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Abstract: Coal fires are common and serious phenomena in most coal-producing countries 
in the world. Coal fires not only burn valuable non-renewable coal reserves but also severely 
affect the local and global environment. The Rujigou coalfield in Shizuishan City, Ningxia, 
NW China, is well known for being a storehouse of anthracite coal. This coalfield is also 
known for having more coal fires than most other coalfields in China. In this study, an 
attempt was made to study the dynamics of coal fires in the Rujigou coalfield, from 2001 to 
2007, using multi-temporal nighttime Landsat data. The multi-temporal nighttime short 
wave infrared (SWIR) data sets based on a fixed thresholding technique were used to detect 
and monitor the surface coal fires and the nighttime enhanced thematic mapper (ETM+) 
thermal infrared (TIR) data sets, based on a dynamic thresholding technique, were used to 
identify the thermal anomalies related to subsurface coal fires. By validating the coal fires 
identified in the nighttime satellite data and the coal fires extracted from daytime satellite 
data with the coal fire map (CFM) manufactured by field survey, we found that the results 
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from the daytime satellite data had higher omission and commission errors than the results 
from the nighttime satellite data. Then, two aspects of coal fire dynamics were analyzed: 
first, a quantitative analysis of the spatial changes in the extent of coal fires was conducted 
and the results showed that, from 2001 to 2007, the spatial extent of coal fires increased 
greatly to an annual average area of 0.167 km2; second, the spreading direction and 
propagation of coal fires was analyzed and predicted from 2001 to 2007, and these results 
showed that the coal fires generally spread towards the north or northeast, but also spread in 
some places toward the east.  

Keywords: multi-temporal remote sensing; dynamics; coal fires; thresholding technique; 
TM; ETM+ 

 

1. Introduction 

Coal fires, also called coal seam fires, are caused by the spontaneous combustion of coal during coal 
oxidation [1]. Schmal et al. (1985) noted that the potential of spontaneous combustion of coal may 
enhance its ability to react with oxygen at ambient temperatures [2]; at the same time, this reaction is 
exothermic because it is accompanied by the absorption of oxygen at the surface of the coal field, which 
may increase the “threshold” temperature, which is between 230 °C and 280 °C. At this temperature, 
coal reaches its “ignition” or “flash” point and starts to burn, resulting in a coal fire.  

Figure 1. Chinese fired coal and Chinese coal production since 1902. 

 

Uncontrolled coal fires can cause many problems and are serious hazards because they may produce 
severe and long-term impacts on the local life, economy, and local and even global environment [3–8]. 
This phenomenon is very common in coal-producing countries, especially in China. Spontaneous 
combustion of coal was widespread in the North China Coal Field: more than 100 coal fires with a total 
area of approximately 720 km2 have caused an average annual coal loss of 10–20 million tons through 
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burning, and have indirectly affected coal mining by putting approximately 200 million tons of coal out 
of practical mining reach each year (Figure 1) [1,9,10]. Furthermore, coal fires emit large amounts of 
greenhouse gases (GHGs) and toxic gases, including CO2, CH4, NOX, N2O, CO, and SO2, which cause 
severe environmental problems, e.g., land degradation, global warming, and air pollution [11–14]. 

To control and mitigate coal fires, scientists in various countries have investigated coal  
combustion [15–18]. Borehole temperature measurements were the primary tool used to detect 
underground coal fires until 1963, when the United States began to use thermal remote sensing (TIR) 
techniques to detect and monitor coal fires [6,15,19]. Since then, TIR has proven to be a reliable and 
useful tool for identifying and monitoring underground coal fires. A review monitoring coal fires based 
on the TIR approach was conducted by Zhang et al. [6]. The TIR approach can be classified by the 
sensors used: there are airborne thermal remote sensing (ATIR) and space-borne thermal remote sensing 
(STIR), both of which have been widely used to monitor coal fires. Using ATIR data over a spectral 
region from 8 to 13 µm, Green et al. reported 22 coal mine fires in the anthracite fields of Pennsylvania, 
USA [20]. Other studies conducted similar experiments [21–23]. Due to the rapid development of 
remote sensing techniques, additional airborne sensors have been widely used in the study of coal 
fires [24,25]. However, considering the high price for data acquisition by airborne scanners, many 
scientists are seeking a satellite thermal remote sensing approach as an available and economic 
substitute for coal fire identification and monitoring. The STIR and mid-infrared (MIR) spectral region 
include data with low spatial resolution, such as the Advanced Very High Resolution Radiometer 
(AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), as well as data with 
higher spatial resolution, such as Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM+) 
and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER); the space-borne 
remote sensing data within MIR spectral region with a relative high spatial resolution such as the 
experimental Bi-spectral Infrared Detection (BIRD); data from all these instruments have been used to 
detect and monitor coal fires [26–30]. In general, the methods for coal fire identification and monitoring 
can be grouped into four classes: (1) the density slicing method, which has been successfully applied to 
extract coal fire information from LandSat-5/7 TM/ETM+ data [11,25,29,31]; (2) the automated or 
semi-automated method, which has been successfully applied to extract surface and subsurface coal fires 
from background information, based on statistical parameters [19,28,32]; (3) the fixed-threshold method 
with the multi-spectral method [33]; and (4) the dual-band method proposed by Dozier (1981), and 
Matson and Dozier (1981), which has been successfully applied to coal fire identification in many 
studies [31,34,35]. Despite these significant contributions, no substantial research has yet attempted to 
study the dynamics of surface and subsurface coal fires using nighttime ETM+ SWIR band 7 data and 
ETM+ thermal band 6 data. In particular, no study has sought to detect temporal changes in the 
spreading directions of coal fires in China using multi-temporal nighttime Landsat ETM+ SWIR and 
thermal data. The objectives of this paper are (1) to detect the dynamics of subsurface coal fires using 
multi-temporal nighttime Landsat ETM+ thermal band 6 data; (2) to detect the dynamics of surface coal 
fires using multi-temporal nighttime Landsat ETM+ SWIR band 7 data; (3) to analyze the spatial 
relationship between surface coal fires and subsurface coal fires; (4) to determine which datasets are 
available to detect the coal fire spreading direction by conducting a comparative analysis between the 
coal fires from nighttime satellite data and the coal fires from daytime satellite data and to validate these 
data using field survey maps; and (5) to delineate the directions of propagation of coal fires. While the 
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focus of the study is to analyze the nighttime-satellite-detected coal fire spreading directions, the results 
should also be useful to the efforts of the local mining bureau to extinguish the coal fires and for 
environmental management. 

