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Abstract: Filtering is one of the core post-processing steps for Airborne Laser Scanning 

(ALS) point clouds. A segmentation-based filtering (SBF) method is proposed herein. This 

method is composed of three key steps: point cloud segmentation, multiple echoes 

analysis, and iterative judgment. Moreover, the third step is our main contribution. 

Particularly, the iterative judgment is based on the framework of the classic progressive 

TIN (triangular irregular network) densification (PTD) method, but with basic processing 

unit being a segment rather than a single point. Seven benchmark datasets provided by 

ISPRS Working Group III/3 are utilized to test the SBF algorithm and the classic PTD 

method. Experimental results suggest that, compared with the PTD method, the SBF 

approach is capable of preserving discontinuities of landscapes and removing the lower 

parts of large objects attached on the ground surface. As a result, the SBF approach is able 

to reduce omission errors and total errors by 18.26% and 11.47% respectively, which 

would significantly decrease the cost of manual operation required in post-processing. 

Keyword: airborne LiDAR; filtering; point cloud segmentation; progressive TIN 

densification; object-based point cloud analysis 

 

1. Introduction 

Airborne LiDAR (Light Detection and Ranging), also termed Airborne Laser Scanning (ALS), 

is now a widely employed technology to capture the 3D geometry of the Earth ground surface and the 
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objects on it [1]. Currently, ALS has various types of applications, ranging from the reconstruction of 

digital terrain models (DTM; [2,3]), 3D building models [4–7] and 3D road models [8] to the detection 

of individual tree crowns [9,10], measurement of tree height and estimation of other forest 

stand parameters [11,12], hydraulic applications [13,14], power lines reconstruction, infrastructure 

mapping [15], etc. In most ALS applications, filtering is a necessary step to determine which LiDAR 

returns are from the ground surface and which are from the off-terrain objects [16].  

An experimental comparison of the performance of eight filter algorithms was presented by Sithole 

and Vosselman [17]. They concluded that, surface-based filters often yield better results concerning 

the filter strategy, because they use more context than other filter strategies. Among surface-based 

filtering methods, progressive TIN (triangular irregular network) densification (PTD) is widely 

employed in both the scientific community and engineering applications, because it has been 

integrated into the commercial software TerraSolid. However, discontinuities in the bare ground 

(see Figure 1a) and low objects attached on the ground surface (see Figure 1c) also pose great 

challenges to the classic PTD method. It often fails to detect the terrain points on break lines and step 

edges, and mistakes the lower parts of objects as ground ones, as shown in Figure 1b,d respectively.  

Figure 1. Typical errors of Axelsson’s progressive TIN (triangular irregular network) 

densification (PTD) filter. (a) A point cloud around a step edge; (b) Filtering result of the 

point cloud in (a); (c) A point cloud in urban area with dense vehicles; (d) Filtering result 

of the point cloud in (c). 
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To overcome the above shortcomings, Tóvári and Pfeifer [18] proposed a segmentation-based 

robust interpolation filter based on the method of Kraus and Pfeifer [19]. They first segmented the raw 
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point clouds, and then, the residuals were computed for each segment instead of each point. Depending 

on the residual, all points in one segment are assigned to a same weight in robust interpolation. The 

experiments in [18] suggested that combination of segmentation-based approach and surface-based 

approach is promising and robust in both urban and forested areas, which may attribute to the 

following three factors:  

(1) After point cloud segmentation, segments are capable of reaching exactly up to the break lines 

or jump edges; 

(2) An explicit surface model can be used. Describing the expected terrain surface with a dedicated 

model allows including terrain characterization in the filter process [18]; 

(3) The surface-based approach is useful in the wooded areas.  

To conclude, although many methods have been developed to tackle the filtering problem, it has not 

been fully solved so far. However, Hutton and Brazier [14] emphasized that errors in filtering and 

interpolation will affect subsequent use – for example using terrain in a hydraulic model, or vegetation 

height estimation in biomass calculation. In this article, we propose a segmentation-based filtering 

(SBF) approach (see Section 3), which combines a point cloud segmentation method and the classic 

PTD’s framework. The first step of our filtering approach is point cloud segmentation for the point 

cloud (see Section 3.2). In the second step, an analysis of multiple echoes is performed to remove the 

vegetation measurements (see Section 3.3). At last, segments are classified either as ground or object 

segments based on the principles of the classic PDT method (see Section 3.1). However, the main 

difference between our method and the classic PDT method is that a segment instead of a single point 

is the basic processing unit.  

2. Previous Work 

Lots of filtering methods have been proposed so far. According to the filter concept, Sithole and 

Vosselman [17] separated existing filtering methods into four classes, i.e., slope-based, surface-based, 

clustering/segmentation, and block-minimum algorithms; and this category is still feasible today. 

Among them, the first three classes of filtering methods are more popular, and they are surveyed  

as follows.  

(1) In slope-based approaches, the slope or height difference between two points is measured. The 

rationale behind these algorithms is that the steepest slopes in a landscape belong to objects and 

the terrain has a certain maximum slope. Thus, if the slope is above a certain threshold then the 

highest point is assumed to belong to an off-terrain object. Vosselman did the pioneering  

work [20] about slope-based filtering. Some extensions and variants of slope-based filters focus 

on the shape of structure elements [21], the determination of adaptive slope parameters [22], 

and topological analysis removing very large buildings [10]. The slope-based methods usually 

work well when object and terrain points are equally mixed. However, typical filter errors are 

encountered when this requirement is not met.  

(2) In surface-based approaches, the basic idea is to create a parametric surface with a 

corresponding buffer zone above it, the surface locates the buffer zone, and as before the buffer 

zone defines a region in 3D space where ground points are expected to reside [17]. Thus, the 
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core step of this kind of methods is to create a surface approximating the bare earth [23]. 

