlows the metric

to be more sensitive than dNBR to changes wherdingr&#egetation cover is lowAs such, a relative
index like RANBR is theoretically more suited to detect changeyetaton on a consistent scale.

Mathematically, howeverthere are several difficulties associated with the RANBR denominator
(Equation B)). First, the square root transformation cauges/ small values of prére NBR to
produceextremely high or lowi(e., negative)values of RANBR 10]. The meaning of such extreme
valuesis difficult to interpret since they appear as outliers compared to most RANBR values and are
more due to very low prBre NBR values as opposed to the amount of-ifiduced change.
Furthemore the RANBR equatioreaches infinity, and therefofails, when the prdire NBR equals
zero, requiring that prére NBR values of zero be replaced with 0.0Q18{). Lastly, the absolute
value transformation of the pfee NBR term convertsnegative prdire NBR values to positive
values This transformation adds ambiguity to the resulting RANBR values by not fully accounting for
the variation in prdire NBR. Negative preire NBR values comprise a small proportionnabstfires
(<1%) and orrespond to areas with veliftle to no vegetation[10]; in dry ecosystemssuch values
occasionally comprise over 10% of the area within a fire perirh&ter

The use of dNBR/s.RANBR is actively debatefd 9 21] and results regarding which metric leett
corresponds to fiekbased burn severity dateave beeninconclusive[11,19]. Some studies have
concluded thaRdANBR provides higher clasication accuracies than dNB®Rhen discrete classes
(i.e., low, moderate, and high) of burn severity are requii€®1]. Other studies have concluded that
dNBR generally performs better than RANBR, both in terms of correspondence with field
measurements and classification accurddi2d9].

The goal of this study was to propose and evalaatalternative relativized burn severity metric
that issensitive to changes whereeflire vegetation cover is lowut avoids the difficulties associated
with the RANBR equation; we call this new metric the relativized burn ratio (RBR)examine
18fires from across the western US and evaluateabiéity of RBR to characterize burn severity in
terms of its correspondence to a continuous delded measure of burn severity and its overall
accuracy when classifying into discrete burn severity clagssgsifichanged, low, moderate, and high).
We also conducted parallel analyses using dNBR and RANBR in order to determii ifnRroves
upon either metric.

2. Methods
2.1.StudyAreaandField Data

Our study is focused primarily on coniferous and mixedadleatconiferous forests in the
conterminous western UJifure 1). To acquire fielssampled burn severity data with the widest
possible geographic coverage across this range, we solicited other researchers for data collecte
throughout the western US acdo | | ect ed data on one fire in Ne
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cases, data were either collected in the field or standardizeagilesttion to meet protocols of the
composite burn index (CBI), a widelysed field measurement of burn sevef@y. Under the CBI
protocol, individual rating factors in each of several vertically arranged strata from substrates (soil and
rock) up through litter and surface fuels, low herbs and shrubs, tall shrubs, and trees within increasing
height categories are assesseda continuous 0 to 3 scale indicating the magnitude of fire effects.

A rating of O reflects no change due to fire, while 3 reflects the highest degree of change. Factors
assessed include soil char, surface fuel consumption, vegetation mortality, actungcof trees.
Typically, ratings are averaged for each strata and then across all strata to arrive at an overall CBI
severity rating for an entire pldtVe acquired our data from numerous souraees, as such, we were

often provided with only the ovetaCBI rating with no information on other factors or strata
(thoughthey were measured and incorporated into the overall CBI rating).

Figure 1. Location of the 18 fires included in this study. Forested areas in the western US
are shown in gray shading
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We assembled CBI data from oved@ field plots, and we selected a subset to include in this study.
Burn severitypatterns are often highly heterogeneansl we wanted to ensure that our sample for
each fire in our study included this variability. Asiestf criterion, we selected fires with 40 CB |
plots Secondly, to ensure adequate samples from across the range of CBI values, we further selecte
fires whereat least 15% of the plotell in eachof three range® unchangedor low severity
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(CBI O 1), nbderateseverity (.25< CBI O  2), aBdbhighseverity (CBI> 2.29. Our final field
dataset, therefore, consisted of CBI data from 1,681 plots from 18 fires€Eigrable 1).

