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Abstract: Characterizing biophysical changes in land change areas over large regions with 

short and noisy multivariate time series and multiple temporal parameters remains a 

challenging task. Most studies focus on detection rather than the characterization, i.e., the 

manner by which surface state variables are altered by the process of changes. In this study, 

a procedure is presented to extract and characterize simultaneous temporal changes in 

MODIS multivariate times series from three surface state variables the Normalized 

Difference Vegetation Index (NDVI), land surface temperature (LST) and albedo (ALB). 

The analysis involves conducting a seasonal trend analysis (STA) to extract three seasonal 

shape parameters (Amplitude 0, Amplitude 1 and Amplitude 2) and using principal 

component analysis (PCA) to contrast trends in change and no-change areas. We illustrate 

the method by characterizing trends in burned and unburned pixels in Alaska over the  

2001–2009 time period. Findings show consistent and meaningful extraction of temporal 

patterns related to fire disturbances. The first principal component (PC1) is characterized by 

a decrease in mean NDVI (Amplitude 0) with a concurrent increase in albedo (the mean and 

the annual amplitude) and an increase in LST annual variability (Amplitude 1). These results 

provide systematic empirical evidence of surface changes associated with one type of land 

change, fire disturbances, and suggest that STA with PCA may be used to characterize many 
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other types of land transitions over large landscape areas using multivariate Earth observation 

time series.  

Keywords: temporal patterns; windowed Fourier transform; Mann–Kendall; burned areas; 

fire; albedo; NDVI; land cover change; Alaska 

 

1. Introduction 

Characterizing change over large areas remains an important challenge in remote sensing and land 

change science [1–4]. In particular, remotely-sensed time series are often short and noisy, necessitating 

heavy pre-processing and sophisticated methodology to extract useful temporal patterns [5–10]. This 

research seeks to advance land cover change monitoring by presenting a method that combines seasonal 

trend analysis (STA [11]) and principal components analysis (PCA) to characterize temporal patterns in 

land change areas from multivariate image time series. We illustrate the procedure by characterizing 

biophysical trends in Alaska using burned areas as an example of change with three surface state variables: 

Normalized Difference Vegetation Index (NDVI), land surface temperature (LST) and albedo (ALB).  

Despite multiple research efforts under way, there is a need to improve existing methods to 

characterize land cover change over large areas [4,12–15] by exploiting temporal patterns from time 

series. Most studies have focused on the detection of land cover change [16–18] or the filling of missing 

observation [7,8], rather than the characterization of change, i.e., the manner by which surface 

characteristics (e.g., attributes) are altered by the process of change [19]. Much information is lost in 

describing change into change/no-change Boolean categories. Land cover types are characterized by a 

set of biophysical properties related to their structure and constitutive materials [19–21]. These 

properties regulate land surface atmosphere exchanges and affect the local climate, as well as fluxes in 

water, carbon and energy [20,22]. Consequently, when land transitions (i.e., modifications or changes in 

attributes) occur, land-atmosphere fluxes are impacted, and biogeophysical feedback mechanisms may 

enhance or suppress exchanges at local, regional or global scales [20]. In particular, a browning or 

greening in forest cover, as described by decrease/increase in NDVI, can impact skin temperature and 

surface albedo. Experiments using regional and global circulation models illustrate that afforestation in 

high latitudes would result in increased radiative forcing acting as a positive feedback due to a decrease 

in albedo [23,24]. More generally, land surfaces are characterized by roughness, sensible heat, latent 

heat and albedo values that depend on the structure and the nature of land cover types [20]. Thus, land 

transitions affect multiple surface properties simultaneously, which are part of the biophysical 

consequences of the land cover change process [25,26]. Documenting and tracking such characteristic 

changes may help to infer the land change processes at work and benefits a host of studies [27–29] 

engaged in understanding environmental changes in the Arctic. Furthermore, many studies characterize land 

cover change by using a single unique times series or by producing some typology or classification rather 

than providing a concise biophysical representation of change [30]. For instance, Kennedy et al. [31] used 

temporal patterns to map forest disturbance in the Oregon Northwest Forest using a dense temporal stack 

of SWIR (short wave infrared) Landsat images to characterize and label change processes into various 

categories: disturbance, revegetation, disturbance and revegetation. Kulik, Hornsby and Bishop [2] 
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proposed a more complex and generalized typology to monitor and characterize land cover change in 

forested areas by defining twenty-five transition types. With the growth in the number of variables and 

parameters used in characterizing land cover change, there is a rapid increase in the complexity of possible 

relationships and combinations of transitions categories. For instance, Parmentier and Eastman [5], found 

that a large section of Alaska is detected as changing and summarized change in the seasonal trend by 

using a simple aggregation rule, such as overlay. Using such method, the authors found that many areas 

have three changing STA parameters, but were unable to understand and identify the most common 

combinations of variables present within the detected change areas. As a consequence, in this study, we 

focus on a priori area of change (burned area) and develop a methodology to characterize the 

combination of the most important surface changes occurring in change areas.  

In this research, we adopt a continuous view of land cover change and use the term land transition to 

convey continuous modifications in surface conditions/characteristic as related to the process of change, 

rather than a discrete transition from one land cover class to another (Lambin [21]). Following the 

literature, this research leverages the temporal content in multivariate image times series by exploiting 

modifications in seasonal patterns to describe and document land cover changes. Seasonality is useful 

to track changes in the Earth system [32,33], because different land covers and surfaces present 

contrasting annual temporal patterns, depending on their characteristics [34,35]. An NDVI time series, 

for instance, exhibits seasonal curves that show the growth, maturity and senescence of vegetation in 

annual windows, matching roughly a bell shape in regions with a strong seasonal signal from temperature 

and precipitation. Typically, the detection of seasonal changes is carried out by fitting parameters of 

phenological models and by studying the shape parameters over several years using temporal trends 

analysis [11]. de Beurs and Henebry [6] utilized a quadratic model to describe the annual seasonal curve 

and the seasonal Mann–Kendall (MK) procedure to study trends in transects located in the high northern 

latitudes. This research utilizes seasonal trend analysis [11], which is a two-step method that uses the 

windowed Fourier transform (WFT) or harmonic regression [34,35] with the Theil Sen slope  

estimator [36,37]. The term WFT will be used to designate both harmonic regressions and Fourier 

analysis in a time window. Trends in the seasonal NDVI curves are described using the Theil Sen slope 

estimator, and land cover changes are characterized by examining the temporal patterns [38].  

