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Abstract:

 Satellite-inferred burn severity data have become increasingly popular over the last decade for management and research purposes. These data typically quantify spectral change between pre-and post-fire satellite images (usually Landsat). There is an active debate regarding which of the two main equations, the delta normalized burn ratio (dNBR) and its relativized form (RdNBR), is most suitable for quantifying burn severity; each has its critics. In this study, we propose and evaluate a new Landsat-based burn severity metric, the relativized burn ratio (RBR), that provides an alternative to dNBR and RdNBR. For 18 fires in the western US, we compared the performance of RBR to both dNBR and RdNBR by evaluating the agreement of these metrics with field-based burn severity measurements. Specifically, we evaluated (1) the correspondence between each metric and a continuous measure of burn severity (the composite burn index) and (2) the overall accuracy of each metric when classifying into discrete burn severity classes (i.e., unchanged, low, moderate, and high). Results indicate that RBR corresponds better to field-based measurements (average R2 among 18 fires = 0.786) than both dNBR (R2 = 0.761) and RdNBR (R2 = 0.766). Furthermore, the overall classification accuracy achieved with RBR (average among 18 fires = 70.5%) was higher than both dNBR (68.4%) and RdNBR (69.2%). Consequently, we recommend RBR as a robust alternative to both dNBR and RdNBR for measuring and classifying burn severity.
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1. Introduction

Over the last decade, substantial time, effort, and money have been invested in developing satellite-inferred wildfire burn severity maps. Imagery from the Landsat TM and ETM+ sensors have been particularly useful for this purpose due to their 30 m spatial resolution, ca. 16-day temporal resolution, and a deep catalogue of publicly-available images dating back to 1984. Landsat images and burn severity maps derived from them have been invaluable for developing an atlas of burn severity for large fires in the US [1], determining the drivers of burn severity [2–4], measuring the effect of past disturbance and management on burn severity [5–7], and quantifying the effects of fire on biotic communities [8].

Consistent with major burn severity mapping efforts [1], we define burn severity as the degree of fire-induced change to vegetation and soils, as measured with Landsat-based metrics. The two most commonly used Landsat-based metrics of burn severity are the delta normalized burn ratio (dNBR) [9] and its relativized form (RdNBR) [10], both of which rely on the normalized burn ratio (NBR) (Equation (1)). NBR is sensitive to the amount of chlorophyll content in plants, moisture, and char or ash in the soil. The equations for dNBR (Equation (2)) and RdNBR (Equation (3)) use NBR derived from pre- and post-fire satellite images to quantify spectral change. Both metrics are sensitive to changes commonly caused by fire [11–13] and are often strongly correlated to field-based measures of burn severity [14–16]. Although maps of dNBR and RdNBR provide depictions of landscape change on a continuous scale, researchers and practitioners commonly classify these continuous metrics into categorical maps representing unchanged, low, moderate, and high burn severity (e.g., [10]).
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* These bands are specific to Landsat 5 and 7 and are not valid for other satellites such as MODIS and Landsat 8.

The equations for both dNBR and RdNBR make slight and important adjustments to the simple difference between pre- and post-fire NBR. The dNBRoffset in Equation (2) is the average dNBR value from pixels in relatively homogenous, unchanged areas outside the burn perimeter and is intended to account for differences due to phenology or precipitation between the pre- and post-fire images [10,17]. Although the dNBRoffset is not always used when generating dNBR maps [1], it becomes important when comparing dNBR among fires [17]. The denominator in Equation (3) is what makes the RdNBR a metric of relative, rather than absolute, change, thus emphasizing change relative to the amount of pre-fire vegetative cover [10].

A relativized version of burn severity is advantageous in certain situations. Miller and Thode [10] clearly articulated the main argument for a relativized version of burn severity such as RdNBR: pixels whose pre-fire vegetative cover is low (i.e., low NBR) will generally have low dNBR values regardless of the degree of fire-induced mortality of the vegetation. As an absolute measure of change, dNBR simply does not allow for the quantification of high severity in these cases, even if all pre-fire vegetation is consumed. As a result, dNBR values are often correlated to pre-fire NBR. The denominator in the equation for RdNBR (Equation (3)) removes this correlation and allows the metric to be more sensitive than dNBR to changes where pre-fire vegetation cover is low. As such, a relative index like RdNBR is theoretically more suited to detect changes to vegetation on a consistent scale.

Mathematically, however, there are several difficulties associated with the RdNBR denominator (Equation (3)). First, the square root transformation causes very small values of pre-fire NBR to produce extremely high or low (i.e., negative) values of RdNBR [10]. The meaning of such extreme values is difficult to interpret since they appear as outliers compared to most RdNBR values and are more due to very low pre-fire NBR values as opposed to the amount of fire-induced change. Furthermore, the RdNBR equation reaches infinity, and therefore fails, when the pre-fire NBR equals zero, requiring that pre-fire NBR values of zero be replaced with 0.001 ([18]). Lastly, the absolute value transformation of the pre-fire NBR term converts negative pre-fire NBR values to positive values. This transformation adds ambiguity to the resulting RdNBR values by not fully accounting for the variation in pre-fire NBR. Negative pre-fire NBR values comprise a small proportion of most fires (<1%) and correspond to areas with very little to no vegetation [10]; in dry ecosystems, such values occasionally comprise over 10% of the area within a fire perimeter [1].