Table 1.Summary of fires analyzed in this study.

Historical Fire Regime
Region Fire Name Year Plots Overstory Species (in Order of Prevalence) (Rollins 2009)

Surface  Mixed Replace

Tripod Cx Douglasfir, ponderosa pine, subalpine fir,
(Spur Peak} 2006 328 Engelmann spruce 80i 90% <5% 5i 10%
Tripod Cx Douglasfir, ponderosa pine, subalpine fir,
(Tripod)* 2006 160 Engelmann spruce >90% <5% <5%
Northwest
q Subalpine fir, Engelmann spruce, lodgepole pine,
an

Robert? 2003 92 Douglasfir, grand fir, western red cedar, western lar 5i10%  30i140% 40i 50%

Northern Rockies
Subalpine fir, Engelmann spruce, lodgepole pine,

Falcon® 2001 42 whitebark pine 0% 30i40% 60i 70%
Subalpine fir, Engelmann spruce, lodgepole pine,

Green KnolP 2001 54 Douglasfir, aspen 0% 20i30% 70i80%

Puma’ 2008 45 Douglasfir, white fir, ponderosa pine 20i30% 70i 80% 0%

Ponderosa pine, Arizona pine, Emory oak,

Dry Lakes Cx* 2003 49 alligator juniper >90% 0% 0%
Ponderosa pine, Arizona pine, Emory oak,

Miller ® 2011 94 alligator juniper 80i90%  5i10% 0%
Subalpine fir, Engelmann spruce, lodgepole pine,

Outlet® 2000 54 ponderosa pine, Dougldis, white fir 30140% 5i10% 50160%

Southwest Ponderosa pine, Dougldis, white fir, aspen,
Dragon Cx WF 2005 51 subalpine fir, lodgepole pine 60i70% 20i30%  5i10%
Long Jim® 2004 49 Ponderosa pine, Gambel oak >90% 0% 0%

Douglasfir, white fir, ponderosa pine, aspen,

Vista® 2001 46 subalpine fir 20i30% 701 80% 0%

Douglasfir, white fir, ponderosa pine, aspen,

Walhall& 2004 47 subalpine fir, lodgepole pine 60i 70% 201 30% <5%

Douglasfir, white fir, ponderosa pine, aspen,

Poplar® 2003 108 subalpine fir, lodgepole pine 20i30% 20i30% 40i50%
Ponderosa/Jeffrey pine, white fir,
Power’ 2004 88 mixed conifers, black oak >90% 0% 0%
Cone’ 2002 59 Ponderosa/Jeffregine, mixed conifers 80i 90% <5% <5%
Sierra Nevada
Strayla ’ 2004 75 Ponderosa/Jeffrey pine, western juniper >90% 0% <5%

Ponderosa/Jeffrey pine, mixed conifers,

McNally 2002 240 interior live oak, scrub oak, black oak 70i80% 10i 20% 0%

Note: CompositeBurn Index(CBI) data sourcédSusan Prichard, USDA Forest Service, Pacific Northwest Research StMike;McClellan, Glacier
National Park®Zack Holden, USDA Forest Service, Northern Regfalmel Silverman, Bryce Canyon National Pa&ean Parks, USDA ForestiSice,
Rocky Mountain Research Station, Aldo Leopold Wilderness Research Instiuie;Gdula, Grand Canyon National Pafday Miller, USDA Forest