The assessment of the spread of coal fires and their dynamics is important for estimating losses of this 
non-renewable resource. The detection of the spreading direction of these coal fires will be helpful in 
predicting the velocity of coal fire expansion and the extent of coal fire development. These findings will 
be beneficial for coal mining activities and for enhancing the safety of miners. In this study, we used 
nocturnal multi-temporal Landsat ETM+ thermal band 6 data and SWIR band 7 data to detect 
underground coal fires and surface coal fires, respectively, and also to detect and monitor the spreading 
direction of the coal fires. The Landsat TM band 6 data, which has a spatial resolution of 120 m, has been 
widely used for detecting underground coal fires [7,17,28,36,37], but almost all the datasets used in 
these studies were daytime band 6 images, and these studies used the density slicing method almost 
exclusively. Because the spatial resolution of the TM band 6 data (120 m) is coarser than that of the 
ETM+ band 6 data (60 m), small and deep coal fires may not be detected [38]. However, this is an 
advantage that eases the removal of daytime solar irradiance, and the nocturnal Landsat ETM+ band 6 
data, with its higher spatial resolution data, will be preferable in this situation. Furthermore, because the 
saturation of the ETM+ thermal band 6 data is approximately 70 °C, which is the same as the TM 
thermal band 6 data, while the temperature range of subsurface coal fires is usually cooler than this, 
ETM+ thermal band 6 images are very useful for detecting subsurface coal fires. 

The Landsat SWIR band 7 data have been used for detecting the high extensive heat sources  
(e.g., volcanoes, forest fires, and surface coal fires) since the 1990s by many scientists, as these 
extensive, high-magnitude heat sources often cause great increases in radiance in SWIR  
imagery [17,31,35,39]. Most studies used diurnal SWIR band 7 data combined with band 5 data to 
calculate the temperature, based on the dual-band method. In this study, the single SWIR band 7 data 
were used. The temperature range that band 7 data is sensitive to is 160–277 °C, which matches very 
well to the temperature range of surface coal fires (150–250 °C); therefore, the SWIR band 7 data can be 
used to detect very hot pixels (>70 °C), unlike the ETM+ thermal band 6 data, of which maximum 
temperature is approximately 70 °C. In the paper, the ETM+ SWIR band 7 data are used to detect surface 
coal fires based on a thresholding technique. Unlike the ETM+ band 6 data, which has a thermal spectral 
region in which the reflected solar irradiance can be negligible, thermal radiance at the diurnal SWIR 
spectral region is combined with the solar radiation reflected by the surface and scattered due to 
atmospheric effects. Therefore, the nocturnal ETM+ band 7 data will improve this situation even without 
considering the effects of solar irradiance on the nighttime data of the SWIR spectral region. 

In the paper, an introduction to the geology and terrain of the study area is described in Section 2. The 
data used in the study, their preprocessing and the flowchart of the research are given in Section 3. 
Detailed information on the methodology of temperature retrieval, based on the nocturnal 
multi-temporal Landsat thermal band 6 and SWIR band 7 data, to detect and monitor the coal fires is 
given in Section 4. In Section 5, the results of coal fire identification are validated by a map generated by 
field survey; surface and subsurface coal fires are extracted from nighttime thermal band 6 and SWIR 
band 7 data, respectively, and are counted; a quantitative analysis is developed to detect the annual 
dynamics of coal fires from 2001 to 2007; and the spreading direction of coal fires is predicted. Finally, 
a conclusion is made and potential problems that need to be resolved in future research are identified. 
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2. Study Area 

The Rujigou coalfield is located in the Helan Mountains at elevations between 1,800 and 2,500 m in 
the city of Shizuishan (Figure 2b), Ningxia, NW China (Figure 2). The coal-bearing sediments of the 
Rujigou coalfield were deposited in the rivers and lakes of a Middle Jurassic continental basin that was 
free of marine influences. The rocks of the coalfield are widely folded in a NE-SW striking synclinal 
structure. Within the 15 km by 8 km coalfield, seven coal seams have an average thickness of 20 m. As 
its coal is of high quality, ranging from low volatile to anthracite coal, the Rujigou coalfield is heavily 
mined and is mostly covered by bare rocks. The Ningxia Hui Autonomous Region is a part of the central 
Asian grassland and desert region, thus, the Rujigou coalfield has a continental climate with long, cold 
winters and very hot, dry summers; the average annual precipitation is 238 mm. This climate puts the 
coal seams at risk because the outcrops of coal are exposed to the elements, which can easily cause 
spontaneous combustion. Most of the coal seams in the region are affected by uncontrolled fires. 
Approximately 45 private mines still exist next to some of the major mines in the Rujigou coalfield; in 
recent years, the coalfield has been affected by over 20 coal fires (Figure 2c). 