Depending on the means of creating the surface, surface-based filtering methods can be further 

divided into three subcategories: morphology-based filters [23,24], iterative-interpolation-based 

filters [19,25,26], and progressive-densification-based filters [27]. Axelsson [27] first divided 

the whole point dataset into tiles, and then selected the lowest points in each block as the initial 

ground points, and finally a TIN of the identified ground points was constructed as the 

reference surface. For each triangle, one additional ground point was determined by 

investigating the parameters of the unclassified points in each triangle with the reference 

surface. The parameters were the distance to the TIN facets and the angles to the nodes. If a 

point was found with offsets below the threshold values, it was classified as a ground point and 

the algorithm proceeds with the next triangle. Before continuing with the next iteration, all 

ground points were added to the TIN. In this way, the triangulation was progressively densified 

until all points were classified as ground or object. Axelsson’s method is known as PTD [3,17]. 

The above surface-based approaches are preferred in engineering applications [28]. 

(3) In segmentation-based approaches, it is commonly assumed that segments of objects are 

situated higher than the ground segments. Generally, segment-based filters generally consist of 

two steps, the first one being segmentation and the second one being filtering based on the 

generated segments. Lohmann [29] applied the compactness of these segments and the height 

difference to the neighboring segments in order to detect different types of areas. Lee [30] first 

obtained planar patches from the points with a region growing method, and then these patches 

are grouped into a set of surface clusters. It is assumed that the connected and continuous 

surface patches belong to the same object and that large vertical discontinuities usually do not 

exist between ground segments. The ground clusters are selected on the basis of a simple 

assumption that objects are above the ground and ground clusters are relatively large. Sithole 

and Vosselman [31] compared the neighboring segment heights in different directions and 

predefined a set of rules, finally each segment was classified as object or ground. Shen et al. [32] 

assumed that the ground segments are horizontal and lower than the adjacent object segments. 

Yan et al. [33] also presented an object-based filtering method. The above segment-based 

filters are typically designed for urban areas where many step edges can be found in the data. 

A shortcoming of these filters is that there is no intended terrain model as done in the in the 

above surface-based approaches. Additionally, too many small segments may be generated in 

forested areas, which will challenge the existing filters. 

The proposed SBF approach is a combination of the surface-based PTD method and the 

segmentation-based method. Our goal is to integrate the strengths of both methods to increase the 

filtering accuracy. 

3. Method 

The proposed SBF method is composed of four steps: outlier removal (see Section 3.1), point cloud 

segmentation (see Section 3.2), multiple echo information analysis (see Section 3.3), and progressive 

densification of the terrain segments (see Section 3.4), as shown in Figure 2. 
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Figure 2. Flow chart of the segmentation-based filtering (SBF) method. 
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3.1. Outlier Removal 

Many datasets contain measurements that are far above or below the earth surfaces, and these 

measurements are called outliers. Outlier is one of the circumstances under which the filter algorithms 

are likely to fail [17], especially for the filters based on the assumption that the lowest point in a grid 

cell must belong to the terrain [3]. Our SBF approach is also sensitive to the outliers, especially the 

low outliers. However, automatic outlier removal is an impossible mission, because there are various 

types of errors, such as low outliers, high outliers, isolated outliers, and clustered outliers. Thus, 

human participation is needed. Herein, three sub-steps are designed to eliminate the outliers. Firstly, 

an elevation histogram is built and examined by visualizing the distribution of elevation values, and 

then elevation thresholds were determined by the human operator’s visual evaluation to eliminate the 

lowest and highest tails from the distribution. Secondly, the remaining outliers were searched using the 

minimum height difference of each point with respect to all its neighbors. Herein, a kd tree [34] is 

employed to query the neighbors of each point, and the average elevation and standard deviation of the 
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elevations are calculated. Points, that are higher or lower three times of the standard deviation to the 

average elevation, are removed from the dataset. Thirdly, errors yielded by the automatic outlier 

classification are corrected manually. 

3.2. Point Cloud Segmentation 

Practices suggest the processing of LiDAR data can be strengthened by first segmenting the point 

clouds and then analyzing segments rather than individual points [35]. Point cloud segmentation is the 

process to partition an input point cloud into coherent and connected point clusters [36]. Specifically, 

points on a certain geometric feature are coherent points, such as coplane, co-surface, and coline points; 

whilst connected points are a group of points in which every point has at least one neighboring point 

within a certain distance [37]. There are many airborne LiDAR point cloud segmentation methods, such 

as region-growing [38], surface growing [39], and adaptive random sample consensus [40]. However, 

most of them aim at detecting the planar surfaces (such as building roofs) rather than the smooth 

surfaces (such as ground surfaces in large areas). Herein, Tóvári and Pfeifer’s segmentation 

method [18] is employed. This segmentation method is based on the assumption that, continuous and 

smooth surfaces could be clustered into the same segments. We rename it as point cloud smooth 

segmentation (PCSS) method. PCSS is composed of the following two main stages. 

(1) Normal and residual estimation. The normal for each point is estimated by fitting a plane to the 

neighboring points. Therefore, k nearest neighbors (KNN) [34] is employed for the 

neighborhood search. To fit a plane to a set of given points, in a least squares sense, we need to 

find the parameters that minimize the sum of squares of the orthogonal distances of the points 

from the estimated surface. The best-fitting plane is calculated using the principal component 

analysis (PCA), which is derived from the theory of the least-squares estimation. PCA is a 

popular method for computing plane normal approximations from point clouds, and the details 

of plane fitting refer to Rabbani [41].  

(2) Region growing with distance and normal difference constraint. This stage makes use of the 

above calculated normals, in accordance with user specified parameters to cluster points 

belonging to smooth surfaces. The process of region growing proceeds in the following steps:  

① Input two smoothness thresholds in terms of the distance. The first threshold is the normal 

distance of a neighboring point to the current plane, denoted as r. The second threshold is the 

3D distance between the current point and a neighboring point, denoted as d'.  

② Input a smoothness threshold in terms of the angle between the normals of the current seed 

and its neighbors, denoted as α. Set all point to un-segmented. 