Eastman et al. [39] used STA and the MK to map seasonal trends over the globe using the Global 

Inventory Modeling and Mapping Studies (GIMMs) NDVI dataset. They used classification to 

summarize the information from STA. In this study, we consider the different problem of examining and 

characterizing multivariate seasonal changes related to transitions from unburned to burned categories 

using the STA method in conjunction with principal component analysis (PCA). This procedure provides 

a means to characterize and empirically synthetize trends in change “burned” areas in Alaska using 

multivariate time series of biophysical variables.  

We used the case of Alaska and fire disturbance, because multiple studies have shown the importance 

of fire on the global carbon cycle and the surface energy balance [40,41]. Fire affects the species 

composition, stand age [42] and landscape configuration [43], as well as surface biophysical  

processes [20,44]. Although biophysical changes occurring in burned areas have been documented in 

the scientific literature, most studies have been carried out using either a single variable, such as  

NDVI [45], albedo [46] or soil moisture [47,48], or by focusing on one or a few individual burn  

scars [40,41]. To date, biophysical changes have not been documented and studied using these three 
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surface state variables (NDVI-LST-ALB) simultaneously at the landscape level over many burn scars. 

Given that burning in the boreal forest is forecasted to increase under future climate change scenarios 

linked to climate variability and pest infestation [49], there is a need to improve our understanding and 

tracking of burn scars’ impact on the environment, in particular the biophysical changes occurring in 

burned areas [24]. 

In this research, LST and albedo are used with NDVI to improve biophysical characterization of land 

transitions. LST and albedo are key surface state variables that are intricately related to land transitions. 

Chapin et al. [25,50] demonstrated how land surface temperature and albedo in Arctic Alaska provided 

a clear signal of surface energy exchanges related to Arctic warming and shrub expansion in the region. 

In the past, several authors used LST and NDVI variables in unison to study land cover types and land 

transitions in a variety of environment and context [25,51–53]. Lambin and Ehrlich [51] utilized NDVI 

and LST image time series from the AVHRR sensor to categorize land cover change processes over  

Sub-Saharan Africa during 1982–1991. Julien and Sobrino [53] used metrics derived from the  

LST-NDVI regression line (slope, range, regression coefficient) to monitor land cover changes and 

vegetation dynamics around the world over the 2000–2006 time period. Findings indicated that biomes, 

such as temperate forest, tundra and boreal forest, are clearly separable, because they have different 

LST-NDVI relationships [53]. Similarly, Kaufman et al. [54] investigated the linear relationship 

between surface temperature and NDVI for different land cover categories in North America and 

Eurasia. The authors found that higher NDVI was related to lower surface temperature during summer, 

but with higher temperature in winter. They attributed these differences to albedo feedback effects and 

evapotranspiration [25,44,55]. Nemani and Running [52] proposed a biophysical interpretation of the 

LST-NDVI relationship based on land surface processes in the North American continent. They 

identified a disturbance trajectory in the LST-NDVI feature space and distinguished four groups of land 

cover corresponding to different biophysical environments: water limited, energy limited, 

atmospherically decoupled and atmospheric coupled. Relying on Nemani and Runing’s [52] biophysical 

interpretation, Mildrexler et al. [13] defined a detection index, the “disturbance index” (DI), based on 

the ratio of annual maximum values of LST and EVI over the ratio of the multiyear mean of LST and 

EVI. Coops, Wulder and Iwanicka [15] applied the DI to detect disturbances over the North American 

continent. The research was able to detect a variety of land transitions related to various causes, such as 

fire (burn scars) and humans (agricultural intensification).  

Thus, the goal of this paper is two-fold: 

(1) Most of the focus of previous studies has been on land cover change detection. Characterization 

of changes using multivariate surface state variables poses an acute problem. In particular, the 

complexity of relationships and the numbers of combinations of parameters increase rapidly as more 

variables and land cover types are added, making it challenging to extract the most important temporal 

patterns describing particular land change processes. The focus of this study is therefore on the 

development of a general method for temporal characterization of changes using burned areas as an 

example rather than the mapping or detection of burned areas. We use extensive ancillary information 

related to fire and its severity to evaluate if trends are meaningful in the context of fire disturbances 

and the literature. More specifically, there are two research questions investigated: (1) What 

combination of trends in surface variables characterize change areas that transitioned from the 
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unburned to burned category? (2) How do combined patterns in NDVI, LST and ALB relate to 

ancillary information, such as land cover and the continuous variable of change-fire severity?  

(2) While the past research suggests that changes in NDVI-LST-ALB are intricately related by 

surface processes [20,52], to date, there are few studies that provide evidence of simultaneous changes 

in biophysical measurements at a landscape level, even though the literature has reported on biophysical 

changes locally at the individual fire area level [41] or regionally with a single variable [40,56]. This 

research overcomes this challenge by extracting the most common combination of biophysical 

changes occurring in burned areas with STA and PCA using times series over the 2001–2009 period 

in Alaska. The principal components extracted provide an empirical summary of characteristic 

changes in terms of seasonal trends for the three surface states variables. More broadly, our aim is to 

document and characterize biophysical changes occurring over the landscape level for the benefit of 

studies [27,28] engaged in understanding environmental changes in the Arctic system. 

