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Abstract: The purpose of this study was to examine the capability of hyperspectral narrow 

wavebands within the 400–900 nm range for distinguishing five cash crops commonly 

grown in Northeastern Ontario, Canada. Data were collected from ten different fields in the 

West Nipissing agricultural zone (46°24'N lat., 80°07'W long.) and included two of each of 

the following crop types; soybean (Glycine max), canola (Brassica napus L.), wheat 

(Triticum spp.), oat (Avena sativa), and barley (Hordeum vulgare). Stepwise discriminant 

analysis was used to assess the spectral separability of the various crop types under two 

scenarios; Scenario 1 involved testing separability of crops based on number of days after 

planting and Scenario 2 involved testing crop separability at specific dates across the 

growing season. The results indicate that select hyperspectral bands in the visual and near 

infrared (NIR) regions (400–900 nm) can be used to effectively distinguish the five crop 

species under investigation. These bands, which were used in a variety of combinations 

include B465, B485, B495, B515, B525, B535, B545, B625, B645, B665, B675, B695, 

B705, B715, B725, B735, B745, B755, B765, B815, B825, B885, and B895. In addition, 

although species classification could be achieved at any point during the growing season, 

the optimal time for satellite image acquisition was determined to be in late July or 

approximately 75–79 days after planting with the optimal wavebands located in the  

red-edge, green, and NIR regions of the spectrum. 
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1. Introduction 

According to the 2011 Canadian census of agriculture, farmland has decreased by 10.3% 

(or 23,643 farms) since the last census in 2006. The size of farm stands has also decreased by 4.1%, 

yet the average size of the farms in Canada has increased by 6.9%. Total government spending 

(federal and provincial) in support of the Agriculture and Agri-Food sector increased to $7.5 billion in 

2011–2012, representing 26.7% of agriculture GDP. Government spending on research and 

development in Agriculture and Agri-Food Canada reached over $560 million in the 2011–2012 fiscal 

year. Every year, millions of dollars are spent conducting inventories of crops across the country [1]. 

Remote sensing is a cost-effective, non-destructive and highly efficient method for conducting 

agricultural research including the estimation of biophysical parameters such as leaf area index (LAI) and 

chlorophyll content [2,3], identification of weed species [4,5], crop separation and classification [6–8], and 

yield estimation [9]. In the last few decades, numerous studies have demonstrated that remote sensing, 

in particular, hyperspectral remote sensing, is a more desirable option for conducting agricultural 

research as it provides contiguous reflectance data allowing the ability to monitor slight changes in 

crops using multiple bands [10–12]. One important application of hyperspectral remote sensing in 

agriculture is the ability to distinguish various crop types. Hyperspectral remote sensing can be used to 

monitor crops in both small and large-scale operations through the use of handheld devices, airborne 

devices or satellite imagery. Accurate crop identification through satellite imagery would allow 

government organizations and researchers to complete nationwide crop inventory in a cost-effective 

and non-intrusive way. 

Several studies have used hyperspectral data to manage agricultural crops, many of which have 

focused on crop separability [3,8,13]. The most common method for collecting hyperspectral data was 

through the use of handheld spectroradiometers [14–18], however, reflectance data were also simulated 

using spectral reflectance models [19] or collected via hyperspectral satellite imagery [20–22]. Typically, 

studies that used handheld devices were conducted in the visible (350–700 nm) and near-infrared 

(NIR) portions of the electromagnetic spectrum (EMS). A number of studies have focused on 

discriminating weed species [5,7], different strands or cultivars of the same crop such as wheat, rice 

and cotton [6,23,24] and finally different species of crop altogether [8,22,25].  

To examine the relationship between different crop species and hyperspectral data for the purpose of 

classifying different crop types, a number of methods are commonly used. Although some researchers 

reduced data dimension first [3], many used discriminant analysis [4,13], principal components 

analysis [4,8,26] and other classification methods such as partial least square regression [6], neural 

networks [27–29], and image-based data [21,30] to classify crop species. Many studies have 

determined that the visible and NIR portions of the EMS are significant in agricultural research, 

especially for estimating crop biophysical parameters such as leaf area index and chlorophyll content, 

in particular, for crop discrimination [3,8,13,30,31]. The wavebands identified as significant vary by 
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location and by crop type, however, importance is often placed on the red-edge, NIR portions of the 

visible spectrum for crop separation [8,32–34].  

Although a number of studies have examined the relationship between spectral reflectance and 

various crop types for the purpose of classifying crops, those studies often only collect data at certain 

growth stages throughout the growing season. It is arguable that due to the rapid changes in plant 

structure in the later growth stages of the growing season, crop separability might be maximized. 

Therefore, the purpose of this study is to determine the separability of crop species using hyperspectral 

narrow wavebands for five crop species including soybean (Glycine max), canola (Brassica napus L.), 

wheat (Triticum spp.), oat (Avena sativa), and barley (Hordeum vulgare) across the Northern Ontario 

growing season. More specifically, the objectives of this research are to determine the optimal narrow 

wavebands for discrimination of crops using a handheld spectroradiometer and to determine the 

optimal time for crop separability by number of days after planting (DAP) and by specific dates across 

the growing season near Verner, Ontario (46.37°N, 79.93°W). The information derived from this study 

can then be used as a guide for determining what type of remote sensing data should be acquired at any 

particular time in the Northern Ontario growing season, in order to discriminate local crop types.  

2. Study Area 

This study took place from July to September 2011, near the small farming community of Verner, 

Ontario (46°24'N, 80°07'W) located in the West Nipissing agricultural zone (Figure 1).  

Figure 1. Study area located near Verner, Ontario in West Nipissing. The background is  

a WorldView-2 image (natural color composite) acquired 2 July 2011.  