③ If all the points have already been segmented, go to step ⑦. Otherwise, select the point  

with minimum residual from unlabeled points as the current seed, and build an empty list of 

seed points. 

④ Select the fixed distance neighboring points of the current seed. Fixed distance neighbors 

(FDN) is used to search the neighboring points within a fixed distance d'. Add the points, 

whose angle difference to current seed is less than α and whose distance to the current plane 
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is less than r, to current region; simultaneously, add the qualified points to the list of 

potential seed points. 

⑤ If the potential seed point list is not empty, set the current seed to the next available seed and 

current plane to the next available seed’s plane, and go to step ④. 

⑥ Add the current region to the segmentation and go to step ③, and clear the list of seed points. 

Note that the residuals of the labeled points should be excluded when the point with 

minimum residual is searched. 

⑦ Finish the task of segmentation. 

The above PCSS algorithm needs four specified parameters, k, r, d', and α (see Figure 3). These 

parameters should be determined based on experience and the complexity of the landscapes. Some 

examples of PCSS are displayed in Figures 4b, 5c and 6c. The figures show that, after segmentation, 

the ground surface is grouped into many dominant clusters, and the objects are also grouped into many 

clusters. Moreover, most of the clusters contain a clear majority of either ground or object points, 

whereas there are hardly any mixed clusters. Particularly, despite the terrain clusters being crossed by 

breaklines, terrain clusters may contain points on both sides of slope discontinuities.  

Figure 3. Parameters of the point cloud smooth segmentation (PCSS) segmentation. For a 

seed point with normal vector and a fitted plane across the seed point, select its 

neighboring points whose 3D distance to the seed point within d'. Among the neighboring 

points, add the points, whose angle difference to seed points is less than α and whose 

distance to the fitted plane is less than r, to the segment. 
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3.3. Multiple Echo Information Analysis 

Currently, the multi-pulse airborne LiDAR system is capable of recording both single returns/echoes 

and multiple returns [42]. Practice suggests that the proportion of the multiple returns in each segment 

is a good feature to distinguish vegetation measurements from ground measurements [10,32,43,44]. 

As mentioned above, the vegetation is likely to produce multiple echoes. Experiments suggest that 

segments belonging to trees contain few points in which the multiple returns occupy a proportion more 

than 50% [43], as shown in Figures 5d and 6d. Simultaneously, the segments belongings to buildings 

contain a large number of points in which singular returns occupy a proportion more than 90% [44]. 

Echo ratio is also employed for vegetation classification in full-waveform airborne LiDAR data [45]. 
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Therefore, the feature about proportion of multiple echoes is also informative. Thus, if the proportion 

of multiple echoes in a segment is larger 50%, the points within the segment are labeled as vegetation 

class and they are forbidden to take partition the subsequent judgment. 

3.4. Progressive Densification of the Terrain Segments 

This step is similar to the progress of the PTD filter, but the basic processing unit is a segment 

rather than a single point (as shown in Figure 4c).  

It is composed of the following five steps. 

(1) Specifying parameters. There are five key parameters [3] to be preset, including: 

① Maximum building size, m. m is a length threshold, and the algorithm can deal with 

buildings having a length of up to this value. It is used to define the grid cell size, and a 

grid cell is a tile of the point cloud (see the step (2)). 

② Maximum terrain angle, t. t is a slope threshold, which decides how the judgment of an 

unclassified point is performed (either mirroring or not). If the slope of a triangle in the 

TIN is larger than t, any unclassified/potential point located inside of this triangle should 

be judged by a corresponding mirror point. The mirroring idea is from [27]. More details 

are presented in the step (3)-④, illustrated in Figure 4f.  

③ Maximum angle, θ. θ is the maximum angle between a triangle plane and a line connecting a 

potential point with the closest triangle vertex. If an unclassified point has a larger angle 

than θ, it is labeled as an object measurement, otherwise as a ground measurement.  

④ Maximum distance, d. d is the maximum orthogonal distance from a point to triangle plane 

during one iteration. If an unclassified point has a larger distance than d, it is labeled as an 

object measurement, otherwise as a ground measurement. 

⑤ Minimum edge length, l. l is the minimum threshold for the maximum (horizontally 

projected) edge length of any triangle in the TIN. l is utilized to reduce the eagerness  

to add new points to the ground inside a triangle when every edge of a triangle is shorter 

than l. Note that l is measured in the horizontal plane. Thus, introduction of l helps to avoid 

adding unnecessary points to the ground model and reduces memory requirements.  

Note that the classic PTD filter also needs presetting the same five parameters. 

(2) Selecting seed terrain segments and constructing initial TIN 

Determine the bounding box of the given point cloud dataset, and fix the top left corner 

(xtopleft, ytopleft), bottom right corner (xbottomright, ytbottomright), width w and height h. The whole 

region of dataset is divided into several tiles (or grid cells) in rows and columns. Number of 

rows and columns are determined by the following formula: 

Row ( )
h

n ceil
m

  and Column ( )
w

n ceil
m

  (1) 

where nRow is the number of tiles in rows, nColumn is the number of tiles in columns, m is the 

above parameter about maximum building size, ceil(x) is a function used to return the smallest 

integral value that is not less than x. The segment with the lowest point in each tile is regarded 
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as a terrain segment, and the points belonging to the terrain segments are selected as seed 

points of the dataset. Note that there is no repeating in the seed points. This means, if the 

lowest points in several tiles belong to the same segment, the points belonging to the same 

segment should be added into the seed points only once, as shown in Figure 4c,d. Additionally, 

the four corners on the bounding box should be added to the seed points, as shown in  

Figure 4c,d. Moreover, each corner’s height is equal to its closest seed point on horizontal 

plane. At last, a TIN is constructed based on the seed points, as shown in Figure 4d, and it 

represents an initial terrain model. Note the insertion of the four corners guarantees that any 

point in the point cloud dataset is located inside the TIN. After the TIN is constructed, the 

remaining points, except the seed points, are labeled as default object measurements.  