2. Materials and Methods 

2.1. Study Area 

Alaska (Figure 1) has a land mass of about 1.5 million km2 and lies mostly in the Arctic region. The 

area is undergoing rapid environmental changes with regional warming trends of 1.3 °C/year, surpassing 

the global trend [25,57,58]. Recorded changes include: (1) changes in plant phenology, such as lengthening 

of the growing season and changes in plant productivity [27,59]; (2) permafrost thawing [60,61];  

(3) wetland losses [62]; (4) increases in disturbance regimes, such as fire and insects [63–66]; and  

(5) shrub expansion in tundra [67]. Alaska has a complex landscape with 17 ecoregions (Figure 1), a 

varied topography composed of many mountains (e.g., the Brooks Range), coastal plains (e.g., the North 

Slope) and large river basins (e.g., the Yukon and Tanana).  

Wildfire and insect outbreaks constitute the main drivers of land change in the State of Alaska [63,68]. 

The fire season typically starts in May and ends in September, with most fires occurring in the middle 

and end of the season when the ground cover is free from snow and the soil is drier. The fire regime is 

characterized by an annual average of 767,000 ha (the 2000’s decadal average) and a return interval of 

105 years for the 1920–2009 period [65]. Analysis of the 2000’s fire regime data showed that 95.5% 

(43/45) of fires greater than 50,000 ha were wildfires caused by lightning. Nevertheless, human ignited 

fires are expected to rise as population increases [65]. Changes in the fire regime associated with climate 

change may affect the carbon balance [49,66,69], as well as surface processes, in particular albedo and 

surface temperatures [20,40]. Increases in fire frequency and severity are likely to lead to an increase in 

the proportion of boreal deciduous tree cover [56,70], which, in turn, will result in an increase in albedo, 

causing a negative feedback for warming [41].  

Studies demonstrate that Alaska impacts the global carbon budget and acts currently as a net carbon 

sink [49]. There are concerns, however, that the region may become a carbon source in the future as 

temperatures increase and climate change occurs [66,71]. Projections using dynamic climate models 

indicate that under future climate change scenarios, burned areas will increase from 360,000 ha per year 

to 411,000–481,000 ha for the 2025–2099 time period [71]. Fire emissions are expected to increase by 
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24%–33% compared to historical conditions, reaching an average release of 17–19 Tg∙Cy−1 from  

2025–2099 [71].  

Figure 1. Study area with 17 ecoregions (World Wildlife Fund biome classification,  

Olson et al. [72]) and fire polygons. 

 

2.2. Data Source 

This research utilizes three time series from the MODIS sensor (Table 1): NDVI (MODIS13A2, [73]), 

LST (MOD11A2, [74]) and albedo (MCD43B3, [75]). All products have a 1-km resolution and span the 

2001–2009 time period. MODIS version 5 products were downloaded from the Land Processes 

Distributed Active Archive Center [76], and tiles were mosaicked and reprojected to the Albers equal 

area projection using the North American Datum 83 (NAD83) datum.  
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Table 1. Datasets include three biophysical variable products, two ancillary datasets related 

to fire and one albedo quality product. MTBS, Monitoring Trends in Burn Severity; NLCD, 

National Land Cover Database; dNBR, difference normalized burn ratio; LST, land surface 

temperature; ALB, albedo. 

Product  Platform  Variables  
Code 

Name 

Spatial 

Resolution  

Temporal  

Resolution  

MOD11A2 Terra Land Surface Temperature  LST 1000 m 8 Day 

MOD13A2 Terra Vegetation Index NDVI 1000 m 16 Day 

MCD43B3  Combined Albedo  ALB 1000 m 16 Day 

MCD43B2 Combined Albedo quality ALBQ 1000 m 16 Day 

MTBS Landsat 
Fire Severity Index 

(dNBR) 
dNBR 30 m Annual 

MTBS  NA  
Burned areas-Fire 

perimeters  
BURNED NA  annual  

MTBS NA Ignition date, Fire size Severity NA Annual 

NLCD Landsat Land cover LC 30 m NA 

The quality information was used to remove pixels with cloud contamination and of low quality, as 

defined by the flag layers in the LST, NDVI and ALB (MC43B2) products. Gap-filling procedures were 

applied to reduce the amount of missing data by using linear temporal interpolation and  

climatology-based filling procedures. Linear temporal interpolation fills pixel values based on values 

surrounding gaps, while climatology procedure fills missing data by computing median values for the 

relevant time period (see Eastman [38] for details). Since LST and ALB are distributed as 8-day 

products, both datasets were aggregated to a 16-day time period to match the NDVI product.  

Three ancillary/validation datasets were used in this research: fire perimeters, fire severity and land 

cover data (Table 1). The fire perimeters and severity information originate from the Monitoring Trends 

in Burn Severity (MTBS) database [77]. MTBS contains information on ignition dates, ignition sources, 

as well as management information from the 1984 to 2011 time period. In this study, fire severity is used 

as a continuous validation variable of change to interpret and evaluate temporal trends. Fire severity is 

measured via the difference normalized burn ratio (dNBR) index, which is generated by the difference 

between the normalized burn ratio (NBR). NBR is derived from the NIR and red Landsat bands. The 

dNBR product was aggregated from the 30-m Landsat resolution to the 1-km MODIS spatial resolution 

using mean averaging. Since the dNBR index is known to be a problematic measure of severity, because 

it shows low correlation in small fire areas and is influenced by environmental conditions [78], the 

MTBS fire perimeter database was also used to produce a Boolean severity index using and combination 

of the date of ignition and size of fire, following Beck et al. [56], approach. In addition, the size of fire 

was also used to interpret results in terms of severity. 