The use of dNBR vs. RdNBR is actively debated [19–21] and results regarding which metric better corresponds to field-based burn severity data have been inconclusive [11,19]. Some studies have concluded that RdNBR provides higher classification accuracies than dNBR when discrete classes (i.e., low, moderate, and high) of burn severity are required [10,21]. Other studies have concluded that dNBR generally performs better than RdNBR, both in terms of correspondence with field measurements and classification accuracies [12,19].

The goal of this study was to propose and evaluate an alternative relativized burn severity metric that is sensitive to changes where pre-fire vegetation cover is low but avoids the difficulties associated with the RdNBR equation; we call this new metric the relativized burn ratio (RBR). We examine 18 fires from across the western US and evaluate the ability of RBR to characterize burn severity in terms of its correspondence to a continuous field-based measure of burn severity and its overall accuracy when classifying into discrete burn severity classes (i.e., unchanged, low, moderate, and high). We also conducted parallel analyses using dNBR and RdNBR in order to determine if RBR improves upon either metric.



2. Methods


2.1. Study Area and Field Data

Our study is focused primarily on coniferous and mixed broadleaf-coniferous forests in the conterminous western US (Figure 1). To acquire field-sampled burn severity data with the widest possible geographic coverage across this range, we solicited other researchers for data collected throughout the western US and collected data on one fire in New Mexico’s Gila Wilderness. In all cases, data were either collected in the field or standardized post-collection to meet protocols of the composite burn index (CBI), a widely-used field measurement of burn severity [9]. Under the CBI protocol, individual rating factors in each of several vertically arranged strata from substrates (soil and rock) up through litter and surface fuels, low herbs and shrubs, tall shrubs, and trees within increasing height categories are assessed on a continuous 0 to 3 scale indicating the magnitude of fire effects. A rating of 0 reflects no change due to fire, while 3 reflects the highest degree of change. Factors assessed include soil char, surface fuel consumption, vegetation mortality, and scorching of trees. Typically, ratings are averaged for each strata and then across all strata to arrive at an overall CBI severity rating for an entire plot. We acquired our data from numerous sources, and as such, we were often provided with only the overall CBI rating with no information on other factors or strata (though they were measured and incorporated into the overall CBI rating).

Figure 1. Location of the 18 fires included in this study. Forested areas in the western US are shown in gray shading.
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We assembled CBI data from over 3000 field plots, and we selected a subset to include in this study. Burn severity patterns are often highly heterogeneous and we wanted to ensure that our sample for each fire in our study included this variability. As a first criterion, we selected fires with ≥ 40 CBI plots. Secondly, to ensure adequate samples from across the range of CBI values, we further selected fires where at least 15% of the plots fell in each of three ranges—unchanged or low severity (CBI ≤ 1.25), moderate severity (1.25 < CBI ≤ 2.25), and high severity (CBI > 2.25). Our final field dataset, therefore, consisted of CBI data from 1,681 plots from 18 fires (Figure 1; Table 1).


Table 1. Summary of fires analyzed in this study.



	
Region

	
Fire Name

	
Year

	
Plots

	
Overstory Species (in Order of Prevalence)

	
Historical Fire Regime (Rollins 2009)




	
Surface

	
Mixed

	
Replace






	
Northwest and Northern Rockies

	
Tripod Cx (Spur Peak) 1

	
2006

	
328

	
Douglas-fir, ponderosa pine, subalpine fir, Engelmann spruce

	
80–90%

	
<5%

	
5–10%




	






	
Tripod Cx (Tripod) 1

	
2006

	
160

	
Douglas-fir, ponderosa pine, subalpine fir, Engelmann spruce

	
>90%

	
<5%

	
<5%




	






	
Robert 2

	
2003

	
92

	
Subalpine fir, Engelmann spruce, lodgepole pine, Douglas-fir, grand fir, western red cedar, western larch

	
5–10%

	
30–40%

	
40–50%




	






	
Falcon 3

	
2001

	
42

	
Subalpine fir, Engelmann spruce, lodgepole pine, whitebark pine

	
0%

	
30–40%

	
60–70%




	






	
Green Knoll 3

	
2001

	
54

	
Subalpine fir, Engelmann spruce, lodgepole pine, Douglas-fir, aspen

	
0%

	
20–30%

	
70–80%




	






	
Southwest

	
Puma 4

	
2008

	
45

	
Douglas-fir, white fir, ponderosa pine

	
20–30%

	
70–80%

	
0%




	