(3) Labeling 

Judging is performed in a segment-wise style. In other words, the potential points belonging  

to the same segment are judged as a whole. In detail, set all segments except the terrain ones in 

an unprocessed state. Find an unprocessed segment, and the points within the segment labeled 

as object measurements. Subsequently, make a judgment of each potential point in the segment 

as follows: 

① Locate the potential point, Ppotential(xp, yp, zp). Find the triangle, Ttriangle, which the Ppotential is 

inside or on the edge of or on the vertex of.  

② Calculate the slope of the triangle plane, Striangle. If Striangle is not larger than terrain angle t, 

go to ③. Otherwise, go to ④. 

③ Calculate the following two parameters, Aangle and Ddistance, as shown in Figure 4e. This 

first is the angle between Ttriangle and a line connecting Ppotential with the closest triangle 

vertex, denoted as Aangle. The second is the distance from Ppotential to Ttriangle, denoted as 

Ddistance. If both of the following cases:  

 Aangle ≤ θ 

 Ddistance ≤ d 

hold, label Ppotential as ground measurement, and go to judgment of the next point. 

Otherwise, go to next one. 

④ Mirroring Ppotential, as shown in Figure 4f. Find the vertex with highest elevation value in 

Ttriangle, denoted as Pvertex(xv, yv, zv). Ppotential is mirrored as follows: 

mirror v P2x x x   

mirror v P2y y y   

mirror Pz z  

(2) 

where (xmirror, ymirror, zmirror) are the 3D coordinates of the mirror point. Locate the mirror 

point, and calculate the angle and distance parameters as done in ③. If the mirror point is 

determined as a ground point, label Ppotential as ground measurement, and go to judgment of 

next point. 

If all points within the current segment have been judged, set the segment in a processed state, 

and count the number of the ground points and the number of the object points. If the number 
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of ground measurements is larger than the object measurements, label all of the points within 

the current segment as ground measurement. Otherwise, label them as object measurements 

again, and go to judgment of next unprocessed segment. However, if all segments are 

processed and labeled, go to step (4). 

Figure 4. The progress of SBF method and some needed parameters. (a) A point cloud;  

(b) Result of point cloud segmentation; (c) Selection of ground seed segments;  

(d) Construction of TIN by the points in (c); (e) Measurement of angle and distance;  

(f) Mirroring process.  
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(4) The newly detected terrain segments are added into the TIN as follows: 

① Locate the ground point, Pground(xg, yg, zg) in each terrain segment one by one. Find the 

triangle, T'triangle, which the Pground is inside or on the edge of or on the vertex of.  

② Calculate the length of each edge of T'triangle in horizontal plane. If the length of any edge is 

larger than l, add Pground into the TIN. Otherwise, go to the judgment of the next newly 

detected ground point. 

(5) Repeat (3) and (4) until no further segment is added to the set of terrain segments anymore. 

4. Experiments and Performance Evaluation 

A prototype software system for filtering ALS data has been developed using VC++6.0 IDE under 

the Windows XP Operating System. The hardware we used is a Lenovo workstation W520, with an 

Intel Pentium 2.40 GHz CPU and 2.98 GB RAM. The classic PTD method [27], PCSS segmentation 

method [18], and the proposed SBF approach are integrated into the developed system. Note that we 

implemented the PTD and PCSS from scratch. Additionally, the triangulation of the ALS points was 

done by integrating an existing implementation of a 2D Delaunay triangulator called Triangle [46] and 

the KNN was done by integrating an existing implementation of kd tree called ANN [47]. 

4.1. Experimental Data 

The benchmark data from ISPRS Commission III, Working Group III are employed to compare  

the performances of the PTD method and the proposed SBF method. It includes eight sites consisting 

of different terrains: four urban sites and four rural/wooded sites, as well as 15 reference samples of 

sub-areas. The eight datasets are named as CSite1-8, respectively, as listed in Table 1. The test data 

cover various land-use and land-cover types including buildings, vegetation, rivers, roads, railroads, 

bridges, etc. These data were obtained by an Optech ALTM scanner over the Vaihingen/Enz test field 

and the Stuttgart city center. The overall characteristics of these eight datasets refer to Sithole and 

Vosselman [17]. The point spacing is 1.0 to 1.5 m for urban sites and 2.0 to 3.5 m for rural sites, 

respectively. Moreover, there are a total of 15 reference samples for testing the filtering accuracy; the 

reference data were generated by manual filtering with knowledge of the seven landscapes and 

available aerial images [17]. As the CSite8 does not have a reference dataset, it was excluded for 

further experiment and analysis. Note that the laser data were collected with both first and last 

echoes/returns, which does not mean there is no single return in the data. To perform multiple echoes 

analysis, the original two echoes of each pulse are labeled as single returns or multiple returns based 

on the following rules: 

 If intensity values of the two echoes are not same, they are both labeled as multiple echoes; 

 Otherwise, calculate the 3D distance of the two echoes: 

 If their distance is larger than an experienced threshold, 0.5 m, they are also labeled as 

multiple echoes;  

 Otherwise, they are both labeled as single echoes. 
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The above preprocessing not only preserves all points in the original data, but also adds more echo 

information into the data. Note that multiple echoes analysis is performed by the both filters. 

Particularly, if a point is labeled as a multiple echo and it is also the first echoes of the two, it is filtered 

out in the multiple echoes analysis for the PTD filter. 

4.2. Specification of the Input Parameters 

The SBF method shares five parameters with PTD method, but needs four parameters more than the 

PTD method. For the seven datasets, the shared five parameters are set to the same values for both of 

the filters, as shown in Table 1. All of the parameters are determined by the authors’ experienced 

judgment on the conditions of the landscape. Particularly, m is slightly larger than the maximum length 

or width of the buildings in this scene; t is the maximum terrain slope in this scene; θ and d are set to 6 

and 1.4 in default respectively, and their optimal values can be determined by the trial and error 

method; l is slightly larger than the average point density of the point dataset, which is used to avoid 

too many triangles in the TIN. 