The third ancillary dataset consists of the National Land Cover Database (NLCD) developed using 

Landsat imagery [79]. This dataset has 30-m resolution and pertains to the year 2001, therefore allowing the 

categorization of land cover at the beginning of the time series. Land cover types were recorded in 6 fuel 

types following Kasischke and Hoy [80]: Non-woody vegetation (NWV), low shrub (LSH), high shrub 

(HSH), deciduous forest (DEC), mixed forest (MX) and evergreen forest (EGF). The proportion of evergreen 

in every burned area and the land cover types were both used to interpret the results from PCA. 
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2.3. Methods  

This research utilizes two techniques in conjunction, the seasonal trends analysis (STA) and the 

principal component analysis (PCA), with the aim of characterizing surface temporal trends related to 

land change areas caused by fire disturbances. The method proceeds in three stages: (1) STA is applied 

to extract amplitudes (Table 2) and produce Theil Sen slope images; (2) a change/no-change area mask 

is produced from the MTBS database; and (3) PCA is carried out on slope images in the masked areas 

to characterize change (Figure 2a).  

Stage 1: Seasonal Trend Analysis 

Stage 1 applies STA to each data series [11]. This is a two-step process that consists of applying a 

Windowed Fourier Transform (WFT) to extract seasonal shape parameters and of using the Theil Sen 

slope estimator to generate seasonal trends. Eastman et al. [11] found that the information contained in 

Frequency 1 (annual seasonality) and Frequency 2 (semi-annual pattern) is sufficient to describe a wide 

range of seasonal changes related to many types of land cover change. Thus, only these two frequencies 

are utilized in the study. Exploratory tests showed that Fourier phases were affected by noise, so that the 

final set of parameters was reduced to three amplitudes: Amplitude 0, Amplitude 1 and Amplitude 2. In 

total, there are nine times series of amplitudes for the three original time series, adding up to 81 images. 

The second step consists of calculating temporal trends using the Theil Sen (TS) slope procedure [81], 

which is a non-parametric estimator based on the median values of pairwise combinations [36,37]. In 

contrast to ordinary least squares (OLS) estimates, which are strongly affected by outliers, Theil Sen 

estimates are robust against outliers and have a breakdown bound of 29% [82]. In the current context, 

this means that estimates for pixel locations containing two outliers or less are not affected. For every 

shape parameter, a slope was estimated using the Theil Sen (TS) operator producing nine TS slope 

images, which served as input in the PCA and the segment-based detection of trends and change  

(SDTC) method [5]. 

Stage 2: Change-no change mask: Burned-Unburned areas 

Stage 2 consists of defining the change and no-change locations using the MTBS Database (MTBS 2011). 

Burned areas corresponding to the 2001–2009 period are selected from the database, and for each burn 

scar, an equal number of unburned pixels are selected in the direct vicinity. Unburned pixels for each 

fire scar were selected using the following procedure: 

1. Delineate an area of selection for potential unburned candidate pixels for each scar. 

2. Allocate unburned candidate pixels to the closest fire scar and limit pixels to a threshold 

distance (20 km in this study). 

3. Randomly select pixels within the zone of selection. 

The procedure was programmed as a Python script using the IDRISI API. A subset (mask) was 

created with 146,426 pixels, from which 49.8% were unburned (72,861) and 51.2% were burned 

(73,565). Since the research focuses on the characterization of surface change, the approach used the 

whole fire dataset and did not set aside data for validation. Unburned pixels act as the reference  

no-change category to which trends in the change category (burned pixels) are compared.  
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Stage 3: Principal Component Analysis to characterize surface trends 

Stage 3 consists of applying a standardized PCA on the nine TS slope images in the mask comprising 

burned and unburned areas. PCA produces new composite variables, principal components, which are 

based on the combination of the input STA parameters and concentrate the information into independent 

portions of variability [83]. PCA allows extracting empirically simultaneous combinations of  

NDVI-LST-ALB trends in the burned area. Thus, PCA allows the characterization of biophysical trends 

by concentrating the information in a few dominant modes of variability that can easily be used to 

summarize multivariate trend patterns in change areas.  

Figure 2. General analysis workflow. (a) PCA-STA method: (1) STA is applied using a 

Windowed Fourier Transform and the Theil Sen estimator to produce slope images; (2) a 

mask for burned-unburned area is produced; (3) a PCA is performed on the TS slope images.  

(b) Evaluation: the shape parameters are combined and analyzed together using ancillary 

data (e.g., severity as dNBR) and the SDTC method. 

 

Table 2. Amplitudes obtained from the Windowed Fourier Transform: there are nine shape 

parameters related to the seasonal curves for the land surface temperature (LST), the 

Normalized Difference Vegetation Index (NDVI) and the albedo (ALB). 

Shape 

Parameter 
Windowed Fourier Parameter and Interpretation 

NDVI_A0  Normalized Difference Vegetation Index Amplitude 0: Annual average relating to biomass 

NDVI_A1 
Normalized Difference Vegetation Index Amplitude 1: Annual amplitude of plant phenology, photosynthetic 

activity 

NDVI_A2 
Normalized Difference Vegetation Index Amplitude 2, semi-annual amplitude: Modifies the shape of the seasonal 

curve 

LST_A0 Land surface temperature: Amplitude 0, annual average 

LST_A1 Land surface temperature, Amplitude 1, annual amplitude: Related to annual insolation input and land cover 

LST_A2 Land surface temperature, Amplitude 2, semi-annual amplitude: Modifies the shape of the seasonal curve 

ALB_A0 Albedo Amplitude 0: Annual average corresponding to the fraction of visible and NIR reflected by the surface 

ALB_A1 Albedo Amplitude 1: Annual variability corresponding to seasonal variation of surface albedo 

ALB_A2 Albedo Amplitude 2, semi-annual amplitude: Modifies the shape of the seasonal curve 
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2.4. Evaluation Analysis 

In the second part of the analysis (Figure 2b), we evaluate the STA-PCA results using ancillary 

information and the segment-based detection of trends and change (SDTC) method [5]. 