	
Dry Lakes Cx 3

	
2003

	
49

	
Ponderosa pine, Arizona pine, Emory oak, alligator juniper

	
>90%

	
0%

	
0%




	






	
Miller 5

	
2011

	
94

	
Ponderosa pine, Arizona pine, Emory oak, alligator juniper

	
80–90%

	
5–10%

	
0%




	






	
Outlet 6

	
2000

	
54

	
Subalpine fir, Engelmann spruce, lodgepole pine, ponderosa pine, Douglas-fir, white fir

	
30–40%

	
5–10%

	
50–60%




	






	
Dragon Cx WFU 6

	
2005

	
51

	
Ponderosa pine, Douglas-fir, white fir, aspen, subalpine fir, lodgepole pine

	
60–70%

	
20–30%

	
5–10%




	






	
Long Jim 6

	
2004

	
49

	
Ponderosa pine, Gambel oak

	
>90%

	
0%

	
0%




	






	
Vista 6

	
2001

	
46

	
Douglas-fir, white fir, ponderosa pine, aspen, subalpine fir

	
20–30%

	
70–80%

	
0%




	






	
Walhalla6

	
2004

	
47

	
Douglas-fir, white fir, ponderosa pine, aspen, subalpine fir, lodgepole pine

	
60–70%

	
20–30%

	
<5%




	






	
Poplar 6

	
2003

	
108

	
Douglas-fir, white fir, ponderosa pine, aspen, subalpine fir, lodgepole pine

	
20–30%

	
20–30%

	
40–50%




	






	
Sierra Nevada

	
Power 7

	
2004

	
88

	
Ponderosa/Jeffrey pine, white fir, mixed conifers, black oak

	
>90%

	
0%

	
0%




	






	
Cone 7

	
2002

	
59

	
Ponderosa/Jeffrey pine, mixed conifers

	
80–90%

	
<5%

	
<5%




	






	
Straylor 7

	
2004

	
75

	
Ponderosa/Jeffrey pine, western juniper

	
>90%

	
0%

	
<5%




	






	
McNally 7

	
2002

	
240

	
Ponderosa/Jeffrey pine, mixed conifers, interior live oak, scrub oak, black oak

	
70–80%

	
10–20%

	
0%






Note: Composite Burn Index (CBI) data sources:1Susan Prichard, USDA Forest Service, Pacific Northwest Research Station;2Mike McClellan, Glacier National Park;3Zack Holden, USDA Forest Service, Northern Region;4Joel Silverman, Bryce Canyon National Park;5Sean Parks, USDA Forest Service, Rocky Mountain Research Station, Aldo Leopold Wilderness Research Institute;6Eric Gdula, Grand Canyon National Park;7Jay Miller, USDA Forest Service, Pacific Southwest Region.




Fires selected for this study were distributed in three regions of the western US: the Northwest and Northern Rockies, the Southwest, and the Sierra Nevada mountains (Figure 1; Table 1). The four fires in the Northwest and Northern Rockies varied from relatively dry ponderosa pine and mixed conifer forests (Tripod complex) to mesic montane (Robert) and subalpine forests (Falcon and Green Knoll) [22]. The nine Southwest fires also included dry forests and woodlands dominated by ponderosa pine, alligator juniper and Gambel oak (Dry Lakes, Miller, Long Jim), as well as montane mixed conifer (Puma, Dragon Complex, Vista, Walhalla) and subalpine conifer forests (Outlet, Poplar). The four fires in the Sierra Nevada were a mixture of relatively dry ponderosa pine, Jeffrey pine, and California mixed conifer forests, with small amounts of western juniper and California oak species.

In terms of historical fire regimes (LANDFIRE Fire Regime Group version 1.1.0) [22], fires in the Northwest and Northern Rockies represented mostly mixed-severity and stand replacement regimes, with the exception of the Tripod Complex fires, which burned mostly in a forest with a historically high-frequency surface fire regime (Table 1). Our selected fires in the Southwest ranged from predominantly low-severity surface regimes (Dry Lakes and Long Jim) to fairly even mixtures of low-, mixed-, and high-severity regimes (Poplar). The four Sierra Nevada fires all represented a predominantly low-severity surface fire regime.

From a management perspective, most fires in our study were managed as suppression fires, with a few exceptions. Two fires were prescribed burns (Long Jim and Walhalla) and one was an escaped prescribed burn (Outlet). Two others, Dry Lakes Complex and Dragon Complex were managed as “Wildland Fire Use”, a management strategy that allows wildfires to burn without suppression actions within designated boundaries.