Figure 2. Study area of Rujigou Coal Field: (a) shows the location and direction of study 
area in Northwest China, (b) shows the Rujigou Coal Field located in the Rujigou district, in 
Shizuishan city and (c) is a 3-D FCC (False Color Composite) image (generated by coding 
ETM+7/4/2 in R/G/B) based on Landsat ETM+ data acquired on 12 August 1999, overlaid 
by coal fire map from local mineral bureau, obtained from a field survey of 2002–2003, 
Projection: UTM, zone 48 North, WGS 84. 
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3. Data Used and Preprocessing 

In this study, nighttime cloud-free Landsat-7 ETM+ TIR band images with 60-m spatial resolution 
were collected (Table 1). All the nighttime Landsat TM/ETM+ thermal datasets were the standard terrain 
correction (L1T) products, downloaded from the United States Geological Survey (USGS) website, 
which provides systematic radiometric and geometric accuracy estimates by incorporating ground 
control points (GCPs) from the global land survey of 2000 (GLS2000) and employing a digital elevation 
model (DEM) for topographic accuracy. DEM sources include the Shuttle Radar Topography Mission 
(SRTM), the National Elevation Dataset (NED), Canadian Digital Elevation Data (CDED), Digital 
Terrain Elevation Data (DTED), and GTOPO 30 (a global DEM from the USGS). In this paper, the data 
used for the study were grouped into two categories: the nighttime data were used to calculate the 
temperature of the coalfields, and the daytime data were used to calculate the emissivities of the 
coalfields. As none of the daytime data were synchronous with the nighttime images, cloud-free daytime 
datasets with acquisition times, seasons, and years chosen to match as well as possible those of the 
corresponding nighttime ETM+ data were acquired for calculating the emissivity (Table 2). 

Table 1. The Landsat data used for temperature retrieval to coal fire detection and 
monitoring in the study. 

Data Type Band Used for Temperature Respective Spatial Resolution (m) Time of Data Acquisition
Nighttime Landsat 7 6, 7 60/30 9 September 2001 
Nighttime Landsat 7 6, 7 60/30 28 September 2002 
Nighttime Landsat 7 6, 7 60/30 8 July 2007 

Table 2. The Landsat data used for normalized difference vegetation index (NDVI) to 
calculate the respective emissivities of multi-temporal satellite data in the study. 

Data Type Bands Used for NDVI Respective Spatial Resolution (m) Time of Data Acquisition 
Daytime Landsat 5 3, 4 30 10 September 2001 
Daytime Landsat 7 3, 4 30 21 September 2002 
Daytime Landsat 5 3, 4 30 23 June 2007 

One data preprocessing problem that needs to be resolved concerns the nonfunctionality of the scan 
line corrector (SLC; its nonfunctionality is referred to as SLC-off), which causes gaps in the ETM+ data. 
On 31 May 2003, the SLC, which compensates for the forward motion of Landsat 7, failed, resulting in 
approximately 22% data loss [40]. The SLC-off effects gradually increase from the center of the scene 
toward the edges, where the effects are most conspicuous. The middle region of the scene, which is 
approximately 22 km wide on the ETM+ L1T data, contains almost no data loss; the quality of the 
middle region is very similar to that of Landsat ETM+ data with the SLC-on. In this study, the Rujigou 
coalfield is partly located in the middle of the scene, where the SLC-off effects are much less than in 
other parts of the scene (Figure 3a,b). In this paper, the SLC-off effects in the study area were corrected 
using a technique developed by Storey et al. [28,40]. The method is used to fill the gaps in one scene 
with data from another scene of Landsat data using a linear transform to the filling image to adjust it, 
based on the mean and standard deviation of each band of each scene [40]; details of the gap-filling 
method used in this study is referred to in the article on the gap-filling algorithm (phases one and two) by 
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the USGS (2004) and Storey et al. [40]. With the help of Interactive Data Language (IDL) and the 
software Environment for Visualizing Images (ENVI, Manufactured by ITT Exelis, Inc., McLean, 
Washington, DC, USA), the gap-filling algorithm is coded in IDL and was used, with ENVI, to fill the 
gaps in the scenes. In this study, the SLC-on nighttime Landsat ETM+ data from 28 September 2002, 
was used to fill the gaps in the scenes of Landsat ETM+ data from 8 July 2007 (Figure 3c,d). To show the 
obvious contrast, image enhancement with a Gaussian algorithm was also performed (Figure 3e,f).  

Figure 3. (a) SLC-OFF effects on the thermal band 6 data. (b) Gap-filling with the thermal 
band 6 data. (c) Image enhancing with Gaussian algorithm. (d) SLC-OFF effects on the 
SWIR band 6 data. (e) Gap-filling with the SWIR band 6 data. (f) Image enhancing with 
Gaussian algorithm. 

 
(a) (b) (c) 

 
(d) (e) (f) 

4. Methodology 

The Landsat TIR band data have been used for detecting coal fires during the past several decades by 
many scientists, and in the study area, Rujigou coal field, Prakash A. et al. also developed a research 
with the Landsat TM thermal band 6 data and the DEM data and other ancillary datasets [41]. In this 
study, considering the spatial resolution of the TM band 6 data (120 m) being coarser than that of the 
ETM+ band 6 data, small and deep coal fires may not be detected, the Landsat ETM+ TIR (with a spatial 
resolution 60 m) and SWIR (with a spatial resolution 30 m) data were used to detect coal fire dynamics 
based on the different thresholding method. Landsat ETM+ produces two thermal band images with 
60-m spatial resolution, including one thermal data with a low gain setting (6 L) and one with a high gain 
setting (6 H). The 6 H band has a lower saturation temperature (322 K) than the saturation of 6 L band 
(347.5 K). Therefore, the thermal data we chose to use in the study are the 6L data. The nighttime ETM+ 
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band 6 data are useful for distinguishing gross thermal anomalies from the background of solar warming 
and can be used to map subsurface coal fires. Using a series of multi-temporal nighttime ETM+ thermal 
band 6 images, we can predict the spreading direction of the underground coal fires. For thermal band 6 
data, using Planck’s law and related corresponding image preprocessing work, we retrieved the radiant 
temperatures from the ETM+ thermal data. To calculate the surface temperature, the land surface 
emissivity was derived from the Normalized Difference Vegetation Index (NDVI). Subsequently, the 
land surface temperature (LST) was retrieved from the ETM+ thermal band 6 data combining the 
emissivity, and the thermal-anomaly pixels were separated from the background pixels using a 
thresholding technique. For ETM+ SWIR band 7 data, the radiant temperature was calculated from the 
multi-temporal satellite data, based on Planck’s law. Next, a simple thresholding technique was used to 
detect the surface coal fires from the resulting radiant temperatures. The official coal fire map produced 
by the field survey, resampled to the Universal Transverse Mercator (UTM) map projection and the 
World Geodetic System (WGS) 84 coordinate system used for the Landsat data, was used to validate the 
results obtained from the multi-temporal nighttime Landsat ETM+ data. The spreading directions of the 
developing coal fires that we predicted closely matched the results of the field survey, and an attempt 
was made to quantitatively analyze the coal fire dynamics during the period from 2001 to 2007. Detailed 
information on the flowchart for coal fire detection and monitoring in the study is shown in Figure 4. 