2.4.1. Evaluation-Analysis of Trends Using PCA and Validation Using Ancillary Information 

We interpret the PCA components in terms of the combination of seasonal trends and use the ancillary 

information to evaluate the extraction procedure. The MTBS fire perimeters are utilized to produce a 

Boolean variable “BURNED” with value “one” corresponding to burned pixels and value “zero” 

corresponding to unburned pixels. In addition, the dNBR and a Boolean severity index, as well as fire 

size are also used to evaluate the relationship between PC scores and the continuous validation variable 

of change: fire severity. Land cover types derived from the NLCD dataset and the proportion of 

evergreen forest were also used to inform and interpret PC1 scores following the literature [43]. The 

main goal is to evaluate the change component that shows a combination of the original variables and 

characterize transitions in change areas. The burned Boolean variable and the burned severity index are 

utilized as input in a general linear model (henceforth called “LM” to avoid confusion with Generalized 

Linear Model), with the first principal component (PC1) as the dependent variable. LM is a general 

regression model that accommodates both continuous and categorical variables. When independent 

categorical variables are used, it is equivalent to a linear regression with dummy variables and relates to 

the analysis of variance (ANOVA) [84]. The 2D plot of loadings allows for the visualization of patterns 

of the relationship between the input Fourier parameters and the principal components. Thus, the 2D 

loading plot helps in the characterization of biophysical trends in change areas. In addition, the change 

variable derived from the SDTC method is used to confirm the PCA interpretation. The change variable 

is plotted along the principal component identified as change, and a LM is performed. 

2.4.2. Evaluation-Determination of Number of Changes Using the SDTC Method  

We examine how the biophysical changes identified relate to the number of significant changes in 

STA parameters using the SDTC method [5]. SDTC determines areas of change using segmentation on 

the nine TS slope images and the Mann–Kendall test. Segments are landscape units corresponding to 

polygons formed by groups of contiguous pixels with similar TS trend values. There were about 146,000 

image segments produced using the watershed-based SEGMENTATION algorithm in IDRISI [38]. The 

Mann–Kendall procedure was used to flag individual pixel location, and segments were labeled as 

changing if they included a majority (>50%) of locations with significant Theil Sen slopes. Since there 

are nine slope images, a segment may contain a maximum of nine changing parameters at once. The 

change variable was used to record the number of changing parameters for every segment and to interpret 

the components. SDTC can also be used in the determination of change-no change area if no ancillary 

information is available. 
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3. Results and Discussions 

3.1. PCA Results: Variance Explained and Loadings Pattern 

PCA results show that the first component (PC1) explains about 35% of the information (Figure 3). 

Given that a variable would be expected to contribute, on average, to 11.11% (1/9) of the total variance, 

PC1 stands out in terms of variance explained, as it concentrates an equivalent of 3.14 variables. Only 

two other components have variances greater than 11.11%: PC2 (15.45%) and PC3 (12.20%). In order 

to interpret PC1 in terms of land change, the Boolean burned variable “BURNED” is used as the input 

in an unilabiate normal general linear model (LM1) with the first component as the dependent variable. 

LM1 is a regression model equivalent to a one-way ANOVA with the BURNED variable corresponding 

to the factor and the PC1 corresponding to the response variable. LM1 indicates a strong relation between 

BURNED and PC1 with a Pearson correlation coefficient of 0.586 and a positive slope of 1.171 (with  

p < 0.001). LM1 also reveals that, on average, unburned pixels have negative scores (−0.589) and burned 

pixels have positive scores (0.581) (Figure 3b). Thus, LM1 provides evidence that PC1 is a continuous 

variable change that discriminates between burned and unburned pixels. The loading pattern brings 

additional information to interpret the trends for positive and negative scores (Figure 3c).  

Figure 3. The first component (PC1) is interpreted using: (a) the scree plot showing the % of 

variance corresponding to each PC; (b) the LM plot illustrating that burned pixels (Category 1) 

have positive scores and unburned pixels have negative scores (Category 0), (c) the 2D plot of 

loadings illustrating the strong positive correlation between PC1 and ALB_A0, ALB_A1 and 

LST_A1, as well as the strong negative correlation between PC1 and NDVI _A0.  
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Loadings correspond to correlations between the components and the original standardized variables 

(the nine standardized Fourier TS slopes). The plot of loadings for PC1 and PC2 provides a visualization 

of the relationships between the components and input trends (Figure 3). The loadings plot indicates that 

the first component (PC1) displays a strong positive relation with three variables ALB_A0, ALB_A1 

and LST_A1 with loading values of 0.852, 0.831 and 0.678, respectively. PC1 also displays a strong 

negative relation with NDVI_A0 with a loading value of −0.854. This pattern of loadings may be 

interpreted in the following way: PC1 shows an opposition between positive and negative trends in the 

two groups of variables. Pixels with high positive scores on PC1 show positive trends in ALB_A0, 

ALB_A1 and LST_A1 and negative trends in NDVI_A0. Thus, PC1 may be interpreted as a continuous 

discriminant variable of change for fire disturbance, and burned areas (i.e., pixels with positive scores) 

show a decrease in average NDVI (NDVI_A0), concurrent with an increase in albedo (both average, 

ALB_A0, and annual variability, ALB_A1) and in LST annual seasonality (LST_A1). This result 

indicates that PC1 is able to characterize biophysical changes in burn areas (Research Question 1) based 

on temporal trends derived from STA. 