Service, Pacific Southwest Region.
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Fires selected for this study were distributed in three regions avdbtern US: the Northwest and
Northern Rockies, the Southwest, and the Sierra Nevada mourftiggase(; Table 1). The four fires in
the Northwest and Northern Rockies varied from relatively dry ponderosa pine and mixed conifer forests
(Tripod complex) ® mesic montane (Robert) and subalpine forests (Falcon and Green[R2ollhe
nine Southwest fires also included dry forests and woodlands dominated by ponderosa pine, alligator
juniper and Gambel oak (Dry Lakes, Miller, Long Jim), as well as montarednconifer (Puma,
Dragon Complex, Vista, Walhalla) and subalpine conifer forests (Outlet, Poplar). The four fires in the
Sierra Nevada were a mixture of relatively dry ponderosa pine, Jeffrey pine, and California mixed
conifer forests, with small amourdgg western juniper and California oak species.

In terms of historical fire regimgd ANDFIRE Fire Regime Groupersion 1.1.0]J22], fires in the
Northwest and Northern Rockies represented mostly neesdrity and stand replacement regimes,
with the exception of the Tripod Complex fires, which burned mostly in a forest with a historically
high-frequency surface fire regime (Table 1). Our selected fires in the Southwest ranged from
predominantly lowseverity surface regimes (Dry Lakes and Long Jinfgitty even mixtures of low
mixed, and highseverity regimes (Poplar). The four Sierra Nevada fires all represented a
predominantly lowseverity surface fire regime.

From a management perspective, most fires in our study were managed as suppressiathfae
few exceptions. Two fires were prescribed burns (Long Jim and Walhalla) and one was an escapec
prescribed burn (Outlet). Two others, Dry Lakes Complex and Dragon Complex were managed as
AWi | dl an da rranagement Strategy that allows wikl to burn without suppression actions
within designated boundaries.

2.2 RemotehSensed Severity Metrics

We generated the dNBR and RANBR burn severity metrics for all fires except the Miller Fire using
Landsat imagery acquired from the Monitoring Treim Burn Severity program (MTB$}]. Although
MTBS produces and distributes dNBR and RANBR grids, we chose to calculate dNBR and RANBR
directly from Landsat imagerye(uations (13)) to ensure that we made parallel comparisons among
metrics (for examplegNBR as distributed by MTBS does not include the dj&REquation B))). For
INBRyreird Values < 0.001, we substituted 0.001 in place of NRR(Equation 8)), as per the
previously described suggestionXbfMiller [18]. MTBS data were not avable for the Miller Fire, so
we obtained Landsat 5 imagery from the US Geological Survey Center for Earth Resources Observatior
andScience (USGE&ROS) and generated the dNBR and RANBR grids using MTBS protocol.

Next, we developed the relativizeburn ratio (RBR) (Equation 4)), which is very similar in
concept taheRANBR.TheRBRis a relativized version of dNBR:

A. "2

2" 2 . "2 p p8tmp (4)

Simply put,RBRis the dNBR divided by a simple adjustment to thefpeeNBR. Adding 1.001 to
the denominator ensures that the denominatomailerbe zero, thereby preventing the equation from
reaching infinity andailing. We did not evaluate adjustment values < 1.001 because we did not want
the equation to fail undemg circumstance; however, we did evaluate adjustment values > 1.001 and
found that these resulted diecreased correspondence with field data
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For each CBI plot location, we extracted values for the three burn severity metrics using bilinear
interpolation as suggested by Cans|@8]. Bilinear interpolation is a common sampling approfach
continuous daten which the resultant value is a weighted average of the four nearest pixel centroids
where closer pixel centroids are given higher weight thanndipteel centroids. This type of sampling
approach was necessary because CBI plot locations are unlikely to fall within the center wf a 30
Landsat pixel. We did not use the approach of Miller and Th@&@g who used the average from a
3 x 3 pixel windav around each plot location, because we felt that bilinear interpolation would provide
more precise and spatialppecific values for plot locations.