2.2. Remotely-Sensed Severity Metrics

We generated the dNBR and RdNBR burn severity metrics for all fires except the Miller Fire using Landsat imagery acquired from the Monitoring Trends in Burn Severity program (MTBS) [1]. Although MTBS produces and distributes dNBR and RdNBR grids, we chose to calculate dNBR and RdNBR directly from Landsat imagery (Equations (1–3)) to ensure that we made parallel comparisons among metrics (for example, dNBR as distributed by MTBS does not include the dNBRoffset (Equation (2))). For |NBRprefire| values < 0.001, we substituted 0.001 in place of NBRprefire (Equation (3)), as per the previously described suggestion of J. Miller [18]. MTBS data were not available for the Miller Fire, so we obtained Landsat 5 imagery from the US Geological Survey Center for Earth Resources Observation and Science (USGS-EROS) and generated the dNBR and RdNBR grids using MTBS protocol.

Next, we developed the relativized burn ratio (RBR) (Equation (4)), which is very similar in concept to the RdNBR. The RBR is a relativized version of dNBR:
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Simply put, RBR is the dNBR divided by a simple adjustment to the pre-fire NBR. Adding 1.001 to the denominator ensures that the denominator will never be zero, thereby preventing the equation from reaching infinity and failing. We did not evaluate adjustment values < 1.001 because we did not want the equation to fail under any circumstance; however, we did evaluate adjustment values > 1.001 and found that these resulted in decreased correspondence with field data.

For each CBI plot location, we extracted values for the three burn severity metrics using bilinear interpolation, as suggested by Cansler [23]. Bilinear interpolation is a common sampling approach for continuous data in which the resultant value is a weighted average of the four nearest pixel centroids, where closer pixel centroids are given higher weight than distant pixel centroids. This type of sampling approach was necessary because CBI plot locations are unlikely to fall within the center of a 30 m Landsat pixel. We did not use the approach of Miller and Thode [10], who used the average from a 3 × 3 pixel window around each plot location, because we felt that bilinear interpolation would provide more precise and spatially-specific values for plot locations.



2.3. Data Analysis

We compared the performance of RBR to dNBR and RdNBR by evaluating the (1) correspondence of the continuous values to field-measured CBI values, and (2) overall classification accuracy relative to CBI. Although our primary objective was to determine if RBR was a viable alternative to dNBR and RdNBR, we also wanted to ensure that RBR more or less mimicked the relationship between pre-fire NBR and CBI; this was a primary criterion in developing RdNBR [10]. As such, we also evaluated the correlation of pre-fire NBR to CBI and each of the three metrics using Pearson’s correlations.

To evaluate the performance of the satellite-derived indices as continuous metrics of burn severity, we tested their correspondence to CBI using nonlinear regression (cf. [10]). In previous studies, simple linear and various non-linear regression forms have been used to model the relationship between CBI and dNBR or RdNBR (e.g., [4,10,16,21]). To facilitate comparison between our results and those of Miller and Thode [10], we chose to use their non-linear model of the form:
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where y is the satellite-derived metric being evaluated. We quantified the correspondence of each metric to CBI as the coefficient of determination (i.e., R2 of a linear regression between predicted and observed values). We conducted the regression for each of the 18 fires and for all 1,681 plots lumped together. We also conducted a five-fold cross-validation on all plots; five evaluations were conducted with 80% of the data used to train the nonlinear model and the remaining 20% used to test the model. The resulting coefficients of determination for the five testing datasets were averaged.
Next, we evaluated each remotely sensed burn severity metric’s classification accuracy relative to CBI. Four distinct categories are commonly used when mapping burn severity: unchanged (CBI ≤ 0.1), low (>0.1 and ≤1.25), moderate (>1.25 and ≤2.25), and high (>2.25). We calculated the values of each burn severity metric that corresponded to the CBI breakpoints of 0.1, 1.25, and 2.25 using the nonlinear regressions described above. This approach resulted in a unique set of thresholds for each severity metric for each fire as well as threshold values for all plots analyzed simultaneously. Using these thresholds, we calculated the classification accuracy for each metric as the percent of plots correctly classified into each burn severity class relative to field-measured CBI; this was conducted for each fire individually and all plots together. Therefore, our evaluation of RBR from a classification perspective involves (1) the average overall classification accuracy among all individual fires and (2) the classification accuracy of all plots analyzed simultaneously. Though the CBI breakpoints used for this classification are arbitrary, as they are in most applications that categorize continuous data, they are based on ecological conditions defining Key and Benson’s [9] CBI scale and allow for consistent interpretation of classes across multiple fires. These CBI thresholds also facilitate comparison to previous studies (e.g., [10,19,21]).

Although the dNBRoffset for each fire is provided within the MTBS metadata, it may be inconvenient or difficult to generate for those not using MTBS data. We therefore conducted parallel analyses, for comparative purposes, omitting the dNBRoffset from Equation (2); these results are presented in the Appendix.