Table 1 lists all of the parameters used for the seven testing data. Table 2 lists some key statistics 

about the input seven datasets and their results, such as the number of raw points, the number of 

detected outliers, etc. 

Table 1. Input Parameters of the two filters used for each site. 

Parameters 

Scene 

Classic PTD Method SBF Method 

m (m) t (°) θ(°) d (m) l (m) k (points) r (m) d' (m) α (°) 

CSite1 20 80 6 1.4 1 20 0.3 3 10 

CSite2 60 88 6 1.4 1 20 0.3 3 5 

CSite3 35 88 6 1.4 1 20 0.3 3 10 

CSite4 60 88 6 1.4 1 20 0.3 3 10 

CSite5 10 70 6 1.0 2 20 0.3 3 15 

CSite6 40 70 6 1.4 2 20 0.3 3 5 

CSite7 20 70 6 1.4 2 20 0.3 3 10 

Table 2. Statistics about the filtered results of the two filters for each site. 

Indicators 

 

Scene 

Total Number 

of Points 

(points) 

Number of 

Outliers 

(points) 

Classic PTD Method SBF Method 

O S G 
Time 

Cost (s) 
O S G 

Time 

Cost (s) 

CSite1 1,366,408 2,485 118,375 1,929 445,430 24.77 198,176 516,993 611,671 891.17 

CSite2 486,800 7,088 30,005 74 161,562 7.83 43,860 235,493 253,587 128.70 

CSite3 377,028 393 37,693 144 146,310 6.84 51,994 174,523 188,240 104.34 

CSite4 518,060 2,609 33,135 76 182,140 8.94 45,748 16,984 241,026 78.46 

CSite5 628,576 199 42,956 17,084 447,742 17.13 104,601 436,082 485,118 302.18 

CSite6 551,698 2,222 18,106 972 375,519 12.52 45,107 293,497 443,170 78.81 

CSite7 393,264 1,086 11,096 2,742 312,449 10.51 27,399 304,661 346,347 83.73 

Notes: “O” is the abbreviation of “Number of detected object points by multiple echoes analysis (points)”, “S” is the abbreviation of 

“Number of seed points (points)”, and “G” is the abbreviation of “Number of ground points (points)”. Moreover, the time cost includes 

only the time spending on computing rather than the time spending on reading and writing. 
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4.3. Results 

With the specified parameters in Table 1, we perform the filtering on the seven datasets using the 

two methods. Some statistics about the filtering refer to Table 2. Among the filtering results, we select 

CSite1 and CSite2 as two representatives to make a demonstration, shown in Figures 5 and 6, 

respectively. Both of CSite1 and CSite2 are partially or fully covered in urban areas, and the top of the 

CSite1 contains a hill with complex natural landscape and man-made objects. Furthermore, results of 

Sample 11, Sample 24, Sample 51, Sample 53, Sample 71 and Sample 12 are also displayed to reflect 

the details of filtering, as shown in Figures 7–12 respectively.  

CSite1 is an urban area, and its special features include steep slopes, mixture of vegetation and 

buildings on hillside, buildings on hillside, and data gaps. There are 1,366,408 points in the raw data. 

2,485 points are identified as outliers and excluded from the remaining filtering process for both the 

filters, and the remaining data and the corresponding TIN are displayed in Figure 5a,b, respectively. In 

the filtering process of the PTD, 118,375 points are detected as object measurements by the multiple 

echoes analysis; 1,929 points are selected as ground seed points; finally, 445,430 points are classified 

as ground measurements (see Figure 5g). In the filtering process of the SBF method, 198,176 points 

are detected as object measurements by the multiple echoes analysis (see Figure 5d); 516,993 points 

are identified as ground measurements (see Figure 5e); finally, there are 611,671 measurements being 

classified as ground (see Figure 5f). The statistics of the two filters on CSite1 suggest that, the 

proposed SBF method is capable of removing 67% object measurements, detecting 26,785% ground 

seed points, preserving 37% ground measurements more than the PTD filter. The differences of  

Figure 5f,g are shown in Figure 5h. Figure 5h suggest that the main difference attributes to the ability 

of SBF method to preserve the potential ground measurements in areas with steep terrain, as shown in 

the rectangular regions in Figure 5f–h. Figure 5g shows that most of the ground points around steep 

areas are omitted, and the lower part of a road across the steep terrain is missed for the classic PTD 

(see Figure 7d). In contrast, Figure 5f,h show that the ground measurements around the same steep 

areas and the whole road are well preserved by SBF method.  

CSite2 is also an urban area, and its special features include large buildings, irregularly shaped 

buildings, a road with a bridge and a small tunnel, plus some data gaps. There are 973,598 points in the 

raw data. 124 points are identified as outliers. The remaining data without outliers and its TIN are 

displayed in Figure 6a,b, respectively. In the filtering process of the PTD, 30,005 points are detected as 

object measurements by the multiple echoes analysis; 74 points are selected as ground seed points; 

finally, 161,562 points are detected as ground measurements (see Figure 6g). Similarly, in the filtering 

process of SBF method, 43,860 points are detected as object measurements by the multiple echoes 

analysis (see Figure 6d); 235,493 points are identified as ground measurements (see Figure 6e); finally, 

there are 253,587 measurements being detected as ground (see Figure 6f). The statistics of the two 

filters on CSite2 suggest that, SBF proposed method is capable of removing 46% object measurements, 

detecting 326,974% ground seed points, preserving 57% ground measurements more than the PTD 

filter. The differences of Figure 6f,g are shown in Figure 6h. The reason of the difference between the 

two results is SBF method’s ability to preserve the ground measurement on some steep streets, as 

shown in the rectangular regions in Figure 6f–h. Figure 6g shows some road segments are omitted for 

the classic PTD. In contrast, Figure 6f shows all of the roads are well preserved by SBF method.  
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Figure 5. Filtering and results of testing data about CSite1: (a) The remaining point cloud 

after outlier removal; (b) TIN of the data in (a); (c) Segmentation result of PCSS;  