2.3. DataAnalysis

We comparedhe performance of RBR to dNBR andi®BR by evaluating th€l) correspondere
of the continuous values to fieldeasured CBI valueand(2) overall classification accuracselative
to CBI. Although our primary objective was to determine if RBR was a viable alternative to dNBR and
RANBR, we also wanted to ensure that RBR moriessmimicked therelationshipbetween prdire
NBR and CBI; thisvas a primary criterion in developing RANBRO]. As such, we also evaluated the
correlationofpréd i re NBR to CBIlI and each of the three I

To evaluatetie performance of the satelli#derived indices as continuous metrics of burn severity,
we tested theicorrespondence to CBikingnonlinear regressiofcf. [10]). In previous studies, simple
linear and various nelinear regression forms have begsed to model the relationship between CBI
and dNBR or RdNBRe.g.,[4,10,1621]). To facilitate comparison between our results and those of
Miller and Thodg10], we chose to use their ndinear model of the form

U AzAzA@®"9)A (5)
where vy is thesatellitederived metric being evaluated. We quantified the correspondence of each
metric to CBI as the coefficient of determinatidme ( R? of a linear regression between predicted and
observed values). We conducted the rsgjn for each of the 18 fires and fdr5681 plots lumped
togetherWe also conducted a fivield crossvalidationon all plots five evaluations were conducted
with 80% of the data used to train the nonlinear model and the remaining 20% used to test the model.
The resulting coefficiestof detemination for the five testing datasetere averaged.

Next, we evaluated each r emot iealionp aceueacysetative to u r n
CBI. Four distinct categorieare commonly used when mapping burn seveuitghangedCBIO 9, . 1
low(>0. 1 a ) thod@dtd>2A5 25 a)nadd higlZ>2.255 We calculated the values of each
burn severity metric thatocresponded to the CBI breakpoints @fl, 1.25, and 2.2%sing the
nonlinear regressions described aboMeis approach resulted in a unique set of thresholds for each
severity metric for each fire as well as threshold values for all plots analyzedasienusly. Using
these thresholds, wealculatel the classification accuracy faach metric as the percent of plots
correctly classified into each burn sevegtgssrelative to fieldmeasured CBlthis was conducted for
each fire individually and all pte together. Therefore, our evaluation of RBR from a classification
perspective involvegl) the average overall classification accuracy among all individual fires and
(2) the classification accuracy of all plots analyzed simultaneously. Though the GRpbnets used
for this classification are arbitrary, as they are in most applications that categorize continuous data,
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they are based on ecol ogi cal [9 GBI dcal¢ and allew fdre f i |
consistent interpretation of classes acrossltiple fires. These CBI thresholds also facilitate
comparison to previous studigsg.,[10,19,21]).

Although the dNBRusiset for each fire is provided within the MTBS metadata, it may be
inconvenient or difficult to generate for those not using MTBS. d&t& therefore conducted parallel
analyses, for comparative purposes, omitting the dNBRrom Equation (2); these resultsare
presented in thAppendix

3. Results
3.1. Correspondence téield-MeasuredCBI: Nonlinear Regressions

The nonlinear regression equation we used to model the relationship between -detelkid
severity metrics and CBI fit the data reasonably wWElgure 2). Averaged among all fires, the
correspondence between CBI and RBR was higher=(B.786) than both dNBR ¢{R= 0.761) and
RANBR (R = 0.766) Figure 2). Similarly, whenall plots were evaluated simultaneousliRBR
performed best (R= 0.705) followed by RINBR (R= 0.677 and dNBR (R = 0.646).The results of
the fivefold crossvalidationwere similar: RBRperformed best (R= 0.703), followed by RANBR
(R?=0.675 and dNBR (R = 0.643).For the majority of fires, the correspondence between each of the
three metrics and CBI was well above 0.7. Only two fires (TripodSpxir Peak] and McNally) had
R? values as low as 0.48.55, while six fires (Outlet, Dragon Cx, Walhalla, Poplar, Powed a
Straylor) had Rof ©0. 85 for at | east one of the three
highest correspondence to CBI, whereas RANBR had the highest correspondence to CBI in the
remaining five fires.RBR also outperformed both dNBR and RdRBwvhen the dNBRse: was
excluded fron Equation (2)FigureAl, Appendix.