Figure 4. Flowchart of coal fire detection and monitoring in the study. 
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4.1. Surface Temperature Estimated from Thermal Band 6 Images and Radiant Temperature Calculated 
from SWIR Band 7 Images 

Estimation of surface temperature from the ETM+ band 6 image occurs in three steps: 
First, according to Planck’s law relating spectral radiance Lλ and the temperature, the spectral 

radiance can be described as follows: 
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Then, the inverse Planck equation: 
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where C1 and C2 are constants, C1 is equal to 3.742 × 10−16 Wm2 and C2 is equal to 1.44 × 10−2 mK. λ is 
the wavelength in meters, ε is the emissivity and T is the temperature in K, Then, the radiant temperature 
can be simplified as follows: 

 
(3)

The second step was to, according to the following equation, convert the raw digital numbers (DN) to 
spectral radiance, Lλ [42]: 

 (4)

where Lλ is the spectral radiance, Lmin(λ) is the minimum detected radiance for the scene, Lmax(λ) is the 
maximum detected radiance for the scene, Qcal is the grey level for the analyzed pixel (DN) and Qcalmax is 
the maximum grey level. The values of Lmin(λ) and Lmax(λ) used are given in the article by   
Chander et al. [43]. According to the metadata that accompanies the nighttime ETM+ images, the 
spectral radiance of band 6L thermal data and the SWIR band 7 data can be calculated by  
following equations: 

 (5)

(6)

where Lthermal is the spectral radiance of the thermal band 6L, Lswir is the spectral radiance of the band 7 
image and DN is the grey level for the analyzed pixel and is also the digital number of the image. 
Combining Equations (3), (5), and (6), we obtain the respective radiant temperature, TR, of thermal band 
6L and the SWIR band 7. 

The third step was to correct the atmospheric effects based on the method developed by 
Jiménez-Muñoz and Sobrino (2003), more detailed information can be found in [43], with this method, 
the atmospheric functions have been obtained for ETM+ band 6 data: 
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where ψ1, ψ2, ψ3 is the atmospheric function, and the ω is the atmospheric water vapor content in the 
thermal infrared region and it was estimated, in the study, from the MODIS level 2 product MOD05 
(atmospheric water vapor content). 

The fourth step is to indirectly calculate the emissivity from the NDVI using the following equation, 
which was firstly established by Van de Griend and Owe (1993), and further developed by Valor and 
Caselles (1996), and Sobrino and Raissouni (2000), and for more details can be found in [44–49]. In the 
study, the land surface coverage was mainly composed of small rivers, sparse vegetation surrounding the 
rivers, coal mines and coal waste processing plants, and almost bare natural surface. To accurately 
estimate the emissivity of land surface, the study area was classified into three categories of natural 
surface, rivers and buildings (such as coal mines, coal waste processing plants, etc.), based on a 
supervised method with Landsat ETM+ visible near infrared data (VNIR) and the panchromatic (PAN) 
band 8 images: 

995.0

0671.0086.09589.0

0461.00614.09625.0

2

2
_

=
−+=

−+=

W

VVB

VVSN

PP

PP

ε
ε

ε

 (8)

MINMAX

MIN
V NDVINDVI

NDVINDVI
P

−
−=  (9)

(10)

 
(11)

where εN_S is the thermal emissivity of natural surfaces, εB is the emissivity of buildings, εW is the thermal 
emissivity of rivers, NDVI is the normalized difference vegetation index for individual surface covers, 
which can be obtained by Equation (9), and Pv is the vegetation cover in sparsely vegetated areas. In that 
study, Pv was set to 0 when the value of NDVI was less than 0.05, and Pv was set to 1.0 when the value of 
the NDVI exceeded 0.7. However, in the study area, the maximum value was counted at 0.48; therefore, 
only the first situation occurred in the study. ρnir is the reflectance of the NIR band data, ρred is the 
reflectance of the RED band data, ρλ is the unitless planetary reflectance, π is a mathematical constant 
equal to ~3.14159 (unitless), d is the Earth-Sun distance (astronomical units), Lλ is the spectral radiance, 
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The final step, based on the generalized single-channel method developed by Jiménez-Muñoz and 
Sobrino (2003), the LSTs was estimated using the following equations [44]: 
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where the Ts is the LSTs, Lsensor is the at-sensor spectral radiance which can be calculated by Equation (4), 
Tsensor is the at-sensor brightness temperature, λ is the wavelength, C1 and C2 is the Planck’s constant, 
C1 = 1.9104 × 108 Ω∙μm∙m2∙sr−1, C2 = 1.43877 × 104 μm∙K, ψ1, ψ2, ψ3 is the atmospheric function, which 
can be estimated by Equation (7) 

By combining Equations (3), (5), and (7)–(12), we obtained the surface temperature of the thermal 
band 6L image, and by combining Equations (3) and (6), we obtained the radiant temperature of the  
band 7 SWIR image. 