3.2. PCA Results: Evaluation Using Ancillary/Validation Information Related to Fire 

Interpretation of the first component as “land transition” or the change variable suggests differences 

between burned areas that are strongly affected by fire (high scores) and lightly affected by fire (low 

scores). Typically, one expects severely-burned pixels to display stronger decreases in average NDVI 

with concurrent stronger increases in ALB_A0, ALB_A1 and LST_A1. To evaluate temporal patterns, 

we use validation information, including land cover information and two burn severity indices: dNBR 

and a Boolean severity index.  

3.2.1. Evaluating PC1 with the Continuous Variable of Change: dNBR Severity 

The severity index, dNBR (difference normalized burn ratio), is measured on a continuous scale with 

a valid range of −600 to 1300 [77]. We used LM1 to relate PC1 scores to the continuous variable of change, 

dNBR (Figure 4), and we mapped PC1 and dNBR (Figure 5). It was found that dNBR relates to PC1 with 

a Pearson correlation of 0.5. The scatter plot of values indicates, however, that higher dNBR pixels have 

higher variance in PC1, i.e., a sign of heteroscedascity that reduces the overall fit (Figure 4a). Burned areas 

with high positive dNBR values are associated with high PC1 score pixels, while negative values 

correspond to unburned and/or regrowth areas.  

The nature of the relationship between PC1 and dNBR becomes more evident when PC1 is ranked 

and categorized in eight classes with equal intervals from −2 to 2 for burn scars (Figure 4b). Results 

conform to our expectation, i.e., mean scores are higher when the severity level increases. Thus, results 

demonstrate that: (1) pixels with high dNBR values have high scores on PC1, while pixels with low 

dNBR values have low scores on PC1; and (2) the variance is higher in severely-burned pixels.  
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Figure 4. Relation between PC1 scores and the continuous variable of change “dNBR”:  

(a) PC1 scores increase with increasing dNBR, but with higher variance; (b) average dNBR 

increases for increasing categories of PC1 scores. 

 

Figure 5. Map of the continuous variable of change “dNBR” (a) and PC1 scores (b). 
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3.2.2. PC1 Scores and Boolean Severity Derived from Fire Size and Date of Ignition 

While dNBR is a widely-distributed burn severity index [85] that has been shown to relate to severity 

of small fire size [43,86], it does not always correlate well with severity observed on the ground (such 

as the composite burned index, CBI) for large fire areas [87,88]. In order to address this concern and 

further validate the method, this research derives a Boolean severity index using fire size and date of 

ignition following the logic described in Beck et al. [56]. Burned areas are coded as high severity 

(category value = 1) if they have a size greater than 60,000 ha and occurred late in the fire season (after 

DOY 160, 6 June). The reasoning is that: (1) more severe fires tend to occur later during the summer 

when the soil is dry and there is more fuel available [89]; and (2) large burned areas are correlated with 

higher burn severity in the literature [90].  

Figure 6. Relationship between PC1 scores and severity: (a) High severity burned areas 

(Category 1) have a high average PC1 score of about one; (b) the average PC1 score 

increases with the log of fire size (log(area)). 

 

Results from LM1 indicate that the new Boolean severity index is strongly associated with PC1 scores 

with a Pearson correlation of r = 0.630 (p < 0.001). High severity burned areas have an average PC1 

score of 0.9, while low severity burn scars have mean PC1 scores of −0.3 (Figure 6a). In addition, the 

relationship between PC1 and fire size also demonstrates that average PC1 scores increase with the log 

of the fire area (Figure 6b) with a correlation of r = 0.454 (p < 0.001). These results are consistent with 

findings from the literature, which documents a relationship between burn severity and the logarithm of 

the burned area [90]. 

3.2.3. Interpreting PC1 in Terms of Land Cover Types and Black Spruce Forest 

Land change impact due to fire disturbance also varies according to the land cover types of change 

areas. Several studies highlight that high severity fire events mostly occur in needle-leaf evergreen cover 

(mostly black spruce) in Alaska [43]. It is therefore important to assess the relationship between PC1 

scores and, land cover types in particular evergreen forest. Following [80], the NLCD map [79] was used 

to extract fuel types and to derive the proportion of evergreen forest. The NLCD map was reclassified 

into six categories: Non-woody vegetation (NWV), low shrub (LSH), high shrub (HSH), mixed forest 
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(MX), deciduous forest (DEC) and evergreen forest (EGF). Using LM1, we found that land cover types 

with higher biomass are associated with higher average PC1 scores and that forest covers displays 

average PC1 scores over 0.5 (Figure 7a). Since, in Alaska, the majority of evergreen forest consists of 

black spruce tree cover, the EGF category can be considered to represent black spruce [80]. The 

proportion of evergreen was derived from the NLCD data, because the majority of fires occurs in the 

EGF category, and studies indicate that black spruce shows a stronger correlation with severity and is 

associated with higher severity levels [91]. Results indicate that when the proportion of evergreens 

increases, the average scores in PC1 increase (Figure 7b). The relationship exhibits a Pearson correlation 

coefficient equal to 0.5 with a positive slope indicating an increase of 0.15 for every one percent increase 

in evergreen forest cover. Thus, the results imply that fire areas with higher scores typically contained 

more evergreen forest in 2001 and typically underwent stronger biophysical changes due to fire. This 

interpretation is in agreement with the literature, which reports that black spruce cover is associated with 

more severely burned areas [43]. 

Figure 7. PC1 relates to land cover types: (a) The average PC1 score in burned areas 

increases consistently from non-woody vegetation (NWV) to higher biomass vegetation, 

namely in the order: low shrub (LSH), high shrub (HSH), mixed forest (MX), deciduous 

forest (DEC) and evergreen forest (EGF). (b) The average PC1 score increases with 

increasing evergreen forest proportion. 