3.2. Correlation tdPre-Fire NBR

Correlation of each burn severity metric to-fire NBR shows that the relativized burn severity
metrics (RBR and RANBR) are less correlatedptefire NBR than to dNBR Kigure 3). When
evaluating all 81 plots, we found little correlation (r = 0.19) between CBI andfipgeNBR
(Figure3a). In contrast, the correlation between dNBR anefipge\BR is relatively high (r = 0.44;
Figure 3b). Thecorrelation between RANBR (r = 0.09) and RBR (r = 0.30) tefipgeNBR more
closely resembles what we observe for CBI andfipee NBR (Figure 3c,d). When evaluating
correlations on individual fires, a similar pattern emerged: correlation thirer&BR is always
highest for dNBR, lowest for RANBR, and intermediate for RBR (data not sh&wingme values in
RANBR as prdire NBR nears zero are evideitigure3c).
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Figure 2. Scatterplots depicting the relationship betwdéemee remotely sensed severity
metrics (yaxis) andcomposite burn index0OBl) (x-axis). The state abbreviation and year
in which the fire occurred are shown parentheses. The red lines represent the nonlinear
fits. Thecoefficient of determinatiorR?) is shown for each fiBoxplots in the lower right
summarize the Rof all fires for each metric; boxes represent the igtertile range,
whiskers extend to thetband %th percentiles, horizontal lines represent the median, solid

dots the mean, and asterisks indicate thefR681 plots with a single modehll fits are

statistically significant (p < 0.001).
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Figure 3. Correlations between pffee NBR (x-axis) and CB(a), dNBR (b), RANBR(c),

and RBR(d), using all 1,681 plots. Peargga@nds co
each pane. Plots are colored and symbolized by theirrfielmsured CBI severity class:
unchanged (gray inverted triangles), low (green boxes), moderate (yellow asterisks), and

high (red diamonds). Horizontal lines are the burn severity class thresholkelach metric
(calculatedwith all plots for ANBR, RANBR, and RBR).
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3.3. ClassificatiorAccuracy

Overall classification accuracies for individual fires ranged from%QRdANBR, Miller) to 86.7%
(RBR and dNBR, Puma) (Tab®. When averaged amongds, RBR had the highest average overall
classification accuracy (70.5%), followed by RANBR (69.2%) and dNBR (68.4%). When all plots
were analyzed and classified simultaneously, a similar pattern emerged: RBR had the highest overall
classification accuracy66.2%), followed by RANBR (65.5%) and dNBR (B%). Although not a
primary objective of this study, we were also able to evaluate the variability in thresholds among fires.
We found that, among the 18 fires, the variabilitg.(the coefficient of varigon) in thresholds was
lower for RBR compared to RANBR (Tabl®; compared to dNBR, the variability was lower for two
out of three thresholdsSimilar results were found when the dNgR: was excluded from theuin
severity equations (Tables Al and ,A®ppendix) Classification acuracies of individual severity
classes are also presented (Table A3).
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Table 2. Overall classification accuracy when classifying plots into discrete severity classes
of unchanged, low, moderate, and high. The last two rowstdée average classification
accuracy among the 18 fires and of all plots analyzed simultaneously, respectively.