 

This area represents an isolated pocket of farmland in Northeastern Ontario, consisting of 

approximately 29,000 acres. Situated in a smaller more isolated portion of the clay belt, this area is 

composed primarily of azilda clay loam soils. Poor drainage is a potential issue, however thousands of 

acres of tile drainage and an extensive system of municipal drains have been installed to maximize 

crop productivity. The mean annual temperature of this region is approximately 4.7 °C with 2,800 

growing degree days, 2,500 corn heat units, 90 to 110 frost free days, and 81 to 89 cm of precipitation 

annually. The West Nipissing agricultural district is composed primarily of dairy farms. However, with 
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improved farming technology, increased demand and development of hybrid plants adapted to cooler 

climates and shorter growing seasons, Northern Ontario is experiencing a transition to cash crop 

production. Key agricultural crops consist of soybean, spring wheat, oats, barley, and canola [35]. 

Given the short growing season, these crops exhibit rapid changes in growth phenology, as observed 

for canola in Figure 2. Table 1 provides crop variety, seeding dates and harvest dates for each crop 

located within the West Nipissing study area; it can be noted that the crop applications related closely 

to those recommended by the Ontario Ministry of Agriculture, Food and Rural Affairs [36].  

Figure 2. Canola at key growth stages (BBCH) across the growing season at specific 

number of days after planting (DAP). 

 

Table 1. Seeding and harvest dates, applications and rates for each of the five crop types in 

the West Nipissing agricultural zone study area in the summer of 2011. 

Crop Crop Variety Seeding Date Harvest Date 

Soybean Dekalb 25–10 rr 21 May  18 Sept  

Canola Invigor (5,440) 17 May  9 Sept  

Wheat Spring Wheat (Wilkin) 10 May  26 Aug  

Oat Bin Run 12 May  12 Aug  

Barley Alma 9 May  10 Aug  

3. Materials and Procedures  

Two scenarios were examined for crop discrimination using hyperspectral data. Scenario 1 

considered the crops at a similar number of DAP (i.e., at similar growth stages) whereas Scenario 2 

was based on when crops were actually planted. According to the Ontario Ministry of Agriculture, 
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Food and Rural Affairs (OMAFRA) Agronomy Guide for Field Crops [36], soybean and canola should 

be planted in mid-May, when soils are slightly warmer, while spring cereal crops can be planted as 

early as 10 April and as late as 10 May in Northern Ontario. The planting dates for the fields in this 

study coincide with those suggested by OMAFRA and, therefore, an argument can be made that 

Scenario 2, based on actual planting dates, might be more accurate for testing the ability to 

discriminate crops hyperspectrally than Scenario 1. However, it is unlikely that all crops in a given 

area, or year by year, would follow the same planting times and, thus, it was deemed important to test 

both scenarios. In general, the cereal crops were planted within 1–3 days of each other while soybean 

and canola were planted 5–12 days afterward (Table 1). 

3.1. Sampling Design 

A total of ten fields located near Verner, Ontario were chosen to represent the five different crop 

types. Two separate fields of each crop type were studied to maximize variability within the study 

area. Subplots within each field were created so that data could be acquired at all fields in a single day 

or, at most, two days. Each subplot was approximately 70 m long and 100 m wide, plus a 30 m buffer 

on the ends and sides to reduce noise in the spectra due to crop variations at the edges of fields. Each 

subplot was composed of three transects each with eight sample locations for a total of 24 samples per 

subplot and 48 samples per crop type (two subplots for each crop). The sample locations along each 

transect were spaced at 10 m intervals and the transects were spaced at 50 m intervals (Figure 3).  

In this way, a total of 7,000 m
2 
of land was examined per subplot and 14,000 m

2
 per crop type, providing 

adequate coverage and an excellent representation of each of the five crops. The sizes of the subplots in 

this study are comparable to those of Thenkabail et al. [25], Bannari et al. [37], and Haché et al. [38]. 

Figure 3. Subplot design for the hyperspectral data collection in each field. 
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In-situ data were collected two to three times per week from 7 July 2011 to 16 September 2011, 

(approximately 11 weeks) and included hyperspectral reflectance, crop phenological data (crop height 

and BBCH growth stage), and digital photographs of the crops. The sample points in each transect, 

where data collection took place, were marked with GPS waypoints to ensure the same location was 

visited on subsequent data collection days. An attempt was made to acquire all data for all crops in  

a single day, however in some cases, two consecutive days were required. 

3.2. Hyperspectral Data Collection 

The methodological approach to hyperspectral data collection used in this investigation was based 

on the work of Thenkabail et al. [3], Zhao et al. [34], Rao [22], and Wang et al. [27]. Specifically, 

spectral reflectance measurements for each crop were acquired using an ASD Inc. FieldSpec
®

 

HandHeld Visible/Near Infrared portable spectroradiometer with a spectral range of 325–1,075 nm at  

a consistent height of 1 m above canopy with a 25° field of view (Figure 4). The hyperspectral data 

were usually captured between 11:00 a.m. and 3:00 p.m. on sunny, cloud free days. At every sample 

location, ten hyperspectral measurements were collected in a circle, for a total of 240 per subplot. 

The ten measurements per sample point were averaged to provide a single set of reflectance values 

from 325–1,075 nm per point with a total of 24 per subplot. Averaging the data samples ensured 

the best possible representation of that location as it accounted for any equipment operator errors 

and/or crop variability within the field. The spectroradiometer was recalibrated after every transect 

using a standard white spectralon reference panel unless illumination changes occurred mid-transect, 

in which case recalibration was completed immediately. 

The measurements were taken weekly over an 11 week period, for each field until the crops were 

harvested. In total, spectral reflectance data were acquired for nine dates for soybean, eight dates for 

canola, six dates for wheat, five dates for oat, and four dates for barley. 

Figure 4. Preparing the ASD Inc. FieldSpec HandHeld Visible/Near Infrared portable 

spectroradiometer for measurements in an oat (Avena sativa) field in West Nipissing, 

Ontario, Canada. 
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3.3. Phenological Data 

Crop phenological data were acquired on the same dates as the hyperspectral reflectance data. 