4.2. Method for Detecting Coal Fires and Monitoring Their Spreading Directions 

In the section, the dynamic thresholding technique, an automated method based on statistical 
parameters (detailed information was described in Section 4.2.1), was used to detect and monitor the 
subsurface coal fires based on the Landsat ETM+ thermal band 6 data because subsurface coal fires 
usually have lower temperatures (less than approximately 70 °C) than surface coal fires, and the fixed 
thresholding technique (detailed information was described in Section 4.2.2) was developed to identify 
and monitor the surface coal fires based on the Landsat ETM+ SWIR band 7 images because the 
nighttime ETM+ SWIR data sets are insensitive to solar irradiance and have a broad sensitivity of 
160–277 °C, which coincides with the temperature range of the surface coal fires (150–250 °C). Using 
the multi-temporal nighttime satellite data, we identified the coal fire spreading directions by stacking 
coal fires identified in the satellite data from every pair of successive years using the stacking analysis 
technique for analyzing images in a sequence, with the help of the Geographic Information System 
(GIS) software ArcGIS (Environmental Systems Research Institute, Inc., Redlands, CA, USA). 

4.2.1. Dynamic Thresholding Technique for Detection of Subsurface Coal Fires Using Nighttime ETM+ 
Thermal Band 6L Data 

The various times, climatic conditions, surface types, and intensities and depths of coal fires affect 
the temperatures retrieved from the multi-temporal thermal images. Therefore, a fixed threshold is not 
suitable for identifying coal fires, thus, a dynamic threshold was used in this study. A good review of 
common dynamic threshold setting techniques is presented by Raju et al. [50]. For example, the 
histogram method is one dynamic threshold setting technique. In this method, a change in the shape of 
the slope of the histogram is identified, and a hypothetical uniform histogram is projected; the 
corresponding point on the x-axis is taken as the threshold. The histogram method has the advantage of 
being independent of radiometric information and statistical parameters [11]. The moving window 
algorithm is another dynamic threshold setting method for extracting coal fire information. In this 
method, the histograms are statistically analyzed, and the DN value that represents the first local 
minimum after the primary maximum is set as the threshold. Based on the literature pertaining to setting 
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a dynamic threshold and the local climate conditions, but without considering the effect of solar 
irradiance on the nighttime images, we selected the automated method to use in our study. The 
automated method has commonly been used for discriminating coal fires [28,50]. This method uses 
statistical parameters to detect coal fires when the satellite data are radiometrically corrected. Statistical 
parameters such as the mean, x̅, and the standard deviation, σ, were used to set a threshold. Using this 
method, the threshold (x̅+ 2σ) was used to delineate the areas of the coal fires. 

4.2.2. Fixed Thresholding Technique for Surface Coal Fires Detection Using Nighttime ETM+ SWIR 
Band 7 Data 

Unlike the nighttime ETM+ thermal band 6 data, which has a low saturation of temperature 
(approximately 70 °C), the nighttime ETM+ SWIR band 7 data has a higher sensitivity temperature 
range (160–277 °C). Furthermore, the nighttime satellite SWIR data avoids the effects of solar 
irradiance on the land surface. According to the literature and previous field measurements, the 
temperatures of coal fires in most coalfields in China range from 150 °C to 250 °C [6,38,51], which is 
the same as other coalfields in other coal-producing countries, such as the Jharia coalfield in India, 
where the surface coal fire temperatures also range from 150 °C to 250 °C [35,51]. The temperature 
sensitivity of the ETM+ SWIR band 7 data (~160 °C–277 °C) matches very well with the range of 
temperatures of surface coal fires [18]. Unlike for the thermal band, the radiance emitted by surfaces at 
background surface temperatures (~270–340 K) will not be significant in the NIR and SWIR spectral 
regions, and it does not saturate at the approximately 70 °C temperature limit of the SWIR spectral 
region. Therefore, surface coal fires may be identified directly and definitively from the background 
surface temperature based on the night SWIR images using a simple thresholding technique. Moreover, 
with a high spatial resolution of 30 m and without considering solar irradiance, detection and monitoring 
of surface coal fires are facilitated. In this study, the at-satellite temperatures were retrieved from the 
nighttime multi-temporal SWIR data, considering the contribution of emissivity within 2.22 μm of the 
SWIR band 7 to the LST. The threshold for the surface coal fires is set at 423.15 K; the corresponding 
DN value is at least 12 of the original ETM+ SWIR band 7 data. 

4.2.3. Identification of the Spreading Direction of Coal Fires 

The coal fire spreading direction can be identified based on the dynamics of coal fires and the spatial 
distribution of these fires found using the multi-temporal TIR remote sensing data. Based on the 
multi-temporal nighttime satellite data, we identified the coal fire spreading direction by stacking coal 
fires identified in the satellite data from each successive two-year pair using the stacking analysis 
technique, which refers to analyzing the images in sequence using ArcGIS. Using specialized GIS 
software such as ENVI and IDL (Manufactured by ITT Exelis, Inc., Boulder, Colorado, USA), we 
delineated the coal fires using the automated method. Using specialized GIS software and the overlay 
analysis technique, we performed a comparative analysis of the results of every two-year period. 
Ultimately, we developed a map of coal fire spreading direction based on the spatial distribution of these 
temperatures extracted from the TM/ETM+ band6 imagery. 
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5. Results and Discussions 

Using nighttime Landsat 7 ETM+ data from 2001, 2002, and 2007, the results of spectral radiance 
images were generated, based on respective calibration parameters (average gains and offset). From 
these radiance images, the radiant temperatures based on the long time series of nighttime satellite data 
were retrieved using Planck’s law. The corresponding emissivities were then calculated from NDVI 
values based on the long time series of daytime satellite images whose acquisition times and seasons 
matched those of the nighttime images. The corresponding surface temperatures in 2001, 2002, and 2007 
were calculated, based on the emissivities and their respective radiant temperatures. Using the dynamic 
thresholding technique, the relation of the thermal anomalies to subsurface coal fires was delineated 
using the LST retrieved from multi-temporal ETM+ thermal band 6 data (Figure 5). Using the fixed 
thresholding technique, the surface coal fires were delineated based on the radiant temperatures 
retrieved from multi-temporal ETM+ SWIR band 7 data (Figure 6). The coal fires extracted from the 
satellite images were validated using the field survey map of coal fires (Figure 7). Subsequently, a 
comparative analysis was conducted to identify the relationship between surface and subsurface coal 
fires in the same year (Figure 8). Based on the results of surface and subsurface coal fires, the spreading 
direction of these coal fires was delineated and predicted (Figure 9). 