Fire Name dNBR RdNBR RBR
Tripod Cx (Spur Peak 63.4 71.6 70.1
Tripod Cx (Tripod) 58.8 58.8 61.3

Robert 68.5 75.0 75.0
Falcon 64.3 71.4 66.7
Green Knoll 63.0 63.0 63.0
Puma 86.7 75.6 86.7
Dry Lakes Cx 75.5 77.6 81.6
Miller 53.2 50.0 53.2
Outlet 66.7 68.5 68.5
Dragon Cx WFU 66.7 66.7 70.6
Long Jim 67.3 69.4 71.4
Vista 76.1 80.4 78.3
Walhalla 70.2 68.1 70.2
Poplar 75.9 68.5 75.9
Power 75.0 76.1 77.3
Cone 71.2 71.2 69.5
Straylor 77.3 76.0 74.7
McNally 50.8 57.1 54.2

Average of 18 fires 68.4 69.2 70.5
All plots (n=1681) 64.2 65.5 66.2

4. Discussion

Overall, RBR better corresponded to fieldasedburn severity measuremensd had higher
classification accuracy compareddbdblBR and RANBR Although there were individual fires where
other metrics (particularly RANBR) performed better than RBR, when the evaluations were averaged
among the 18 fires and when all plots were lumped analyzed simultaneous(including the
five-fold crossvalidation), RBR always performed be€dur evaluabn included fires throughout the
westernUS in forestswith fire regimesranging from predominately loweverity surface (e.g., Miller)
to stam-replacing €.g.,Green Knol), suggesting tha®BR is a robust severity metribat can be used
across hbwad geographic regions and freggimes.

Like RANBR RBR is a relativized versioof dNBR, designed to detect change even wherdigge
vegetation over is low.We demonstrated that both RBR and RdANBR are less correlated-fioepre
NBR than is dNBR, indicating that the relativized metrics are better at detecting high severity effects
across the full range of pfee vegetation cover. Areas of relaly sparse or spatially discontinuous
vegetatiorare fairly common throughout the westéf8 and will potentially become more common as
climate becomes more arid and fire becomes more freq@4/25]. Accurately characterizing burn
severity in such areasill becomeincreasingly importantOur study supports the use of a relativized
form of the dNBR equation;maverageRBR or RANBRperformed better tiedNBR. However, the
choice between using an absolute.(dNBR) vs.relativized (e.g., RBR) remotegensed measure of
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burn severity should depend upon the objectives of any particular study, paying special attention to
what is being measured by each metric.

Table 3. Thresholds for the threemotely senseturn severity metrics corresponding to
CBI =01 (unchanged/low), 1.25 (low/moderate) and 2.25 (moderate/high) for each fire.

dNBR RANBR RBR
Region Fire Name unch/ Low mod/ unch/ low/ mod/ unch/ low/ mod/
low /mod high low mod high low mod high
Tripod Cx (Spur Peak) 52 168 433 109 310 696 40 123 304
Northwest Tripod Cx (Tripod) 96 238 484 204 408 752 76 173 336
and Robert 109 225 522 129 286 648 63 139 316
Northern Rockies  Falcon 152 248 471 200 383 755 98 172 334
Green Knoll 127 203 518 137 258 666 118 125 322
Puma 36 144 352 52 479 938 30 126 295
Dry Lakes Cx 71 153 341 132 360 714 53 129 276
Miller 122 165 320 294 400 785 102 139 268
Outlet 130 126 399 -65 201 633 124 90 284
Southwest Dragon Cx WFU 19 121 368 20 211 622 11 91 271
Long Jim 51 151 274 122 437 787 43 132 238
Vista 169 130 466 1111 209 716 148 93 325
Walhalla 30 156 417 66 259 701 25 114 307
Poplar 60 185 425 178 312 688 50 132 308
Power 38 161 475 56 211 590 26 101 287
Sierra Nevada. Cone 135 124 398 1214 309 727 -35 101 298
Straylor 36 138 346 94 273 612 30 107 258
McNally 91 167 379 73 366 717 54 128 281
Coefficient of variation 132 0.23 0.17 169 0.27 0.11 1.33 0.20 0.09
All plots (n=1681) 42 180 422 99 319 704 35 130 298

Excluding the dNBRkse: from the burn severity equations can affect performance ofethetely
sensedurn severity metrics. When dNBR.: was excluded, we found lower correspondence to CBI
field data for all three burn severity metrics when plots from all 18 fires evaleated simultaneously
(Figure Al, Appendiy. Furthermore, classification accuracies were generally lower when the
dNBRyiiset Was excludedThesefindings supportthe asseion by Miller and Thodg10] that, when
making comparisons among fires, regasdlef which burn severity metric is used, incorporating the
dNBRytset Should be considered.