Phenological data was only acquired at every other sample location for a total of 12 sets of data per 

subplot and 24 per crop. At each sample location, five individual plants were measured for height, and 

the Biologische Bundesanstalt und Chemische Industrie (BBCH) phenological growth stage was 

recorded (Table 2). In addition, three digital photographs were captured (one above canopy, one along 

row, and one against row) at every other sample location as well. 

Table 2. BBCH growth stage for all crops on all data collection dates. 

Date 

Soybean Canola Wheat Oat Barley 

BBCH 
Height  

(cm) 
BBCH 

Height  

(cm) 
BBCH 

Height  

(cm) 
BBCH 

Height  

(cm) 
BBCH 

Height  

(cm) 

8 July 59 42 62 101 60 86 60 87 65 104 

15 July 60 56 65 137 65 90 69 96 69 105 

21 July 66 73 67 150 69 91 73 101 75 100 

27 July 69 81 71 157 75 94 83 103 83 104 

4 August 73 93 76 152 85 93 87 100 87 104 

15 August 77 94 80 149 89 - - - - - 

29 August 87 91 86 - - - - - - - 

3.4. Data Processing 

The spectra for each sample location were exported from ViewSpec Pro to a text file containing  

the 10 measurements per sample location which were then averaged to provide one set of spectral data 

ranging from 325–1,075 nm for each sample location (i.e., 24 sample locations and 24 sets of spectral 

data). The spectral signatures for each crop were then graphed for visual interpretation and comparison 

to ensure good data. Upon examination of the graphs it was determined to reduce the spectral data 

from 325–1,075 nm to 400–900 nm to eliminate noise at the extreme ends of the spectrum range which 

is typical for this device [31,39]. To reduce the amount of redundant spectral data, 10 wavebands were 

averaged to create a total of 50, 10 nm wide bands within the 400–900 nm range. For the purpose of 

this investigation, the 10 nm wide bands will be referred to by the band center, for example, band  

400–409 nm will be referred to as B405. 

3.5. Data Analysis  

The spectral reflectance data were analyzed using a discriminant function analysis approach. 

Discriminant analysis effectively reduces the dimensionality of the hyperspectral data to a number of 

wavebands that explain the majority of variation within the dataset. It uses a discriminant function to 

classify objects into groups, based on a measure of generalized squared distance. It is based on the 

individual within-group or pooled-group covariance matrices, with each observation being placed in 

the group from which it has the smallest generalized squared distance [8]. The output matrix displays 

the classification results as well as the cross-validated results. In this case, the leave-one-out method 

was used for cross-validation. The eigenvalues produced in the discriminant analysis procedure are an 
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indicator of how well a particular function differentiates the groups. The larger the eigenvalue, the 

better the function can differentiate variables.  

4. Results and Discussion 

4.1. Scenario 1: Similar Number of Days after Planting 

4.1.1. Interpretation of Spectral Reflectance for DAP 

At 55–60 DAP (Figure 5a) canola is very distinguishable from the other crops hyperspectrally with 

high reflectance in the green and NIR portions of the spectrum as a result of flowering. The reflectance 

in the visible spectrum is similar for soybean, wheat, oats, and barley, however, soybean has a slightly 

higher reflectance in the NIR indicating denser vegetation canopy. At 61–67 DAP (Figure 5b), 

reflectance in the NIR for canola has dropped slightly, likely as a result of a change in plant structure 

due to the flower petals maturing and beginning to fall off. However, reflectance in the green and red 

portions of the spectrum for canola still remain slightly higher than for the other crops as there are still 

some yellow flowers on the plants. The yellow flowers of the canola crop cause increase reflectance in 

the green and red portions of the spectrum. Reflectance in the NIR for soybean has also reached its 

maximum of above 80%, which is likely a result of flowering and of the broad leaves reaching 

maturity before transferring their energy to pod production. At this stage in development, soybean has 

reached maturity and canopy coverage is dense allowing for very little light energy to pass through 

gaps in the canopy, ultimately resulting in strong reflectance back to the sensor. The spectral 

reflectance of the cereal crops (wheat, oats, and barley) are very similar with only minor variations in 

the NIR spectrum due to differences in the growth stage and the physical structure of the heads of each 

crop. Visually, 67–73 DAP (Figure 5c) appears to be one of the best times for crop separability. 

However, a thorough examination of the signatures reveals that although soybean and canola have 

clearly distinguished themselves from each other and from the rest of the crops hyperspectrally, the 

spectral reflectance of the cereal crops is very similar with overlap occurring in the NIR, red-edge and 

visible portions of the spectrum. At 75–79 DAP (Figure 5d) the cereal crops show good separation in 

the NIR, red-edge, and visible portions of the spectrum which are key areas for crop separability. The 

differences in spectral reflectance is attributed to the varying rates at which each crop begins to senesce 

and change from green to brown in colour. As the crops begin to senesce the structure of each crop 

changes dramatically and the canopy density quickly decreases.  

The variable rates at which this occurs for each crop results in differences in spectral reflectance 

making crops more easily distinguishable. Barley has a shorter growing season and therefore has 

begun to senesce at a quicker rate, hence, the flattening of the spectral curve in relation to wheat and 

oats. The soybean and canola crops are still separable in the visible and red-edge portions of the 

spectrum. At 86–90 DAP (Figure 5e) soybean and canola still remain very distinguishable from each 

other as canola has begun to senesce and turn brown, whereas, soybean still remains relatively green in 

colour. The spectral curves of wheat and oats have begun to flatten as the crops senesce and die. At 

this stage, crops are still relatively distinguishable hyperspectrally, however, barley has been harvested 

which indicates that 86–90 DAP or later, may not be the most ideal time for crop separability. 

Visually, either 67–73 DAP or 75–79 DAP seem to be the most suitable times for crop separability.  
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Figure 5. Spectral signatures for all crops organized by number of days after planting.  

(a) Spectral signatures for all crops at 55–60 DAP. (b) Spectral signatures for all crops at 

61–67 DAP. (c) Spectral signatures for all crops at 67–73 DAP. (d) Spectral signatures for 

all crops at 75–79 DAP. (e) Spectral signatures for soybean, canola, wheat and oat crops at 

86–90 DAP.  