3. Results


3.1. Correspondence to Field-Measured CBI: Nonlinear Regressions

The nonlinear regression equation we used to model the relationship between satellite-derived severity metrics and CBI fit the data reasonably well (Figure 2). Averaged among all fires, the correspondence between CBI and RBR was higher (R2 = 0.786) than both dNBR (R2 = 0.761) and RdNBR (R2 = 0.766) (Figure 2). Similarly, when all plots were evaluated simultaneously, RBR performed best (R2 = 0.705), followed by RdNBR (R2 = 0.677) and dNBR (R2 = 0.646). The results of the five-fold cross-validation were similar: RBR performed best (R2 = 0.703), followed by RdNBR (R2 = 0.675) and dNBR (R2 = 0.643). For the majority of fires, the correspondence between each of the three metrics and CBI was well above 0.7. Only two fires (Tripod Cx [Spur Peak] and McNally) had R2 values as low as 0.45–0.55, while six fires (Outlet, Dragon Cx, Walhalla, Poplar, Power, and Straylor) had R2 of ≥0.85 for at least one of the three metrics. For 13 of the 18 fires, RBR had the highest correspondence to CBI, whereas RdNBR had the highest correspondence to CBI in the remaining five fires. RBR also outperformed both dNBR and RdNBR when the dNBRoffset was excluded from Equation (2) (Figure A1, Appendix).

Figure 2. Scatterplots depicting the relationship between three remotely sensed severity metrics (y-axis) and composite burn index (CBI) (x-axis). The state abbreviation and year in which the fire occurred are shown in parentheses. The red lines represent the nonlinear fits. The coefficient of determination (R2) is shown for each fit. Boxplots in the lower right summarize the R2 of all fires for each metric; boxes represent the inter-quartile range, whiskers extend to the 5th and 95th percentiles, horizontal lines represent the median, solid dots the mean, and asterisks indicate the R2 of 1681 plots with a single model. All fits are statistically significant (p < 0.001).
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Figure A1. Scatterplots depicting the relationship between three remotely sensed severity metrics (y-axis) and CBI (x-axis) when the dNBRoffset term was excluded from the equations. The state abbreviation and year in which the fire occurred are shown in parentheses. The red lines represent the nonlinear fits. The coefficient of determination (R2) is shown for each fit. Boxplots in the lower right summarize the R2 of all fires for each metric; boxes represent the inter-quartile range, whiskers extend to the 5th and 95th percentiles, horizontal lines represent the median, solid dots the mean, and asterisks indicate the R2 of 1,681 plots with a single model. All fits are statistically significant (p < 0.001).
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3.2. Correlation to Pre-Fire NBR

Correlation of each burn severity metric to pre-fire NBR shows that the relativized burn severity metrics (RBR and RdNBR) are less correlated to pre-fire NBR than to dNBR (Figure 3). When evaluating all 1681 plots, we found little correlation (r = 0.19) between CBI and pre-fire NBR (Figure 3a). In contrast, the correlation between dNBR and pre-fire NBR is relatively high (r = 0.44; Figure 3b). The correlation between RdNBR (r = 0.09) and RBR (r = 0.30) to pre-fire NBR more closely resembles what we observe for CBI and pre-fire NBR (Figure 3c,d). When evaluating correlations on individual fires, a similar pattern emerged: correlation to pre-fire NBR is always highest for dNBR, lowest for RdNBR, and intermediate for RBR (data not shown). Extreme values in RdNBR as pre-fire NBR nears zero are evident (Figure 3c).

Figure 3. Correlations between pre-fire NBR (x-axis) and CBI (a), dNBR (b), RdNBR (c), and RBR (d), using all 1,681 plots. Pearson’s correlation is shown in the upper right of each pane. Plots are colored and symbolized by their field-measured CBI severity class: unchanged (gray inverted triangles), low (green boxes), moderate (yellow asterisks), and high (red diamonds). Horizontal lines are the burn severity class thresholds for each metric (calculated with all plots for dNBR, RdNBR, and RBR).
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3.3. Classification Accuracy

Overall classification accuracies for individual fires ranged from 50.0% (RdNBR, Miller) to 86.7% (RBR and dNBR, Puma) (Table 2). When averaged among fires, RBR had the highest average overall classification accuracy (70.5%), followed by RdNBR (69.2%) and dNBR (68.4%). When all plots were analyzed and classified simultaneously, a similar pattern emerged: RBR had the highest overall classification accuracy (66.2%), followed by RdNBR (65.5%) and dNBR (64.2%). Although not a primary objective of this study, we were also able to evaluate the variability in thresholds among fires. We found that, among the 18 fires, the variability (i.e., the coefficient of variation) in thresholds was lower for RBR compared to RdNBR (Table 3); compared to dNBR, the variability was lower for two out of three thresholds. Similar results were found when the dNBRoffset was excluded from the burn severity equations (Tables A1 and A2, Appendix). Classification accuracies of individual severity classes are also presented (Table A3).


Table A1. Overall classification accuracy when classifying plots into discrete severity classes of unchanged, low, moderate, and high when the dNBRoffset term was excluded from the equations. The last two rows depict the average classification accuracy among the 18 fires and of all plots analyzed simultaneously, respectively.