The RBR is an improvement upon RANBR in terms of correspondence to field measures of burn
severity and overall classification accuracy. Although this improvement may appear marginal, one of the
key strengths of the RBR equation is that it avoids somesahtéithematical difficulties associated with
the RANBR equation. That is, the REBuation {) does not faili(e. reach infinity) for any prdire
NBR value (including zero).2) does not result in extremely high or low values wheHipe\BR is
near zeo, and(3) retains the sign of pifde NBR, thereby avoiding potential arbitrary bias of taking the
absolute value. Furthermore, the reduced variability in RBR thresholds values among fires indicates that
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RBR thresholds are mofstablé compared to RANB thresholds and are thus more transferable among
fires and ecoregions.

There have been several recent developments relating to remote sensing of fire effects, such a
hyperspectral analysi§1426], linear spectral unmixing27], and the use of other shite
platforms[28]. While there is promise in these new remote sensing methods that may lead to a more
ecologicallylinked metric for remotely sensing burn severity in the long run, these other approaches
have not been shown to perform better than Larolssed dNBR or RANBR when validated with CBI
field data(e.g.,[1428]). For the time being, therefore, Landbased severity metrics such as RBR,
dNBR, and RANBR remain relatively robust compared to these emerging approaches.

It has also been noted thditferences in geography, ecosystem type, andigesoils can influence
satelliteinferred burn severity metrid29i 31]. As such, some have suggested that a suite of methods
will ultimately be needed to adequately quantify burn severity, with different approaches optimized for
different settings[27]. Indeed, our data indicate that all remotefnsed burn severity metrics
evaluated in this study had higher correspondence to field data in the southwestern US compared to th
other geographic regionsve analyzed This said, even when we lumped all our data, the
correspondence of RBR and field data was strikingly higts (0.705 for all plots), indicating that
RBR is a useful metric across the range of geography and ecosystem types covered in our study
Because we limited our study to forested areas in the westerit idSinclearif RBR is a valid burn
severity metric in otlr geographic regions (e.goutheagirnUS, Canada, and Alaska

5. Conclusion

The relativizedburn ratio(RBR) is a Landsatbased burn severity metrtbat is an alternative to
bothdNBR and RANBR. The correspondence betwRBR and fieldbased measuseof burn severity
indicates an improvement over dNBR and RANBRe overall classification accuracy of RBR into
discrete classes of burn severity also indicates that RBR improves upon dNBR and RdidBfer
strength ofRBR is that itavoids some of the mathematical difficulties associated with the RANBR
equation.Given the number of fires analyzed in this study and the large geographic extent, we
demonstrated that RBR a robust metric for measuring and classifying burn severity av@oad
range of fireregime types. As such, the useRBR should help facilitate the description and study of
burn severity patternsas well as their drivers and consequenaesforests like those of the
conterminous westerdS.
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Appendix

Table Al. Overall classificationaccuracywhen classifying plots intodiscreteseverity
classesof unchanged, low, moderate, and high when the diNBRerm was excluded
from the equations. The lasto rows depict the average classification accuracy among the
18 fires and of all plots analyzed simultaneously, respectively.