 

4.1.2. Identification of Significant Bands for Crop Separability for DAP 

An initial discriminant analysis was run using all bands for all crops to determine which bands were 

significant for crop separability. Classification accuracies for the bands initially selected as significant 

were high, ranging from 95.8% to 100%. However, a number of these initial bands were from similar 

parts of the electromagnetic spectrum (EMS) and, therefore, contained similar information. To reduce 

redundant information, similar bands were removed and a second discriminant analysis was run on  

the newly created set of bands. 

The newly selected bands were chosen based primarily on where they were located in the EMS and 

how significant each band was in discriminating crops. For example, at 55–60 DAP, a total of  
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9 bands were identified as significant, after the initial discriminant analysis, including one violet band 

(B405), two blue bands (B455, B485), one green band (B535), one yellow band (B595), two red-edge 

bands (B705, B715), and two NIR bands (B765, B885). The blue band in the visible portion of the 

spectrum is highly influenced by atmospheric conditions through scattering [40] making it less desirable 

for crop discrimination; for this reason, bands B405, B455, and B485 were removed from further 

analysis. Band B535 was the only green band identified as significant and therefore was included for 

further analysis. The two red-edge bands identified as significant contained very similar information as 

they are very close to one another within the EMS. Discriminant analysis was run using each red-edge 

band and both generated similar classification results, however only one band was required for further 

analysis; for this reason, band B715 was chosen and band B705 was removed. Finally, both NIR bands 

were chosen for further analysis because band B765 is very close to the red-edge portion of the EMS 

while band B885 is well into the NIR spectrum; although both bands are located in the NIR spectrum, 

they were far enough apart to not contain very similar information. Bands located in transition zones 

from one part of the EMS to another (from blue to green, green to red, or red to NIR) are generally 

significant for crop discrimination especially the red-edge [8,31]. Heavy consideration was placed on 

identified red-edge bands as they are important for crop discrimination. In this way, the number of bands 

selected for further discriminant analysis was reduced from the initial 9 to a final of 4 for 55–60 DAP. 

The final sets of wavebands selected for crop discrimination are summarized in Table 3 and the 

corresponding classification accuracies are summarized in Table 4. Consequently, this method was used 

to determine smaller sets of bands for crop discrimination for all seven data acquisition dates throughout 

the growing season.  

A total of 12 bands for Scenario 1 were deemed best suited for crop discrimination including B465, 

B525, B535, B545, B675, B695, B715, B725, B735, B765, B825, and B885. The significant bands 

vary by the number of DAP; however, there are some consistencies that should be noted. In general, 

almost every data acquisition date had a band in the green, red or red-edge and NIR portion of  

the EMS identified as significant. The most frequently occurring band was B535 in the green 

spectrum, which was identified as significant in four data acquisition dates. The second most 

frequently identified bands were B665 (red), B735 (red-edge), B765 (NIR), and B885 (NIR) each of 

which were identified twice.  

The results for Scenario 1 indicate that the optimal time for crop discrimination is approximately 

75–79 DAP. At this point in the growing season soybean, canola, wheat, oats and barley were at 

BBCH stage 73, 76, 75, 83, and 83, respectively (Table 5). 

Table 3. Selected bands for crop discrimination based on discriminant analysis for days 

after planting.  

DAP Crops Selected Wavebands (nm) 

48–52 soybean, canola B465, B545 

55–60 soybean, canola, wheat, oat, barley B535, B715, B765, B885 

61–67 soybean, canola, wheat, oat, barley B465, B535, B715 

67–73 soybean, canola, wheat, oat, barley B535, B725 

75–79 soybean, canola, wheat, oat, barley B535, B675, B735, B885 

86–90 soybean, canola, wheat, oat B525, B695, B765, B825 

97–104 soybean, canola, wheat B665, B735, B765, B885 
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Table 4. Classification results (original and cross-validated) based on newly selected 

wavebands from initial discriminant analysis for days after planting. 

DAP Crop 

Original Cross-Validated 

Misclassification Sample Size 

(/24) 

Percent—Producer’s 

Accuracy 

Count 

(/24) 

Percent—Producer’s 

Accuracy 

48–52 Soybean 24 100 24 100  

Canola 22 91.7 22 91.7 canola vs. soybean 

55–60 Soybean 24 100 24 100  

Canola 24 100 24 100  

Wheat 21 87.5 21 87.5 wheat vs. oat 

Oat 23 95.8 23 95.8 oat vs. wheat 

Barley 24 100 24 100  

61–67 Soybean 22 91.7 22 91.7 soybean vs. barley 

Canola 24 100 24 100  

Wheat 20 83.3 20 83.3 wheat vs. oat 

Oat 14 58.3 14 58.3 oat vs. wheat 

Barley 23 95.8 23 95.8 barley vs. soybean 

67–73 Soybean 24 100 24 100  

Canola 24 100 24 100  

Wheat 20 83.3 20 83.3 wheat vs. oat 

Oat 20 83.3 19 79.2 oat vs. wheat 

Barley 22 91.7 22 91.7 
barley vs. oat 

barley vs. wheat 

75–79 Soybean 24 100 24 100  

Canola 24 100 24 100  

Wheat 24 100 24 100  

Oat 24 100 24 100  

Barley 24 100 23 95.8 barley vs. wheat 

86–90 Soybean 24 100 24 100  

Canola 24 100 24 100  

Wheat 21 87.5 21 87.5 wheat vs. oat 

Oat 24 100 23 95.8 oat vs. wheat 

97–104 Soybean 24 100 24 100  

Canola 21 87.5 21 87.5 canola vs. wheat 

Wheat 24 100 24 100  

Table 5. BBCH stages for all crops by days after planting (DAP). 