	
Fire Name

	
dNBR

	
RdNBR

	
RBR






	
Tripod Cx (Spur Peak)

	
63.4

	
71.0

	
70.7




	
Tripod Cx (Tripod)

	
58.8

	
58.1

	
60.6




	
Robert

	
68.5

	
75.0

	
75.0




	
Falcon

	
64.3

	
71.4

	
66.7




	
Green Knoll

	
63.0

	
63.0

	
63.0




	
Puma

	
86.7

	
77.8

	
86.7




	
Dry Lakes Cx

	
75.5

	
77.6

	
81.6




	
Miller

	
53.2

	
51.1

	
52.1




	
Outlet

	
66.7

	
68.5

	
68.5




	
Dragon Cx WFU

	
66.7

	
66.7

	
70.6




	
Long Jim

	
67.3

	
71.4

	
71.4




	
Vista

	
76.1

	
80.4

	
78.3




	
Walhalla

	
70.2

	
66.0

	
70.2




	
Poplar

	
75.9

	
69.4

	
75.9




	
Power

	
75.0

	
77.3

	
77.3




	
Cone

	
71.2

	
71.2

	
69.5




	
Straylor

	
77.3

	
76.0

	
76.0




	
McNally

	
50.8

	
57.1

	
52.9




	






	
Average of 18 fires

	
68.4

	
69.4

	
70.4




	
All plots (n = 1681)

	
63.8

	
65.8

	
66.5










Table A2. Thresholds for the three remotely sensed burn severity metrics when the dNBRoffset term was excluded from the equations corresponding to CBI = 0.1 (unchanged/low), 1.25 (low/moderate) and 2.25 (moderate/high) for each fire.



	
Region

	
Fire Name

	
dNBR

	
RdNBR

	
RBR




	






	
unch/low

	
low/mod

	
unch/low

	
low/mod

	
mod/high

	
mod/high

	
unch/low

	
low/mod

	
mod/high






	
Northwest and northern Rockies

	
Tripod Cx (Spur Peak)

	
97

	
213

	
76

	
158

	
335

	
478

	
204

	
396

	
774




	
Tripod Cx (Tripod)

	
108

	
250

	
85

	
182

	
344

	
496

	
229

	
429

	
773




	
Robert2

	
105

	
221

	
60

	
136

	
313

	
518

	
124

	
281

	
643




	
Falcon

	
134

	
230

	
87

	
160

	
321

	
453

	
177

	
357

	
726




	
Green Knoll3

	
−71

	
159

	
−47

	
97

	
295

	
474

	
−101

	
200

	
610




	






	
Southwest

	
Puma

	
37

	
145

	
30

	
127

	
296

	
353

	
48

	
502

	
973




	
Dry Lakes Cx

	
66

	
148

	
49

	
124

	
271

	
336

	
118

	
348

	
704




	
Miller

	
145

	
188

	
122

	
158

	
287

	
343

	
337

	
473

	
876




	
Outlet

	
−47

	
109

	
−38

	
77

	
271

	
382

	
−103

	
172

	
607




	
Dragon Cx WFU

	
42

	
144

	
29

	
108

	
288

	
391

	
61

	
252

	
662




	
Long Jim

	
21

	
121

	
16

	
106

	
212

	
244

	
20

	
357

	
715




	
Vista

	
−43

	
156

	
−30

	
111

	
343

	
492

	
−70

	
252

	
757




	
Walhalla

	
−6

	
120

	
−3

	
87

	
280

	
381

	
−3

	
197

	
643




	
Poplar

	
72

	
197

	
58

	
141

	
317

	
437

	
235

	
347

	
701




	






	
Sierra Nevada

	
Power

	
38

	
161

	
25

	
100

	
286

	
475

	
55

	
210

	
589




	
Cone

	
−42

	
117

	
−42

	
95

	
292

	
391

	
−234

	
293

	
715




	
Straylor

	
19

	
121

	
15

	
92

	
244

	
329

	
24

	
229

	
584




	
McNally

	
71

	
147

	
39

	
112

	
265

	
359

	
6

	
331

	
682




	






	

	
Coefficient of variation

	
1.56

	
0.26

	
0.18

	
2.27

	
0.31

	
0.14

	
1.64

	
0.25

	
0.12




	
All plots (n = 1681)

	
37

	
188

	
32

	
135

	
304

	
430

	
90

	
336

	
722










Table A3. Producer’s and user’s accuracy for all plots (n = 1681) for each severity class for the three burn severity metrics evaluated in this study. These values use the thresholds developed for all plots and evaluate the burn severity grids that include the dNBRoffset.