 

3.3. PC1 and Number of Changes in Biophysical Trends 

The change information was utilized to interpret the first component by performing a univariate 

general linear model (LM1) between PC1 scores and the number of changes, as determined by the  

SDTC [5]. The change categories correspond to the number of changing STA Fourier parameters in a 

segment. Results illustrate that the average scores increase when the number of changing parameters 

increases (Figure 8) and that the LM1 correlation between the change variable and PC1 is high with a 

value of 0.553 (p < 0.001). Evidence is consistent with expectations: pixels with higher scores have 

many significant changing shape parameters, and the higher the PC1 score, the more the changes in  

STA found. 
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Figure 8. Average PC1 score for the CHANGE variable with 95% confidence intervals: 

this indicates that the mean scores for PC1 increase when the number of significant 

changes increases.  

 

3.4. PC2 and Burn Scar Age 

The second principal component (PC2) was interpreted using the “age” of burned areas created using 

the MTBS database. The LM1 correlation between the variables age and PC2 is 0.422 (p < 0.001) (on 

burned pixel areas only). The relationship is visualized by plotting the average scores for every age class 

in burned areas (Figure 9) and mapping both variables (Figure 10). Results indicate that PC2 scores are 

positive for old burned areas, i.e., burned areas occurring at the beginning of the time series, and negative 

for young burned areas (at the end of the time series). Taking into account loading patterns (Figure 3), 

PC2 can be interpreted in the following way: high positive score pixels show increases in NDVI_A1 

with decreases in LST_A0, while low negative score pixels show the reverse trends. Thus, the results 

suggest that that old age burn scar shows an increase in annual NDVI seasonal variability (NDVI_A1) 

and a decrease in average land surface temperature (LST_A0), while recent burn scars display a decrease 

in NDVI_A1 and an increase in LST_A0.  

Figure 9. Average PC2 scores with 95% confidence interval: the average PC2 score 

increases when the age of the burned areas increases.  
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Figure 10. Map of age for burn scars (a) and PC2 scores (b). 

 

3.5. Discussions 

Using validation/ancillary datasets, we found that STA with PCA can be used to extract meaningful 

temporal patterns related to land transitions caused by fire disturbance. More specifically, results indicate 

that the first principal component (PC1) relates to fire occurrence (Boolean “BURNED” variable), fire 

severity (dNBR) and the number of changing Fourier parameters, as well as a combination of four 

Fourier trends (ALB_A0, ALB_A1, LST_A1 and NDVI_A0). At this stage, it is important to highlight 

a few important points.  
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First, it is implicit in the analysis that space can be substituted for time. Indeed, PCA results display 

differences in trends between burned and unburned pixels. Thus, it is assumed that when a pixel 

transitions from an unburned to a burned state, changes in its temporal annual trajectory will be indicated 

by its Fourier trend parameters.  

Second, PCA on the Fourier parameters tackles the first research question: What combination of 

trends in surface variables characterizes change areas that transitioned from the unburned to burned 

category? It is important to note that PCA is carried out using the correlation matrix to account for 

different variables scaling and to focus on the characteristic of change. Thus, the sign of the slopes must 

be considered with care whenever interpreting the results, because the reference is the average rather 

than the value zero for an uncentered analysis [83]. This means that pixels with high positive scores 

possess TS slopes higher than average for ALB_A0, ALB_A1 and LST_A1, but the values of the slopes 

may be positive for both the burned and unburned pixels in some cases. In fact, the analysis shows that 

only NDVI_A0 displays a change of sign (Figure 10). In order to further understand this interpretation, 

a LM1 analysis was carried out on the four individual Fourier variables that contribute the most to PC1 

(NDVI_A0, ALB_A0, ALB_A1 and LST_A1). LM1 illustrates the changes in the TS slopes occurring 

when pixels transition from an unburned (value of zero) to burned state (value of one). The plots of 

average scores indicate that unburned pixels have low positive trends in ALB_A0 and ALB_A1 and that 

the TS slopes increase strongly when pixels transition to the burned category (Figure 11). This implies 

that pixels that transitioned display an increase in average albedo (ALB_A0), as well as an increase in 

the seasonal amplitude (ALB_A1). 

Trend values for LST_A1 are somewhat peculiar, because the unburned pixels have high positive TS 

slopes. NDVI_A0 is the only parameter that displays a decrease in the TS slope when fire occurs  

(Figure 11a). The relative magnitude of transitions becomes clearer when the changes in TS slopes are 

reported in terms of percentages. Results indicate that there are large increases of nearly 500% for 

variables ALB_A0 and ALB_1, a large decrease of 800% for NDVI_A0 and a small increase of 38% 

for LST_A1.  

Third, it was highlighted that burned pixels have a positive average score of 0.589 compared to  

−0.581 for unburned pixels. Higher average scores correspond to pixels with stronger biophysical 

changes that are better examples of fire transitions. In addition, within a burn scar, there exists a 

distribution of scores reflecting variation in burn severity.  

The trends detected are in line with the expectation from the literature. We find that fire decreases the 

greenness/photosynthetic activity as measured by NDVI_A0. The increase in average albedo (ALB_A0) 

and albedo seasonality (ALB_A1) also match our expectation, since vegetation cover lowers albedo of 

surfaces by allowing the ground surfaces to have more patches of darker surfaces, particularly under snowy 

conditions [55]. We also find a general increase in temperature seasonality (LST_A1), which was also 

observed in Kaufman et al. [54]. The change in LST seasonality also makes sense since vegetation acts as a 

buffer for seasonal differences. Using ancillary data, we also find that when biophysical changes are stronger, 

they relate to higher fire severity, as measured by the dNBR index. PC1 could be used as an indicator 

describing the most important characteristic surfaces changes caused by fire disturbances in Alaska. 
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Figure 11. Patterns of change in STA trends with average and 95% confidence interval for 

all change (category 1) and no-change (category 0) areas (burned and unburned pixels) for 

the four variables that contribute the most to PC1. Note the transition is characterized by: 

(a) a decrease in NDVI_A0, (b) an increase in ALB_A0, (c) an increase in ALB1, (d) an 

increase in LST_A1.  