DAP 

Soybean Canola Wheat Oat Barley 

BBCH Height 

(cm) 

BBCH Height 

(cm) 

BBCH Height 

(cm) 

BBCH Height 

(cm) 

BBCH Height 

(cm) 

48–52 59 42 62 101 - - - - - - 

55–60 60 56 65 137 60 86 60 87 65 104 

61–67 66 73 67 150 65 90 69 96 69 105 

67–73 69 81 71 157 69 91 73 101 75 100 

75–79 73 93 76 152 75 94 83 103 83 104 

86–90 77 94 80 149 85 93 89 100 87 104 

97–104 87 91 86 -- 89 91 -- -- -- -- 
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It is at this point that the difference in hyperspectral reflectance of crops is maximized and 

classification results were most accurate. Soybean, canola, wheat, and oat were classified at 100% 

accuracy, while barley was classified at 95.8% accuracy; only one barley variable was misclassified as 

wheat. The cereal crops seem most difficult to separate hyperspectrally due to similarities in plant 

structure. When the cereal crops mature and the heads of the plants begin to fill with seeds, differences 

in spectral reflectance are maximized due to changes in plant structure. In the later growth stages,  

the heads of the barley crop begin to lodge and produce hairs that protrude, ultimately increasing 

canopy coverage and spectral reflectance. The heads of the wheat crops enlarge but lodge only slightly, 

therefore, gaps between the rows of wheat are still present, which could decrease the amount of 

reflectance returning back to the sensor. The structure of the oat crop differs from wheat and barley in 

that there is not one single head that contains all the seeds. In fact, the seeds are dispersed along the 

main stem and along branches off the main stem ultimately increasing canopy density, which could 

explain the increased reflectance in the NIR portion of the spectrum in the later growth stages.  

The wavebands identified as significant for crop discrimination at 74–79 DAP included band B535 

(green), B675 (red), B735 (red-edge), and B885 (NIR). This suggests that if all crops are planted near 

the same date, 75–79 DAP would be the optimal time in the Northeastern Ontario growing season to 

capture a hyperspectral satellite image in order to most accurately distinguish these five cash crops. 

Figure 6 depicts a graph of the canonical discriminant function 1 versus function 2 at 75–79 DAP. 

Each class is clearly distinguishable from the other indicating a high degree of accuracy for crop 

classification based on the first two functions of the discriminant analysis. 

Figure 6. Canonical discriminant function 1 versus function 2 for 75–79 days after planting. 

 

4.2. Scenario 2—Specific Data Acquisition Dates 

4.2.1. Interpretation of Spectral Reflectance for Specific Data Acquisition Dates 

Scenario 2 involved comparing hyperspectral reflectance data at specific times throughout 

the growing season, regardless of the number of DAP and therefore represents a more realistic 
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scenario. Hyperspectral reflectance data were acquired on 7 different dates throughout the growing 

season including 8 July, 15 July, 21 July, 27 July, 4 August, 15 August, and 29 August of 2011. Again, 

soybean and canola were planted approximately one week later than the cereal crops and were 

therefore slightly behind in growth stage. These planting dates are representative of those suggested by 

OMAFRA [36], and thus most likely to reoccur for this study area. The spectral signatures for all crops 

on each date of data collection are represented in Figure 7.  

Figure 7. Spectral signatures for all crops organized by date of collection. (a) Spectral 

signatures for all crops on 8 July 2011. (b) Spectral signatures for all crops on 15 July 2011. 

(c) Spectral signatures for all crops on 21 July 2011. (d) Spectral signatures for all crops on 

27 July 2011. (e) Spectral signatures for soybean, canola, wheat and oat crops on 4 August 

2011. (f) Spectral signatures for soybean, canola and wheat crops on 15 August 2011.  

(g) Spectral signatures for soybean and canola crops on 29 August 2011. 
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The interpretation of the spectral reflectance of crops for Figure 7a–g is very similar to that of 

Figure 5a–e. The difference between the spectral reflectance of crops in Figure 7 compared to those in 

Figure 5 is principally based on timing. For example, increased spectral reflectance in the visible and 

NIR spectrum for canola is very evident at 55–60 DAP (Figure 5a) for Scenario 1 as well as on 15 July 

(Figure 7b) for Scenario 2. In fact, these two spectral signatures for canola are identical with  

the observed increased reflectance attributed to the emergence of yellow flowers at this time. 

Consequently, the spectral signatures for each crop in Figure 7 can be interpreted the same way as for 

Figure 5. It is the different combination of spectral signatures being compared, based on the timing of 

each scenario, which results in different bands being identified as significant for crop separability. 

4.2.2. Identification of Significant Bands for Crop Separability for Specific Acquisition Dates 

Using the same method as in Scenario 1, an initial discriminant analysis was run using all bands for 

all crops to determine which bands were significant for crop discrimination. Classification accuracies 

for the bands initially selected as significant were high, ranging from 95.8% to 100%. However,  

a number of these initial bands were from similar parts of the electromagnetic spectrum (EMS) and 

therefore contained similar information. To reduce redundant information, similar bands were 

removed, using the same methodology as in Scenario 1, and a second discriminant analysis was run 

using the newly created set of bands.  

Again, bands that contained redundant information or were deemed unsuitable for crop 

discrimination based on their location in the EMS were removed from further analysis and 

consideration was given to bands located in transition zones, especially in the red-edge portion of 

the spectrum. Table 6 represents the bands selected for crop discrimination for specific dates and 

the corresponding classification results for the selected wavebands are represented in Table 7.  

Table 6. Selected bands for crop discrimination based on discriminant analysis for specific dates. 

Date Crops Selected Wavebands (nm) 

8 July soybean, canola, wheat, oat, barley B495, B645, B725, B815 

15 July soybean, canola, wheat, oat, barley B495, B525, B645, B705, B745, B895 

21 July soybean, canola, wheat, oat, barley B535, B725 

27 July soybean, canola, wheat, oat, barley B485, B515, B675, B705, B755 

4 August soybean, canola, wheat, oat, barley B535, B625, B725, B825 

15 August soybean, canola, wheat B665, B725, B755, B895 

29 August soybean, canola, wheat B665, B745 

Similar to Scenario 1, the classification accuracies of the second set of wavebands dropped slightly 

in comparison to the initial discriminant analysis. However, the objective is to reduce the number of 

wavebands used to classify crops as much as possible while still maintaining a relatively high degree 

of classification accuracy.  