(d) Detected vegetation measurements by multiple echoes analysis of segments;  

(e) Detected ground seed segments colored by the labeling number; (f) Detected ground 

measurements by SBF method; (g) Detected ground measurements by the classic PTD 

method; (h) Differences between (f) and (g). 
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Additionally, the detailed results from the references of Sample 11, Sample 24, Sample 51,  

Sample 53 and Sample 71, suggest that SBF method can correctly detect more ground measurements 

than the PTD method in the case of: 

 vegetation and buildings on steep slopes (see Figure 7); 

 ramps in urban areas (see Figure 8); 

 vegetation on slopes (see Figure 9); 

 discontinuity caused by natural break lines(see Figure 10); 

 discontinuity caused by bridges (see Figure 11) or highways.  
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Figure 6. Filtering and results of testing data about CSite2: (a) The remaining point cloud 

after outlier removal; (b) TIN of the data in (a); (c) Segmentation result of PCSS;  

(d) Detected vegetation measurements by multiple echoes analysis of segments;  

(e) Detected ground seed segments colored by the labeling number; (f) Detected ground 

measurements by SBF method; (g) Detected ground measurements by the classic PTD 

method; (h) Differences between (f) and (g). 
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Figure 7. Filtering and results of reference data of Sample 11: (a) The digital surface 

model (DSM); (b) The reference DEM; (c) The DEM generated from the result of the PTD 

method; (d) The type I errors, type II errors of the PTD method; (e) The DEM generated 

from the result of the SBF method; (f) The type I errors, type II errors of the SBF method. 

Note that both of the DSM and the DEM are TIN-based.  
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Figure 8. Filtering and results of reference data of Sample 24: (a) The DSM; (b) The 

reference DEM; (c) The DEM generated from the result of the PTD method; (d) The type I 

errors, type II errors of the PTD method; (e) The DEM generated from the result of the 

SBF method; (f) The type I errors, type II errors of the SBF method. Note that both of the 

DSM and the DEM are TIN-based.  
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Moreover, the SBF method is also capable of removing more small objects such as cars than the 

PTD method, as shown in the ellipse region in Figure 12. After the point cloud segmentation, the 

points corresponding to the same vehicle often belong to the same segment, and most of the points in 

the segment are judged as the non-ground class. Thus, the vehicle segment and all of the points in the 

segment are labeled as the non-ground class. There are many cars in Sample 12 [17], and Figure 12a,b 

display the filtered results of the PTD and the SBF method on the Sample 12, respectively. Compared 

with the PTD, less car measurements are remained in the result of SBF method. However, the SBF 

method fails to identify the off-terrain object measurements under the following conditions: 

 if the objects are closely attached to the underlying terrain surface, as the bridge shown in the 

ellipse regions of Figures 6f and 11e; 

 if the objects are both small and very close to the ground surfaces, as shown in Figure 9f.  
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Figure 9. Filtering and results of reference data of Sample 51: (a) The DSM; (b) The 

reference DEM; (c) The DEM generated from the result of the PTD method; (d) The type I 

errors, type II errors of the PTD method; (e) The DEM generated from the result of the 

SBF method; (f) The type I errors, type II errors of the SBF method. Note that both of the 

DSM and the DEM are TIN-based. 
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Figure 10. Filtering and results of reference data of Sample 53: (a) The DSM; (b) The 

reference DEM; (c) The DEM generated from the result of the PTD method; (d) The type I 

errors, type II errors of the PTD method; (e) The DEM generated from the result of the 

SBF method; (f) The type I errors, type II errors of the SBF method. Note that both of the 

DSM and the DEM are TIN-based. 
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Figure 11. Filtering and results of reference data of Sample 71: (a) The DSM; (b) The 

reference DEM; (c) The DEM generated from the result of the PTD method; (d) The type I 

errors, type II errors of the PTD method; (e) The DEM generated from the result of the 

SBF method; (f) The type I errors, type II errors of the SBF method. Note that both of the 

DSM and the DEM are TIN-based. 
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Figure 12. Filtering and results of reference data of Sample 12: (a) The DEM generated 

from the result of the PTD method; (b) The DEM generated from the result of the SBF 

method. Note that the two DEM are TIN-based. 
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4.4. Performance Evaluation between SBF and PTD 

Both qualitative and quantitative assessments are made to evaluate the performances of the two 

filters. Particularly, qualitative assessments are made by visually comparing the seven filtered results 

and the 15 references. Visual assessment shows that, both the classic PTD method and the SBF 

method are robust to various types of complex landscapes such as large buildings, irregularly shaped 

buildings, mixture of vegetation and buildings on flat terrains; and they are both sensitive to the data 

type II errors

type I errors
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gaps, because the data gaps may cause the terrain not continuous. However, the PTD algorithm fails to 

remove the points belonging to the lower parts of the objects, and fails to preserve the ground 

measurements in the cases of steep slopes, mixture of vegetation and buildings on a hillside, and just 

buildings on a hillside. Fortunately, the SBF method is more likely to make a correct judgment when 

the PTD algorithm fails. On the other side, compared with the PTD algorithm, the SBF method fails to 

identify the object measurements which are connected to the terrain surface through a smooth 

transition such as the very low buildings, as shown in the ellipse region in Figure 5e–g, and the bridges, 

as shown in the ellipse region in Figure 6e–g. 

Additionally, the quantitative assessments are followed the one proposed in ISPRS filter test [17]. 

Three kinds of errors are calculated, namely, type I errors (i.e., omission errors), type II errors  

(i.e., commission errors), and total errors. The type I error is the percentage of bare earth returns 

misclassified as object returns, whereas the type II error is the percentage of object returns 

misclassified as bare earth returns, and the total error is the percentage of any misclassified points. The 

three types of errors of the two filters in the 15 references are listed in Table 3.  