Figure 5. Subsurface coal fires extracted from the ETM+ thermal band 6 data of 2001, 2002, 
and 2007. (a) thermal anomalies related subsurface coal fires of 2001; (b) thermal anomalies 
related subsurface coal fires of 2002; (c) thermal anomalies related subsurface coal fires of 
2007; (d) multi-layer thermal anomalies related subsurface coal fires of 2001, 2002, and 2007. 

(a) (b) 
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Figure 5. Cont. 

(c) (d) 

Figure 6. Surface coal fires extracted from the ETM+ SWIR band 7 data of 2001, 2002, and 
2007. (a) surface coal fires of 2001; (b) surface coal fires of 2002; (c) surface coal fires of 
2007; (d) multi-layer surface coal fires of 2001, 2002, and 2007. 

(a) (b) 
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Figure 6. Cont. 

(c) (d) 

Figure 7. Validation of the results of coal fires extracted from the ETM+ data of 2002 by the 
field survey coal fire map which was developed during the time range of 2002 to 2003.  
(a) validation of coal fires from 2002 nighttime ETM+ data with CFM by field survey;  
(b) validation of coal fires from 2002 nighttime ETM+ data with CFM by field survey. 

(a) (b) 
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Figure 8. Comparative analysis between the results of subsurface coal fires from thermal 
band 6 data and the respective results of surface coal fires from SWIR band 7 data.  
(a) comparative analysis of results of surface coal fires and subsurface coal fires 2001;  
(b) comparative analysis of results of surface coal fires and subsurface coal fires 2002;  
(c) comparative analysis of results of surface coal fires and subsurface coal fires 2007;  
(d) quantify the comparative analysis of results 1 and results 2, from 2001 to 2007. 

(a) (b) 

(c) (d) 
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Figure 9. Delineation and prediction of spreading direction of coal fires based on the results 
of surface coal fires and the subsurface coal fires respectively extracted from the Landsat 
ETM+ SWIR band 7 data and the thermal band 6 data. 

 

5.1. Results 1: Subsurface Coal Fire Dynamics Based on ETM+ Thermal Band 6 Data 

Using the method described above, the locations of coal fires were extracted from the LST identified 
from the long time series of nighttime Landsat data from 2001 to 2007 (Figure 5a–c), and the results 
from this period were overlaid for comparative analysis (Figure 5d). The analysis also quantified the 
dynamics of the coal fires; the results are listed in Table 3. From the Table 3, we found that, unlike the 
surface coal fires, which have a very high temperature and can be easily detected with the temperature 
range > 423.15K (somewhere above 150 °C) from the ETM+ SWIR band 7 data, the temperature ranges 
during which the subsurface coal fires were delineated from were different with the multi-temporal 
nighttime satellite data (e.g., the pixels’ temperatures > 287.6 K in nighttime ETM+ band 6 data of  
9 September 2001, were identified as surface coal fires, and the pixels’ temperatures > 285.8 K in the 
nighttime ETM+ band 6 data of 28 September 2002, and the pixels’ temperatures > 292.1 K in the 
nighttime ETM+ band 6 data of 8 July, 2007, were respectively identified as coal fires). In these Figures, 
obvious “zoning effects”, where the thermal anomalies related to subsurface coal fires, can be seen, 
especially in 2007. Figure 5d shows that the coal fires were mainly concentrated within four areas (black 
circles in Figure 5d); the surface coal fires with these circles have obvious zoning effects. The spatial 
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coverage of subsurface coal fires was found to be 1.248 km2 in 2001, 1.607 km2 in 2002, and 2.113 km2 
in 2007. From Figure 5a–c and Table 3, we found that the area of the coal fires increased by 0.395 km2 
from 2001 to 2002 and increased by 0.506 km2 from 2002 to 2007. As the nighttime Landsat ETM+ 
datasets are absent from 2003 to 2006, the annual average increasement of coal fires during the period of 
2002–2007 can only be approximately estimated with the results of 2002 and the results of 2007. With 
the results of multi-temporal nighttime ETM+ data, we can infer that the average increase from 2002 to 
2007 (approximately 0.1012 km2 per year) is smaller than the average increase from 2001 to 2002 
(approximately 0.394 km2 per year). The reason for this may be that a program to control and extinguish 
the coal fires was implemented; it is reported that, over recent years, the Rujigou coal field had more 
than 20 coal fires, but with the efforts by the local administration to control them, 15 coal fires have been 
extinguished, according to previous articles and research [52]. Figure 5d shows the dynamics of coal 
fires during the period 2001–2007; this Figure also shows that many new coal fires developed every 
year. The main factors governing the risk of occurrence of these new coal fires might be the presence or 
absence of mining activities, the propensity of the coal to combust and access to oxygen, which, in turn, 
depends on the geochemical properties of the coal particle size, porosity, moisture content, and the 
concentrations of impurities. 

Table 3. Subsurface coal fires related thermal anomalies extracted from ETM+ thermal band 6 data. 

Data Type Image Date Min (k) Max (k) Mean (k) Stdev (k) Threshold (k) Area (km2)
Nighttime Landsat 7 9 September 2001 275.63 302.39 283.55 2.03 287.6 1.248 
Nighttime Landsat 7 28 September 2002 274.32 296.05 282.03 1.86 285.8 1.607 
Nighttime Landsat 7 8 July 2007 283.77 323.19 289.27 1.39 292.1 2.113 