A total of 16 bands were identified as most suitable for crop discrimination in Scenario 2 including 

B485, B495, B515, B525, B535, B625, B645, B665, B675, B705, B725, B745, B755, B815, B825, 

and B895. Again the significant bands vary by date and patterns were again apparent. Every date had  

a band in the red-edge portion of the EMS identified as significant and, with the exception of  
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15 August and 29 August, every date had a band in the green portion of the EMS identified as 

significant. All dates but 21 July identified a band in the NIR portion of the spectrum as significant and 

three dates (8 July, 15 July, and 27 July) identified a band in the transition zone between blue and 

green portions of the EMS. The most frequently occurring band was B725 in the red-edge portion of 

the spectrum which was identified as significant for four dates. The second most frequently occurring 

significant bands were B495 (blue/green), B535 (green), B645 (red), B665 (red), B705 (red-edge), 

B725 (red-edge), B755 (red-edge/NIR), and B895 (NIR) all of which were identified at least twice.  

Table 7. Classification results (original and cross-validated) based on newly selected 

wavebands from initial discriminant analysis for specific dates during the growing season. 

Date Crop 

Original Cross-Validated 

Misclassification Sample 

Size (/24) 

Percent—Producer’s 

Accuracy 

Count 

(/24) 

Percent—Producer’s 

Accuracy 

8 July Soybean 24 100 24 100  

Canola 24 100 23 95.8 canola vs. soybean 

Wheat 23 95.8 21 87.5 wheat vs. oat 

Oat 19 79.2 17 70.8 
oat vs. wheat (1) 

oat vs. barley (6) 

Barley 22 91.7 22 91.7 barley vs. oat 

15 July Soybean 24 100 24 100  

Canola 24 100 24 100  

Wheat 24 100 24 100  

Oat 22 91.7 22 91.7 oat vs. wheat 

Barley 24 100 24 100  

21 July Soybean 23 95.8 23 95.8 soybean vs. oat 

Canola 22 91.7 22 91.7 canola vs. barley 

Wheat 22 91.7 22 91.7 wheat vs. oat 

Oat 18 75 18 75 oat vs. wheat 

Barley 21 87.5 20 83.3 
barley vs. oat (1) 

barley vs. wheat (3) 

27 July Soybean 24 100 24 100  

Canola 24 100 24 100  

Wheat 24 100 24 100  

Oat 20 83.3 20 83.3 oat vs. wheat 

Barley 24 100 24 100  

4 August Soybean 24 100 24 100  

Canola 24 100 24 100  

Wheat 17 70.8 16 66.7 wheat vs.oat 

Oat 18 75 18 75 oat vs. wheat 

15 August Soybean 24 100 24 100  

Canola 24 100 24 100  

Wheat 24 100 24 100  

29 August Soybean 24 100 24 100  

Canola 24 100 24 100  
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Figure 8. Canonical discriminant function 1 versus function 2 for 27 July 2011. 

 

Figure 9. Canonical discriminant function 3 versus function 4 for 27 July 2011.  

 

The results of this scenario indicate that the optimal time for crop discrimination for Scenario 2 is 

around 27 July when soybean, canola, wheat, oat, and barley are at BBCH stage 69, 71, 75, 83, and 83 

respectively which are similar to the results for Scenario 1. For 27 July, the classification results were 

100% for all crops except oat, which misclassified four variables as wheat.  The wavebands identified 

as significant for crop discrimination on 27 July included B485 (blue/green), B515 (green), B675 (red), 

B705 (red-edge), and B755 (red-edge/NIR). This suggests that late July would be the optimal time in 

the Northeastern Ontario growing season to capture a hyperspectral satellite image in order to most 

accurately distinguish these five cash crops. Figure 8 depicts a graph of the canonical discriminant 

function 1 versus function 2 for 27 July. With the exception of wheat and oat, all of the crops are 

clearly distinguishable from each other indicating a high degree of accuracy for crop classification 

using the first two functions. Figure 9 depicts a graph of function 3 versus for function 4 and shows 
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good separation between wheat and oat. This indicates that all crops can be separated with a high 

degree of accuracy using the four functions of discriminant analysis. It should also be noted that both 

15 August and 29 August classified all crops with 100% accuracy, making them excellent dates for 

crop discrimination; however, on August 15 oat and barley had already been harvested and, on 

29 August, the only remaining crops were soybean and canola.  

4.3. General Discussion Based on Scenario 1 and Scenario 2 

Based on the results from both Scenario 1 and Scenario 2, it is suggested that the optimal time for 

distinguishing crops hyperspectrally, whether using DAP or the specific date approach, occurs when 

cereal crops, soybean and canola are between the BBCH stages of 75 and 83, 69 and 73, and 71 and 

76, respectively. The aforementioned growth stages represent the period of the growing season in 

which all five crops begin fruit development, suggesting that the late vegetative growth stages are 

optimal for crop separability using hyperspectral remote sensing. Early vegetative growth stages (leaf 

development and tillering) are less desirable for crop separation as the plants are significantly small, 

resulting in large patches of soil affecting the reflectance of electromagnetic energy. Moreover, during 

the middle growth stages (stem elongation, booting, and inflorescence) it is very difficult to distinguish 

cereal crops visually. Prior to the emergence of the heads of cereal crops, wheat, oat, and barley are 

almost indistinguishable. Canola and soybean are easily distinguishable from cereal crops at all growth 

stages, however they are less easily distinguishable from each other at the very early growth stages. 

The fact that most of the crops in this study are only distinguishable visually in the middle to late 

BBCH growth stages reiterates the importance for optimal hyperspectral separation of crops later 

in the growing season. Consequently, it is recommended that satellite images be acquired during 

the key periods identified in this study in order to maximize the usefulness of that imagery for 

crop classification. 