	

	
Producer’s Accuracy

	
User’s Accuracy

	
Overall




	

	
Unchanged

	
Low

	
Moderate

	
High

	
Unchanged

	
Low

	
Moderate

	
High

	
Accuracy






	
dNBR

	
73.9

	
57.9

	
60.4

	
73.2

	
42.5

	
57.9

	
66.1

	
74.0

	
64.2




	
RdNBR

	
70.1

	
46.2

	
65.6

	
80.6

	
36.7

	
56.6

	
67.4

	
78.6

	
65.5




	
RBR

	
72.7

	
51.6

	
64.9

	
78.9

	
40.5

	
57.8

	
68.0

	
78.0

	
66.2










Table 2. Overall classification accuracy when classifying plots into discrete severity classes of unchanged, low, moderate, and high. The last two rows depict the average classification accuracy among the 18 fires and of all plots analyzed simultaneously, respectively.



	
Fire Name

	
dNBR

	
RdNBR

	
RBR






	
Tripod Cx (Spur Peak)

	
63.4

	
71.6

	
70.1




	
Tripod Cx (Tripod)

	
58.8

	
58.8

	
61.3




	
Robert

	
68.5

	
75.0

	
75.0




	
Falcon

	
64.3

	
71.4

	
66.7




	
Green Knoll

	
63.0

	
63.0

	
63.0




	
Puma

	
86.7

	
75.6

	
86.7




	
Dry Lakes Cx

	
75.5

	
77.6

	
81.6




	
Miller

	
53.2

	
50.0

	
53.2




	
Outlet

	
66.7

	
68.5

	
68.5




	
Dragon Cx WFU

	
66.7

	
66.7

	
70.6




	
Long Jim

	
67.3

	
69.4

	
71.4




	
Vista

	
76.1

	
80.4

	
78.3




	
Walhalla

	
70.2

	
68.1

	
70.2




	
Poplar

	
75.9

	
68.5

	
75.9




	
Power

	
75.0

	
76.1

	
77.3




	
Cone

	
71.2

	
71.2

	
69.5




	
Straylor

	
77.3

	
76.0

	
74.7




	
McNally

	
50.8

	
57.1

	
54.2




	






	
Average of 18 fires

	
68.4

	
69.2

	
70.5




	
All plots (n = 1681)

	
64.2

	
65.5

	
66.2










Table 3. Thresholds for the three remotely sensed burn severity metrics corresponding to CBI = 0.1 (unchanged/low), 1.25 (low/moderate) and 2.25 (moderate/high) for each fire.



	
Region

	
Fire Name

	
dNBR

	
RdNBR

	
RBR




	






	
unch/low

	
Low/mod

	
mod/high

	
unch/low

	
low/mod

	
mod/high

	
unch/low

	
low/mod

	
mod/high






	
Northwest and Northern Rockies

	
Tripod Cx (Spur Peak)

	
52

	
168

	
433

	
109

	
310

	
696

	
40

	
123

	
304




	
Tripod Cx (Tripod)

	
96

	
238

	
484

	
204

	
408

	
752

	
76

	
173

	
336




	
Robert

	
109

	
225

	
522

	
129

	
286

	
648

	
63

	
139

	
316




	
Falcon

	
152

	
248

	
471

	
200

	
383

	
755

	
98

	
172

	
334




	
Green Knoll

	
−27

	
203

	
518

	
−37

	
258

	
666

	
−18

	
125

	
322




	






	
Southwest

	
Puma

	
36

	
144

	
352

	
52

	
479

	
938

	
30

	
126

	
295




	
Dry Lakes Cx

	
71

	
153

	
341

	
132

	
360

	
714

	
53

	
129

	
276




	
Miller

	
122

	
165

	
320

	
294

	
400

	
785

	
102

	
139

	
268




	
Outlet

	
−30

	
126

	
399

	
−65

	
201

	
633

	
−24

	
90

	
284




	
Dragon Cx WFU

	
19

	
121

	
368

	
20

	
211

	
622

	
11

	
91

	
271




	
Long Jim

	
51

	
151

	
274

	
122

	
437

	
787

	
43

	
132

	
238




	
Vista

	
−69

	
130

	
466

	
−111

	
209

	
716

	
−48

	
93

	
325




	
Walhalla

	
30

	
156

	
417

	
66

	
259

	
701

	
25

	
114

	
307




	
Poplar

	
60

	
185

	
425

	
178

	
312

	
688

	
50

	
132

	
308




	






	
Sierra Nevada

	
Power

	
38

	
161

	
475

	
56

	
211

	
590

	
26

	
101

	
287




	
Cone

	
−35

	
124

	
398

	
−214

	
309

	
727

	
−35

	
101

	
298




	
Straylor

	
36

	
138

	
346

	
94

	
273

	
612

	
30

	
107

	
258




	
McNally

	
91

	
167

	
379

	
73

	
366

	
717

	
54

	
128

	
281




	






	

	
Coefficient of variation

	
1.32

	
0.23

	
0.17

	
1.69

	
0.27

	
0.11

	
1.33

	
0.20

	
0.09




	
All plots (n = 1681)

	
42

	
180

	
422

	
99

	
319

	
704

	
35

	
130

	
298












4. Discussion

Overall, RBR better corresponded to field-based burn severity measurements and had higher classification accuracy compared to dNBR and RdNBR. Although there were individual fires where other metrics (particularly RdNBR) performed better than RBR, when the evaluations were averaged among the 18 fires and when all plots were lumped and analyzed simultaneously (including the five-fold cross-validation), RBR always performed best. Our evaluation included fires throughout the western US in forests with fire regimes ranging from predominately low-severity surface (e.g., Miller) to stand-replacing (e.g., Green Knoll), suggesting that RBR is a robust severity metric that can be used across broad geographic regions and fire regimes.