5.2. Results 2: Surface Coal Fire Dynamics Based on ETM+ SWIR Band 7 Data 

Using a fixed thresholding technique, surface coal fires were identified based on the results of the 
radiant temperature from the long time series of nighttime ETM+ SWIR band 7 data. To improve the 
detection of surface coal fires, the background noise was removed with a mask. Given that the threshold 
of 423.15 K for surface coal fires, which corresponds to a DN pixel value of at least 12 in the original 
ETM+ SWIR band 7 data, and when the DN pixel value is less than or equal to 8 (for which the radiant 
temperature is 390.38 K; when DN is less than or equal to 6, the radiant temperatures retrieved from the 
SWIR data were null), the information in the SWIR images is very weak. In this study, information in 
DN pixels with values less than or equal to 8 was regarded as noise and masked out (the black parts 
shown in Figure 6a–d). Figure 6a–c shows the surface coal fires of 2001, 2002 and 2007, respectively. 
The results of these three years were overlaid together for a comparative analysis using ArcGIS  
(Figure 6d). A quantitative analysis was conducted to show the dynamics of coal fire development; the 
results are listed in Table 4. These three figures show that the surface coal fires exhibit obvious 
“scattering effects”, which are different from the “zoning effects” of the subsurface coal fires. The areas 
within the five black circles in Figure 6d show the obvious “scattering effects” of the surface coal fires. 
The spatial coverage of the surface coal fires was found to be 0.0702 km2 in 2001, 0.0783 km2 in 2002, 
and 0.2043 km2 in 2007, as listed in Table 4. From Figure 6a–c and Table 4, we inferred that the surface 
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coal fires in 2001 and 2002 had almost the same area (0.0702 km2 and 0.0783 km2, respectively), which 
were both less than the area of coal fires in 2007 (0.2043 km2). 

Table 4. Surface coal fires extracted from ETM+ short wave infrared (SWIR) band 7 data. 

Data Type Image Date Threshold (k) Area (km2) 
Nighttime Landsat 7 9 September 2001 423.15 0.0702 
Nighttime Landsat 7 28 September 2002 423.15 0.0783 
Nighttime Landsat 7 8 July 2007 423.15 0.2043 

5.3. Validation of the Coal Fires Based on the Nighttime Series of Multi-Temporal ETM+ Data 

A coal fire map obtained by field surveys over 2002–2003 was used to validate the coal fires 
extracted from the multi-temporal nighttime satellite data. With the help of ENVI and ArcGIS software, 
the subsurface coal fires identified from the thermal band 6 data, the surface coal fires identified from the 
SWIR band 7 data and the field survey map were overlaid together for comparative analysis (Figure 7). 
This figure shows that the surface and subsurface coal fires roughly coincide with the area of coal fires 
shown by the field map. The figure also shows that the results from the satellite data are very consistent 
with the results of the field-based coal fire map. There are some scattered coal fires not identified by the 
field-based map, which may be because of the time delay effects: the coal fires were extracted from 2002 
satellite data, while the coal fire map was finished in 2003. Another reason for this may be that these coal 
fires were simply not found during the field investigation. In general, nighttime ETM+ thermal band 6 
and SWIR band 7 data were proven to be a useful tool for the identification of high-temperature regions, 
which may help to pinpoint surface coal fire locations and potential subsurface coal fire locations, 
especially with the ETM+ SWIR band 7 data, which have a high sensitivity within the temperature range 
of 160–277 °C, which matches well with the surface coal fire temperature range of 150–250 °C. This 
may facilitate the identification and discrimination of surface coal fire locations from the background 
noise based on the simple thresholding technique. 

Table 5. Validation of results of coal fires from 2002 daytime satellite data and 2002 
nighttime satellite data using coal fires map by field survey. 

Data Type Acquisition Time Spatial Resolution (m) Omission Error (%) Comission Error (%)

Nighttime ETM+ FSM 
28 September 2002  

2002–2003 
60 60 15.2 4.5 

Daytime ETM+ FSM 
21 September 2002  

2002–2003 
60 60 47.5 48.3 

FSM: Field Survey Map. 

We compared the relationship between the coal fires identified from nighttime satellite data and the 
coal fires identified from daytime satellite data to further determine which type of satellite data is more 
useful for the identification of coal fires and their spreading directions. The locations of coal fires based 
on daytime ETM+ thermal band 6 data from 21 September 2002, were identified using the same method 
as applied to the nighttime ETM+ thermal band 6 data; these results were also validated using the 
field-based coal fire map obtained from the field survey (Figure 7b). Figure 7b shows a less accurate 
identification of coal fires, due to both the omission error and the commission error, than that which was 
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found using nighttime satellite data (Figure 7a). This comparative analysis showed that coal fires from 
daytime images had poor accuracy, as many pixels were misclassified as coal fires (e.g., the pixels 
within areas A–G), and many coal fires from daytime satellite data were not detected (e.g., some of the 
coal fires identified with the field survey map within the areas I–VIII were not detected). Details of the 
comparative analysis are listed in Table 5. From this information, we conclude that the coal fires 
identified from nighttime ETM+ data were more accurate than those obtained from daytime ETM+ data. 
Thus, nighttime data should be more useful, helpful and available than daytime images to detect and 
monitor the coal fires and will improve the accuracy of predicting coal fire spreading directions. 

5.4. Comparative Analysis of the Results 1 and the Results 2 

Surface coal fires identified from ETM+ SWIR band 7 data and subsurface coal fires identified from 
thermal band 6 data were stacked together using ArcGIS software to perform an overlay analysis to 
detect the relationship between them. Figure 8a–c show the relationship between the surface and 
subsurface coal fires of 2001, 2002, and 2007, respectively. From these figures, we find that the surface 
coal fires (red color) obtained from the Landsat ETM+ SWIR band 7 data were almost entirely within 
the area of the coal fires (yellow color) obtained from the ETM+ thermal band 6 data aided by fixed 
threshold temperature modeling for a typical surface fire of mixed pixels, which shows the relevance of 
the model. However, there are some coal fires identified from the SWIR band 7 data scattered out of the 
area of the subsurface coal fires. The reason for this may be that the SWIR band 7 data has a higher 
spatial resolution (30 m) than the thermal band 6 data (60 m), which demonstrates that the nighttime 
ETM+ SWIR band 7 data can be used to detect hot anomalies (e.g., surface coal fires) that exceed the 
range of the ETM+ thermal band 6 data. Therefore, we conclude that the synergy between the surface 
coal fire area delineation algorithm based on the ETM+ SWIR band 7 data and the thermal anomalies 
related by the subsurface coal fire delineation algorithm, based on the ETM+ thermal band 6 data, were 
also apparent. Therefore, surface coal fires extracted from ETM+ SWIR band 7 data and subsurface coal 
fires based on the ETM+ thermal band 6 data should be complementary to each other. The overall 
dynamic of coal fire areas is shown in Figure 8d, which shows that the total area of the net lateral 
propagation of coal fires from 2001 to 2007 is approximately 1 km2. 