 

3.6. Uncertainties and Accuracy of the Analysis 

While the results are solid in terms of the broad characterization of change, more work will be needed 

to evaluate the uncertainty of the method and its limitations. First, we used all of the change data (MTBS 

fire polygons), because the research focuses on the characterization of a priori known change areas and 

their contrast with control data in the direct vicinity. Results suggest that PC1 provides separability 

between burned and unburned pixels (Figure 3) and may be useful for prediction or classification. This 

possibility may be explored by separating the fire dataset into multiple training and testing datasets to 

validate the strength of the method in predicting and characterizing burned areas. Second, due to its 

focus on characterization, the STA-PCA method does not provide a statement about the significance of 

changes or its uncertainty, even though we found that the higher score implied a higher severity of 

change (in the context of fire). These two points can be ameliorated by using the SDTC method to detect 
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areas that are changing without a priori information (i.e., burn information) and by using the number of 

changing parameters as a statement of uncertainty. Making a combined statement on the statistical 

significance of uncertainty is, however, complex, given the correlation among variables and the spatial 

autocorrelation between observations, and will require more methodological work in the future. An 

additional limitation of the method may come in dealing with the large variability in space and within 

areas of change. While using control data, we are able to show significant biophysical changes in  

p-value term between burned and unburned observations, we also find that the change class exhibits a 

large variance for some variables (in particular, ALB_A1 and LST_A1). This variance is most likely 

related to land cover, spatial heterogeneity or local differences in fire severity. We used ancillary 

information on land cover information to explore some of this variability. If PC1 is used a posteriori to 

extract clusters undergoing similar changes, this may become problematic in the context of prediction. 

This issue of variability and its effect on separability and characterization of change should be explored 

in future research. 

4. Conclusions 

Most studies have focused on the detection of land cover change rather than the characterization of 

biophysical changes in change areas. Tracking how surface attributes are altered by land cover change 

processes is important for environmental change studies, because surface changes can affect fluxes of 

energy, water and biogeochemical cycles and, in turn, impact directly or indirectly the local, as well as 

regional climate and environment. In this study, a procedure that combines STA and PCA is introduced 

to characterize land cover change associated with fire disturbances in Alaska using MODIS multivariate 

time series of three surface state variables, NDVI, albedo and LST, over the 2001–2009 time period. We 

use Alaska as a case study, as surface changes in the region have a large impact on the regional fluxes 

and the fire regime is expected to be affected by climate change. To characterize change, we use STA to 

model temporal patterns in short and noisy multivariate time series by extracting nine Fourier parameters 

related to the seasonality of biophysical attributes. As the number of variables increase, it becomes 

difficult to extract the most important patterns, because of the high number of variables and the potential 

complexity of the relationship. We therefore use PCA, with burned and unburned locations as the 

control, to synthetize and characterize biophysical changes over the state of Alaska. 

The research is promising and highlights four main findings:  

(1) The findings provide empirical evidence of multivariate biophysical changes associated with fire 

disturbances at the landscape level. The biophysical changes are consistent with the literature: there is 

an average 800% decrease in NDVI, an average 500% increase in albedo and its annual variability, as 

well as a concurrent average 38% increase in the annual variability of land surface temperature.  

(2) The first principal component contains 35% of the variance and highlights biophysical trends in 

land change areas that can be related to the fire severity variable as measured by dNBR (Pearson 

correlation of 0.5). In addition, burned areas with a higher proportion of evergreen forest in 2001 are 

associated with higher PC1 scores, i.e., stronger biophysical changes. 

(3) The first component also relates to change areas, as determined using the segment-based detection 

of trends and change (SDTC), with higher scores correlated to an increasing number of significant 

biophysical trends (a correlation of 0.55). 
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(4) The second component relates to the age of the burned areas and describes changes related to 

NDVI_A1, LST_A0. Recently, burned pixels were characterized by a strong decrease in the annual 

variability of NDVI and an increase in average temperature, while the reverse is true for older burned areas. 

The interpretation of the results from the STA-PCA methods appears to be solid, with temporal 

patterns in agreement with the literature on fire disturbance. While we were able to extract meaningful 

patterns, a remaining challenge may be to evaluate the uncertainty of the results [16] and the significance 

of the trends. One way forward is to use the number of trends detected as changing from the SDTC 

method as further strong evidence of change and provide an estimate of uncertainty. These research 

avenues will be explored in future papers. Another limitation is that the method as currently presented 

requires a priori knowledge of change areas. If no change datasets are available, STA-PCA can be 

applied using change and no-change areas determined using the SDTC procedure (Parmentier and 

Eastman [5]). By combining STA-PCA with SDTC, it may be possible to provide an automatic detection 

of areas of change along with their temporal characterization. The study shows that collapsing 

information in change/no-change categorical variables hides much of the information contained in time 

series. Given the increasing availability of multiple times series for Earth monitoring, there is a need to 

improve methods to characterize surface changes to inform land change science. This research shows 

that there is a potential for researcher to provide both characterization and detection information to 

inform land change science.  

Future plans include evaluating the procedure in other case study areas and with other types of land 

cover change. For instance, insect infestation and timber harvest may provide additional types of land 

cover changes to characterize in Alaska. The method is applicable more generally to other types of 

change, such as agricultural intensification, urbanization and deforestation in other geographical and 

climate areas. Beyond the extraction of patterns in and of itself, there is the potential for using the  

STA-PCA method to work from patterns to processes, by defining “signatures” of change from 

consistent and systematic combinations of seasonal trends related to specific land change processes. 

Thus, the results from this research provide systematic empirical evidence of surface changes associated 

with one type of change, fire disturbances, and suggest that STA with PCA may be used to characterize 

land cover change over a large landscape using temporal patterns from multivariate Earth observation 

time series. 
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