Table 3. Three types of errors of the two filters, i.e., PTD method and SBF method. 

Dataset NO. 
Type of 

Error 
PTD (%) SBF (%) 

Dataset NO./ 

Types 

Type of 

Error 
PTD (%) SBF (%) 

Sample 11 

I 51.29 26.28  I 6.05 2.22 

II 3.40 10.40 Sample 51 II 3.59 10.81 

T 30.85 19.50  T 5.51 4.09 

Sample 12 

I 21.13 6.56  I 21.11 6.46 

II 1.84 3.31 Sample 52 II 3.77 16.89 

T 11.72 4.78  T 19.29 7.56 

Sample 21 

I 1.67 0.85  I 28.98 9.62 

II 8.97 24.45 Sample 53 II 1.66 16.41 

T 3.29 6.08  T 27.87 9.90 

Samp22 

I 44.74 6.43  I 9.09 3.16 

II 3.08 15.44 Sample 54 II 2.27 17.23 

T 31.74 9.24  T 5.43 10.72 

Sample 23 

I 53.77 23.21  I 27.18 6.26 

II 3.22 4.64 Sample 61 II 4.15 6.55 

T 29.85 14.43  T 26.39 6.27 

Sample 24 

I 58.81 3.99  I 32.19 2.62 

II 10.98 8.70 Sample 71 II 1.86 25.65 

T 45.68 5.28  T 28.76 5.22 

Sample 31 

I 7.87 0.54 

Minimum 

I 1.67 0.54 

II 4.13 2.59 II 0.82 0.54 

T 6.15 1.61 T 3.29 1.61 

Sample 41 

I 70.31 62.22 

Maximum 

I 70.31 62.22 

II 0.82 1.92 II 10.98 25.65 

T 35.48 32.00 T 35.48 32.00 

Sample 42 

I 19.37 19.02 

Average 

I 30.24 11.96 

II 1.40 0.54 II 3.68 11.06 

T 6.66 5.95 T 20.98 9.51 
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Figure 13. Comparison of the three types of errors for the two methods: (a) Type I errors 

of different algorithms for the samples; (b) Type II errors of different algorithms for the 

samples; (c) Total errors of the two algorithms for the samples. Note “S” is abbreviation of 

“Sample” for the horizontal captions. 
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The statistics in Table 3 suggest that, both filters could achieve high accuracies on the seven 

datasets, and the total error is less than 35.48% for all the filtered results, as shown in Table 3 and 

Figure 13c. On the contrast, they both acquire low accuracies in the area with data gaps such as 

Sample 41. For Sample 41, they both have the highest type I errors and total errors among all the 
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references, as listed in Table 3. However, generally, the SBF method has significantly lower type I 

error and total error than the PTD method. Specifically, among the 15 references, there are 15 cases 

where the type I errors of the SBF method are lower than the PTD method, and there are 13 cases 

except the Sample 21 and Sample 54 where the total error of the SBF method are lower than the PTD 

approach, as shown in Figure 13a,c. On average, compared with the PTD algorithm, the type I error 

and total error of the SBF method are approximately reduced by 18.26% and 11.47%, respectively. 

However, the classic PTD approach also has its advantage in avoiding type II errors. The statistics in 

Table 3 tell us that, there are 12 cases where the SBF method has higher type II errors than the PTD 

algorithm, as shown in Figure 13b. However, the above disadvantage of the SBF method is not fatal. 

Considering that the SBF method is likely to have lower type I errors and total errors, SBF will need 

less human involvements compared with the PTD method, because the cost of repairing the type II 

errors is far lower than the ones of repairing the type I error in the stage of manual operation after 

automatic filtering [17]. 

Another disadvantage of the SBF approach is that it needs four more specified parameters needed 

for the segmentation, as illustrated in Section 3.2. Based on the scene complexity and statistics in 

Table 3, CSite2 and Sample 23 are selected to analyze the sensitivity of the four parameters and the 

effect on three types of errors, because the Sample 23 has higher complexity and both of the classic 

PTD method and the SBF method don’t perform well in this sample; and the results are shown in 

Figure 14. For k   [10, 30] and the other parameters are fixed, the type I errors decrease from 28.91% 

to 18.01%, the type II errors increase from 3.87% to 4.89%, and the total errors decrease from 17.07% 

to 11.81%. The above obvious difference owns to the sensitivity of k to the plane fitting in PCSS  

if k is not large enough. However, when k is approaching to 20, the three types will not change 

significantly. Actually, for k   [18, 26], the type I errors decrease from 22.21% to 22.00%, the type II 

errors decrease from 4.66% to 4.48%, the total errors decrease from 13.91% to 13.81%, despite there is 

also a slight fluctuation when k = 22 for the type I error and the type II error. Similar trends happen to 

the other three parameters. Particularly, for α   [4°, 11°] or r   [0.2 m, 0.4 m] or d'   [2.5 m, 4.0 m], 

and the other parameters are fixed, the three types of errors will not change significantly, as shown in 

Figure 14b–d respectively. In a word, the three types are not sensitive to the change of values of the 

four parameters within some ranges. Thus, we can get similar results if we chose slightly different 

values. The Figure 14 also suggests that we have not fine-tuned these particular examples so the results 

come out favorably, but just made decisions on experiences, because k = 20, r = 0.3 m, d' = 3 m and  

α = 5° is not the optimal values in view of three types of errors. On the other hand, the statistics in 

Figure 14c suggest that the over-segmentation or under-segmentation induced by the bad segmentation 

parameters will lead to bad filtering result. For example, in Figure 14c, when k = 20, r = 0.3 m,  

d' = 1.0 m and α = 5°, the three types of errors are approaching the ones of the classic PDT filter. 