5. Conclusion 

Crops in Northeastern Ontario can be distinguished with hyperspectral data captured by an ASD 

FieldSpec Handheld Portable Spectroradiometer with a relatively high degree of accuracy and 

confidence. The results indicate that the optimal time for crop discrimination in this area is 75–79 DAP 

(if all crops are planted at the same time) or in late July assuming crops were planted according to 

guidelines set forth by OMAFRA. At this point in the growing season the difference in hyperspectral 

reflectance of soybean, canola, wheat, oats, and barley is maximized allowing for accurate 

discrimination of these crops. It should be noted, however, that classification accuracies were 

relatively high throughout the entire growing season using a set of wavebands identified as significant 

for crop discrimination through stepwise discriminant analysis, implying that a handheld 

spectroradiometer could be used to discriminate crops with relative accuracy at any point in  

the growing season. 

This study resulted in recommending a total of 23 optimal bands in the 400–900 nm range to 

discriminate soybean, canola, wheat, oat and barley in Northeastern Ontario, Canada. These bands 

include B465, B485, B495, B515, B525, B535, B545, B625, B645, B665, B675, B695, B705, B715, 

B725, B735, B745, B755, B765, B815, B825, B885, and B895. A total of 12 bands were identified for 
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Scenario 1 and a total of 16 bands for Scenario 2. The locations of the identified bands in the EMS are 

as follows: two blue, five green, five red, six red-edge, and five NIR.  

In summary, the results of this study have indicated that hyperspectral reflectance data collected 

using a handheld portable spectroradiometer, with a spectral range of 400–900 nm, is well suited for 

crop discrimination in Northeastern Ontario. Future researchers could consider the bands and 

timeframes identified in this study for specific agricultural applications such as crop discrimination.  

Acknowledgments 

This research was supported by two grants from the Natural Sciences and Engineering Research 

Council of Canada (#249496, #366514) awarded to John M. Kovacs and Jeffrey Wilson, respectively, 

and from a grant provided by the Northern Ontario Heritage Fund Corporation of Canada  

(project #920161).  

We would like to thank Mr. Steve Roberge of Ferme Roberge for allowing us to conduct our 

research in his fields. We also acknowledge the assistance of Xianfeng Jiao, Jeffrey W. Cable and 

Autumn Gambles in the field data collection.  

Authors Contributions 

Jeffrey H. Wilson is the principal author of this manuscript having written the majority of the 

manuscript and contributing at all phases of the investigation. The other co-authors both contributed 

equally in the field logistics, the field design, the selection of the methods, the interpretation of the 

results and contributed some portions of the written manuscript.  

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. An Overview of the Canadian Agriculture and Agri-Food System 2013. Avaliable online: 

http://www.agr.gc.ca/eng/about-us/publications/economic-publications/alphabetical-listing/an-

overview-of-the-canadian-agriculture-and-agri-food-system-2013/?id=1331319696826 (accessed 

on 1 July 2013).  

2. Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.; Strachan, I.B. Hyperspectral vegetation 

indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation 

in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. 

3. Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; van Der Meer, B. Accuracy assessments of 

hyperspectral waveband performance for vegetation analysis applications. Remote Sens. Environ. 
2004, 91, 345–376. 

4. Gray, C.J.; Shaw, D.R.; Bruce, L.M. Utility of hyperspectral reflectance for differentiating 

soybean (Glycine max) and six weed species. Weed Technol. 2009, 23, 108–119.  



Remote Sens. 2014, 6 943 

 

 

5. Martin, M.P.; Barreto, L.; Riano, D.; Fernandez-Quintanilla, C.; Vaughan, P. Assessing the 

potential of hyperspectral remote sensing for the discrimination of grassweeds in winter cereal 

crops. Int. J. Remote Sens. 2011, 32, 49–67.  

6. Lin, W.-S.; Yang, C.-M.; Kuo, B.-J. Classifying cultivars of rice (Oryza sativa L.) based on 

corrected canopy reflectance spectra data using the orthogonal projections to latent structures  

(O-PLS) method. Chemometr. Intell. Lab. Syst. 2012, 115, 25–36.  

7. Pena-Barragan, J.M.; Lopez-Granados, F.; Jurado-Exposito, M.; Carcia-Torres, L. Spectral 

discrimination of Ridolfia segetum and sunflower as affected by phenological stage. Weed Res. 
2006, 46, 10–21. 

8. Zhang, H.; Lan, Y.; Suh, C.P.; Westbrook, J.K.; Lacey, R.; Hoffmann, W.C. Differentiation of 

cotton from other crops at different growth stages using spectral properties and discriminant 

analysis. Trans. ASABE 2012, 55, 1623–1630.  

9. Shibayama, M.; Tsuyoshi, A. Estimating grain yield of maturing rice canopies using high spectral 

resolution reflectance measurements. Remote Sens. Environ. 1991, 36, 45–53. 

10. Blackburn, G.A.; Steele, C.M. Towards the remote sensing of matorral vegetation physiology: 

Relationships between spectral reflectance, pigment, and biophysical characteristics of semiarid 

bush land canopies. Remote Sens. Environ. 1999, 70, 278–292. 

11. McGwire, K.; Minor, T.; Fenstermarker, L. Hyperspectral mixture modeling for quantifying 

sparse vegetation cover in arid environments. Remote Sens. Environ. 2000, 72, 360–374. 

12. Thenkabail, P.S. Biophysical and yield information for precision farming from near-real-time and 

historical Landsat TM images. Int. J. Remote Sens. 2003, 24, 2879–2904.  

13. Manjunath, K.R.; Ray, S.S.; Panigrahy, S. Discrimination of spectrally-close crops using  

ground-based hyperspectral data. J. Indian Soc. Remote Sens. 2011, 39, 599–602.  