5.5. Delineating the Spreading Direction of Coal Fires Based on the Results 1 and Results 2 

The spreading direction of coal fires is an important and critical input for controlling and monitoring 
them. Understanding the nature of coal fire propagation is also important for the administration of 
decision-making departments and for policy-makers to take necessary preventative measures for 
controlling and extinguishing the coal fires. In this study, to identify the coal fire spreading direction, 
attempts were made to delineate the general areas of coal fires at the coalfield scale based on the results 
of surface and subsurface coal fires from 2001 to 2007. Then, the coal fire spreading direction was 
delineated using the baselines of the identified coal belts. It is observed that during the period from 2001 
to 2007, the spreading direction of coal fires was generally toward the north or northeast (e.g., coal fires 
within the areas A, C, D, E, and M, in Figure 9), while at some places the coal fires spread toward the 
east (e.g., coal fires within the areas F, G, H, J, and L, in Figure 9), and at some places the coal fires even 
spread inward from both the sides of the area of coal fires (e.g., coal fires within area B). The reason for 
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this may be a close relationship between the distribution of coal beds and the direction of the coal seams. 
Some coal fires spread outward from a central point (e.g., coal fires within area K spread outward from a 
central point, from 2001 to 2007, which can be observed from the dynamics of subsurface coal fires in 
Figure 5a–c). There are also a few new coal fires scattered around the coal fire zones. The cause of this 
may be dense mining activity. There are also some coal fires scattered slightly farther away from the 
main coal fire zones. The cause of this may be the absence of nighttime images from 2003–2006, which 
could lead to corresponding coal fires not being identified; thus, the spreading direction of these 
remotely scattered coal fires could not be determined. 

6. Conclusions 

In this study, multi-temporal nighttime Landsat ETM+ thermal band 6 data and SWIR data from 2001 
to 2007 with corresponding calibration parameters were used to calculate the spectral radiance. The 
spectral radiance was converted to the radiant temperature of the images using Planck’s law. To retrieve 
the surface temperature, the emissivities were estimated from their respective NDVI values. As 
estimating the emissivity was not feasible in areas with NDVI values less than or equal to zero, we 
calculated the emissivities based on the method developed by Van de Griend and Owe (1993) [45] with 
the help of a supervised classification method that considered NDVI values to be less than or equal to 
zero. Subsequently, using the emissivity and the corresponding radiant temperatures, the surface kinetic 
temperatures were retrieved using the ETM+ thermal band 6 data. Based on the thresholding technique, 
the areas of subsurface and surface coal fires were delineated from ETM+ thermal band 6 and SWIR 
band 7 data, respectively, and the locations of coal fires were pinpointed.  

From the multi-temporal coal fire map, the dynamics of coal fires during the period of 2001–2007 
were calculated. The total area of coal fires increased from 1.3182 km2 in 2001 to 2.3173 km2 in 2007,  
a net increase of approximately 1 km2. The subsurface coal fires increased from 1.248 km2 in 2001 to 
2.113 km2 in 2007, and the surface coal fires increased from 72,000 m2 in 2001 to 204,300 m2 in 2007. 
During the validation of the results, we compared the coal fires identified from nighttime satellite data 
with the coal fires identified from daytime satellite data and found that the nighttime ETM+ data gave 
better accuracy than the daytime ETM+ data. Thus, nighttime ETM+ thermal data are more useful for 
coal fire identification and monitoring than daytime ETM+ thermal data. The nighttime ETM+ thermal 
data were also more accurate for predicting the coal fire spreading direction. 

A second comparative analysis of the relationship between the surface coal fires and the subsurface 
coal fires was conducted. It showed that most of the surface coal fires from ETM+ SWIR band 7 data 
were included in the subsurface coal fires obtained from ETM+ thermal band 6 data, as well as some 
surface coal fires scattered on the outskirts of the areas containing subsurface coal fires. The surface coal 
fires showed obvious “scattering effects” while the subsurface coal fires showed obvious “zoning effects”. 
This situation is believed to show real information about the propagation of coal fires, as we know that 
most of the coal fires began to expand outwardly from just a few surface coal fires. This analysis also 
showed the synergic effects of the results from the ETM+ SWIR band 7 and thermal band 6 data. 

The spreading direction of the coal fires was predicted from their dynamics from 2001 to 2007. We 
found that, in general, most of the coal fires spread toward the north or northeast, while fires at some 
places spread toward the east. Temperature retrieval remains a useful tool for investigating surface and 
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subsurface coal fires because of both its financial and practical attributes. This is especially true of the 
ETM+ thermal band 6 data and the SWIR band 7 data because the thermal band 6 data are up to date and 
have the highest spatial resolution (60 m) within the thermal region, as high as a commercial satellite, 
and the nighttime SWIR data have a broad sensitivity from 160 to 277 °C, which matches very well with 
the temperature ranges (150–250 °C) of surface coal fires.  

However, there are some problems that need to be resolved with further research. An extensive field 
survey of the spatial distribution of coal fires should be performed, and the related field survey data 
should be collected in as much detail as possible. To obtain a more accurate spreading direction of coal 
fires, more nighttime long time series of satellite thermal data should be collected, and meteorological 
parameters such as wind direction at the acquisition time of the satellite data and related information 
such as the coal geology of the local environment and the terrain of the coal field should be considered. 
These parameters will help improve the understanding of the coal fire phenomenon and aid in the 
detection, depth estimation, monitoring, and management of coal fires. 
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