Furthermore, from the parameters in Table 1, we conclude that k = 20, r = 0.3 m, d' = 3.0 m and  

α = 5° or 10° or 15° turned out to be feasible for the seven datasets. In other words, the additional four 

parameters do not significantly add complexity to the SBF method if the time cost was not considered. 

From the above statistics and analysis, we conclude that the SBF method has a significant reduction of 

the type I errors and total errors compared to the PTD method without significantly adding to the 

complexity of the algorithm. However, the optimal values of the four parameters may need adaptation 

for the other point cloud datasets in practice. 
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Figure 14. Analysis on sensitivity of the input parameters k and α respectively, and its 

effect on the three types of errors for the Sample 23. (a) Values of k and the corresponding 

three types of errors when r = 0.3 m, d' = 3.0 m and α = 5°; (b) Values of α and the 

corresponding three types of errors when k = 20, r = 0.3 m, d' = 3.0 m; (c) Values of d' and 

the corresponding three types of errors when k = 20, r = 0.3 m, α = 5°; (d) Values of r and 

the corresponding three types of errors when k = 20, d' = 3.0 m, α = 5°. 
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A further disadvantage of the SBF method is that it needs more computation time compared to the 

PTD method, because of the segmentation and the iterative judgment of segments, as illustrated in 

Section 2. The time costs are recorded and listed in Table 2. On average, time cost of the SBF method 

is 18.3 times more than the PDT method on the same computer. However, this paper focuses on a 

filter’s accuracy rather than efficiency, and the efficiency of a filter method may be solved if the 

algorithm was optimized or parallel computing was considered. 

The advantages of the SBF method result from the following three factors. The first one is the 

adopting of the point cloud segmentation in the process of filtering. Particularly, the PCSS method will 

expand the set of initial ground points to a large extent if the natural terrain is smooth enough, as 

shown in both of Figures 5d and 6d. The statistics in Table 2 suggest the proportion of selected ground 

seed points by PCSS to the finial detected ground points is approaching approximately 77%. As a 

result, the increased number of ground seed points reduces the possibility of omitting the remaining 

ground measurements for the SBF algorithm. The second one is the adopting of multiple echoes 

analysis. The multiple echoes analysis is helpful to detect the vegetation measurements, which will 

reduce the number of points to be judged and also reduce the possible errors. The last but not least 

factor is the inheritance of the flow chart of classic PTD method. As mentioned above, the PTD 

method is an excellent filter, and it has been widely applied due to the popularization of the TerraSolid 

commercial software. The SBF approach makes best use of the flow chart of the classic PTD algorithm. 

However, embedding the PCSS into the PTD is also a double-edged sword. The point cloud 

segmentation also makes the SBF method more likely regard some small object points attached to the 

terrain as ground points, which probably increases the type II errors for the SBF method if the small 

objects were abundant in this scene, as shown in Table 3 and Figure 13b.  

4.5. Performance Evaluation between SBF and the Others 

As mentioned above, there are eight filtering algorithms presented by Sithole and Vosselman [17]. 

There is comparability between them on the filtering accuracy. Thus, the quantitative assessments are 

also performed between the SBF method and the eight filters. The three types of errors of the classic 

eight filters and the SBF method in the 15 references are displayed in Figure 15a–c, respectively.  

Figure 15a,b suggest that, the SBF method has low type I errors and total errors. Specifically, 

among the 15 references, there are two cases where the type I errors of the SBF method are the lowest, 

there are five cases where the type I errors of the SBF method are the second lowest, and there are four 

cases where the type I errors of the SBF method are the third lowest. Similarly, there is one case where 

the total errors of the SBF method are the lowest, there are four cases where the total errors of the SBF 

method are the second lowest, and there are also four cases where the total errors of the SBF method 

are the third lowest. Moreover, both of the type I error and total error of the SBF method is lower than 

the corresponding average of the eight filters. However, most of the eight filtering approaches have 

lower type II errors than the SBF method, as shown in Figure 15b. Totally, the SBF method has lower 

type I error and total error but higher type II error than most of the classic eight filtering methods, 

which suggests the same advantages and disadvantages of the SBF method as in Section 4.4. 
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Figure 15. Comparison of the three types of errors for the SBF method and the eight 

methods in [17]: (a) Type I errors of different algorithms for the samples; (b) Type II 

errors of different algorithms for the samples; (c) Total errors of the two algorithms for the 

samples. Note “S” is abbreviation of “Sample” for the horizontal captions. 
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5. Conclusions 

Filtering is one of the core post-processing steps for ALS point clouds, and many filters have been 

proposed to solve this problem. Among them, PTD is widely applied as one of the surface-based ones. 

However, the PTD fails to remove the lower parts of the objects and preserve the ground 

measurements in steep terrain areas even if the mirroring technique is adopted. Practices suggest that 

the combination of surface-based filters and the segmentation-based filters is capable of overcoming 

the above shortcomings. Thus, a segmentation-based filtering method is proposed therein by 

integrating the PTD framework and PCSS method. The experiments make use of the 7 datasets of 

ISPRS Commission III/Working Group III to verify the SBF method; moreover, the 15 reference 

samples from the sub-areas are used to calculate the accuracies of the proposed approach. The results 

suggest that both the SBF method and the classic PTD are robust to various types of landscapes. 

However, the SBF approach is better than the classic PTD method in removing the vehicle 

measurements and preserving the ground measurements. Particularly, it may have significant lower 

type I errors and total errors than the PTD algorithm despite that it may have higher type II errors, 

which will reduce the cost of the following manual correction. However, the SBF method may fail 

when it is faced with objects, which are attached to the ground, such as bridges, ramps, etc.; and it is 

also sensitive to the large data gaps. Similar conclusions could be made if the SBF method is compared 

with the eight filtering algorithms presented by Sithole and Vosselman [17]. The future work will 

focus on the improvement of the proposed filter to reduce the type II errors, markov random field 

model [48] is introduced to analyze the spatial topology of the segments, multi-source data fusion [49] 

is employed and parallel computing is performed to promote the efficiency.  
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