Fire Name dNBR RdNBR RBR
Tripod Cx (Spur Peak 63.4 71.0 70.7
Tripod Cx (Tripod) 58.8 58.1 60.6

Robert 68.5 75.0 75.0
Falcon 64.3 71.4 66.7
Green Knoll 63.0 63.0 63.0
Puma 86.7 77.8 86.7
Dry Lakes Cx 75.5 77.6 81.6
Miller 53.2 51.1 52.1
Outlet 66.7 68.5 68.5
Dragon Cx WFU 66.7 66.7 70.6
Long Jim 67.3 71.4 71.4
Vista 76.1 80.4 78.3
Walhalla 70.2 66.0 70.2
Poplar 75.9 69.4 75.9
Power 75.0 77.3 77.3
Cone 71.2 71.2 69.5
Straylor 77.3 76.0 76.0
McNally 50.8 57.1 52.9

Average of 18 fires 68.4 69.4 70.4
All plots (n=1681) 63.8 65.8 66.5

Table A2. Thresholds for the threeemotely sensedurn severity metrics when the
dNBRyiset term was excluded from the equations corresponding to CBI = 0.1
(unchanged/low), 1.25 (low/moderate) and 2.25 (moderate/high) for each fire.

dNBR RANBR RBR
Region Fire Name unch/ low/ unch/ low/ mod/ mod/ unch/ low/ mod/
low mod low mod  high  high low mod  high
Tripod Cx (Spur Peak) 97 213 76 158 335 478 204 396 774
Northwest  Tripod Cx (Tripod) 108 250 85 182 344 496 229 429 773
and northern Robet” 105 221 60 136 313 518 124 281 643
Rockies Falcon 134 230 87 160 321 453 177 357 726

Green Knolf 171 159 147 97 295 474 1101 200 610
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Table A2. Cont.
dNBR RdANBR RBR
Region Fire Name unch/ low/ unch/ low/ mod/ mod/ wunch/ low/ mod/
low mod low mod  high  high low mod  high

Puma 37 145 30 127 296 353 48 502 973
Dry Lakes Cx 66 148 49 124 271 336 118 348 704
Miller 145 188 122 158 287 343 337 473 876
Outlet 147 109 138 77 271 382 1103 172 607

Southwest  Dragon Cx WFU 42 144 29 108 288 391 61 252 662
Long Jim 21 121 16 106 212 244 20 357 715
Vista 143 156 130 111 343 492 170 252 757
Walhalla 16 120 T3 87 280 381 13 197 643
Poplar 72 197 58 141 317 437 235 347 701
Power 38 161 25 100 286 475 55 210 589

Sierra Cone 142 117 142 95 292 391 1234 293 715

Nevada Straylor 19 121 15 92 244 329 24 229 584
McNally 71 147 39 112 265 359 6 331 682
Coefficient of variation 156 026 018 227 031 014 164 025 0.12
All plots (n=1681) 37 188 32 135 304 430 90 336 722

Table AB3Pr oducer 6s and user &46813 forceach seveyity dassr al |

for the three burn severity metrics evaluated in this study. These values use the thresholds
developed for all plots and evaluate the burn severity grids that include the,NBR

Producerés Accuracy Userés Accuracy Overall
Unchanged Low Moderate High Unchanged Low Moderate High Accuracy
dNBR 739 57.9 60.4 73.2 425 57.9 66.1 74.0 64.2
RANBR 70.1 46.2 65.6 80.6 36.7 56.6 67.4 78.6 65.5
RBR 72.7 51.6 64.9 78.9 40.5 57.8 68.0 78.0 66.2

Figure Al. Scatterplots depicting the relationship between three remotely sensed severity
metrics (yaxis) and CBI (xaxis) when the dNBRse:term was excluded from the equations.
The state abbreviation and year in which the fire occurred are shown in pareffthesesl
lines represent the nonlinear fits. The coefficient of determinatifyigRhown for each fit.
Boxplots in the lower right summarize thé & all fires for each metric; boxes represent the
inter-quartile range, whiskers extend to thth @and 9%h percentiles, horizontal lines
represent the median, solid dots the mean, and asterisks indicafeofre 681 plots with a
single modelAll fits are statistically significant (p < 0.001).