14. Broge, N.H.; Mortensen, J.V. Deriving green crop area index and canopy chlorophyll density of 

winter wheat from spectral reflectance data. Remote Sens. Environ. 2002, 81, 45–57.  

15. Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C.; Corsi, F.; Cho, M. LAI and 

chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J. 
Photogramm. Remote Sens. 2008, 63, 409–426.  

16. Estimation of Leaf Area Index Using Ground Spectral Measurements over Agriculture Crops: 

Prediction Capability Assessment of Optical Indices. Available online: http://citeseerx.ist.psu.edu/ 

viewdoc/download?doi=10.1.1.158.6391&rep=rep1&type=pdf (accessed on 17 January 2014). 

17. Muller, K.; Bottcher, U.; Meyer-Schatz, F.; Kage, H. Analysis of vegetation indices derives from 

hyperspectral reflection measurements for estimating crop canopy parameters of oilseed rape 

(Brassica napus L.). Biosys. Eng. 2008, 101, 172–182.  

18. Zhao, D.H.; Li, J.L.; Qi, J.G. Identification of red and NIR spectral regions and vegetative indices 

for discrimination of cotton nitrogen stress and growth stage. Comput. Electron. Agr. 2005, 48, 

155–169.  

19. Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral 

vegetation indices for estimation of green leaf area index and canopy chlorophyll density.  

Remote Sens. Environ. 2001, 76, 156–172.  



Remote Sens. 2014, 6 944 

 

 

20. Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band 

vegetation indices for prediction of crop chlorophyll content for application to precision 

agriculture. Remote Sens. Environ. 2002, 81, 416–426. 

21. Nidamanuri, R.R.; Zbell, B. Transferring spectral libraries of canopy reflectance for crop 

classification using hyperspectral remote sensing data. Biosyst. Eng. 2011, 110, 231–246. 

22. Rao, N.R. Development of a crop-specific spectral library and discrimination of various agricultural 

crop varieties using hyperspectral imagery. Int. J. Remote Sens. 2008, 29, 131–144. 

23. Zhang, H.; Hinze, L.L.; Lan, Y.; Westbrook, J.K.; Hoffmann, W.C. Discriminating among cotton 

cultivars with varying leaf characteristics using hyperspectral radiometry. Trans. ASABE 2012, 55, 

275–280. 

24. Mahesh, S.; Manickavasagan, A.; Jayas, D.S.; Paliwal, J.; White, N.D.G. Feasibility of near-infrared 

hyperspectral imaging to differentiate Canadian wheat classes. Biosyst. Eng. 2008, 101, 50–57. 

25. Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Evaluation of narrowband and broadband vegetation 

indices for determining optimal hyperspectral wavebands for agricultural crop characterization. 

Photogramm. Eng. Remote Sens. 2002, 68, 607–621. 

26. Jorgensen, R.R.; Hansen, P.M.; Bro, R. Exploratory study of winter wheat reflectance during 

vegetative growth using three-mode component analysis. Int. J. Remote Sens. 2006, 27, 919–937.  

27. Wang, Y.; Wang, F.; Huang, J.; Wang, X.; Liu, Z. Validation of artificial neural network 

techniques in the estimation of nitrogen concentration in rape using canopy hyperspectral 

reflectance data. Int. J. Remote Sens. 2009, 30, 4493–4505.  

28. Yang, X.; Huang, J.; Wang, J.; Wang, X.; Liu, Z. Estimation of vegetation biophysical parameters 

by remote sensing using radial basis function neural network. J. Zhejiang Univ. Sci. A 2007, 8, 

883–895. 

29. Liu, Z.-Y.; Wu, H.-F.; Huang, J.-F. Application of neural networks to discriminate fungal 

infection levels in rice panicles using hyperspectral reflectance and principal components analysis. 

Comput. Electron. Agr. 2010, 72, 99–106. 

30. Pena-Barragan, J.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using 

multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 
115, 1301–1316.  

31. Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral vegetation indices and their 

relationships with agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. 

32. Song, S.; Gong, W.; Zhu, B.; Huang, X. Wavelength selection and spectral discrimination for 

paddy rice, with laboratory measurements of hyperspectral leaf reflectance. ISPRS J. Photogramm. 
Remote Sens. 2011, 66, 672–682.  

33. Zhang, C.; Kovacs, J.M.; Wachowiak, M.; Flores-Verdugo, F. Relationship between hyperspectral 

measurements and mangrove leaf nitrogen concentrations. Remote Sens. 2013, 5, 891–908.  

34. Zhao, D.H.; Huang, L.; Li, J.; Qi, J. A comparative analysis of broadband and narrowband 

derived vegetation indices in predicting LAI and CCD of a cotton canopy. ISPRS J. Photogramm. 
Remote Sens. 2007, 62, 25–33.  

35. The Corporation of the Municipality of West Nipissing. Agriculture in West Nipissing. Available 

online: http://www.westnipissing.ca/economic-development-e/agriculture (accessed on 15 May 2012).  

36. Brown, C. Agronomy Guide for Field Crops; Queens Printer for Ontario: Toronto, ON, Canada, 2009.  



Remote Sens. 2014, 6 945 

 

 

37. Bannari, A.; PacheCo, A.; Staenz, K.; McNairn, H.; Omari, K. Estimating and mapping crop 

residues cover on agricultural lands using hyperspectral and IKONOS data. Remote Sens. Environ. 
2006, 104, 447–459.  

38. Haché, C.; Shibusawa, S.; Sasao, A.; Suhama, T.; Sah, B.P. Field-derived spectral characteristics 

to classify conventional and conservation agricultural practices. Comput. Electron. Agr. 2007, 57, 

47–61. 

39. Flores-de-Santiago, F.; Kovacs, J.M.; Flores-Verdugo, F. The influence of seasonality in estimating 

mangrove leaf chlorophyll-a content from hyperspectral data. Wetl. Ecol. Manag. 2013, 21, 193–207. 
40. Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective; Prentice Hall: 

Upper Saddle River, NJ, USA, 2006. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