Like RdNBR, RBR is a relativized version of dNBR, designed to detect change even where pre-fire vegetation cover is low. We demonstrated that both RBR and RdNBR are less correlated to pre-fire NBR than is dNBR, indicating that the relativized metrics are better at detecting high severity effects across the full range of pre-fire vegetation cover. Areas of relatively sparse or spatially discontinuous vegetation are fairly common throughout the western US and will potentially become more common as climate becomes more arid and fire becomes more frequent [24,25]. Accurately characterizing burn severity in such areas will become increasingly important. Our study supports the use of a relativized form of the dNBR equation; on average, RBR or RdNBR performed better than dNBR. However, the choice between using an absolute (i.e., dNBR) vs. relativized (e.g., RBR) remotely sensed measure of burn severity should depend upon the objectives of any particular study, paying special attention to what is being measured by each metric.

Excluding the dNBRoffset from the burn severity equations can affect performance of the remotely sensed burn severity metrics. When dNBRoffset was excluded, we found lower correspondence to CBI field data for all three burn severity metrics when plots from all 18 fires were evaluated simultaneously (Figure A1, Appendix). Furthermore, classification accuracies were generally lower when the dNBRoffset was excluded. These findings support the assertion by Miller and Thode [10] that, when making comparisons among fires, regardless of which burn severity metric is used, incorporating the dNBRoffset should be considered.

The RBR is an improvement upon RdNBR in terms of correspondence to field measures of burn severity and overall classification accuracy. Although this improvement may appear marginal, one of the key strengths of the RBR equation is that it avoids some of the mathematical difficulties associated with the RdNBR equation. That is, the RBR equation (1) does not fail (i.e., reach infinity) for any pre-fire NBR value (including zero), (2) does not result in extremely high or low values when pre-fire NBR is near zero, and (3) retains the sign of pre-fire NBR, thereby avoiding potential arbitrary bias of taking the absolute value. Furthermore, the reduced variability in RBR thresholds values among fires indicates that RBR thresholds are more “stable” compared to RdNBR thresholds and are thus more transferable among fires and ecoregions.

There have been several recent developments relating to remote sensing of fire effects, such as hyperspectral analysis [14,26], linear spectral unmixing [27], and the use of other satellite platforms [28]. While there is promise in these new remote sensing methods that may lead to a more ecologically-linked metric for remotely sensing burn severity in the long run, these other approaches have not been shown to perform better than Landsat-based dNBR or RdNBR when validated with CBI field data (e.g., [14,28]). For the time being, therefore, Landsat-based severity metrics such as RBR, dNBR, and RdNBR remain relatively robust compared to these emerging approaches.

It has also been noted that differences in geography, ecosystem type, and pre-fire soils can influence satellite-inferred burn severity metrics [29–31]. As such, some have suggested that a suite of methods will ultimately be needed to adequately quantify burn severity, with different approaches optimized for different settings [27]. Indeed, our data indicate that all remotely-sensed burn severity metrics evaluated in this study had higher correspondence to field data in the southwestern US compared to the other geographic regions we analyzed. This said, even when we lumped all our data, the correspondence of RBR and field data was strikingly high (r2 = 0.705 for all plots), indicating that RBR is a useful metric across the range of geography and ecosystem types covered in our study. Because we limited our study to forested areas in the western US, it is unclear if RBR is a valid burn severity metric in other geographic regions (e.g., southeastern US, Canada, and Alaska).



5. Conclusion

The relativized burn ratio (RBR) is a Landsat-based burn severity metric that is an alternative to both dNBR and RdNBR. The correspondence between RBR and field-based measures of burn severity indicates an improvement over dNBR and RdNBR. The overall classification accuracy of RBR into discrete classes of burn severity also indicates that RBR improves upon dNBR and RdNBR. Another strength of RBR is that it avoids some of the mathematical difficulties associated with the RdNBR equation. Given the number of fires analyzed in this study and the large geographic extent, we demonstrated that RBR is a robust metric for measuring and classifying burn severity over a broad range of fire-regime types. As such, the use of RBR should help facilitate the description and study of burn severity patterns, as well as their drivers and consequences in forests like those of the conterminous western US.
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