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Abstract: Using HyMap data, mineral identification and mineral mapping were conducted 

on the basis of the spectral absorption index (SAI) and other spectral absorption features in 

a study area in Tudun, eastern Tien Shan. Alteration minerals, such as calcite, alumina-rich 

(Al-rich) muscovite, epidote, and antigorite, were explored, and their relative abundance was 

depicted. A cross-validation was performed, and it showed a high degree of consistency 

between the imagery results and the results of previous literature. To further validate the 

mineral mapping from HyMap data, a field survey was carried out and rock samples were 

collected for quantitative analysis using a Por Infrared Mineral Analyzer (PIMA) and the 

software affiliated with it. Minerals were discriminated, and their relative abundance was 
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calculated from the spectra. Although we found that the absorption band-depth and SAI 

agreed well with each other and with the relative abundance of mineral alterations, the 

spectral absorption band-depth provided a better representation. Finally, ore prospecting of 

the study area was presented, and we found the distribution and close spatial relationships 

among the minerals extracted using the HyMap data. In the northern and northwestern part 

of the Gold-mine area, there was a mineralized muscovite alteration showing a sheet or block 

distribution. In the Copper-mine area, Al-poor muscovite with a sheet distribution was 

distributed in the north and northeast region, and Al-rich muscovite showed a block 

distribution enclosed by the distribution area of Al-poor muscovite. These all showed good 

ore prospects for the study area. 

Keywords: HyMap; hyperspectral remote sensing; mineral mapping; spectral absorption features 

 

1. Introduction 

Optical remote sensing (RS) data are used for mineral exploration to (a) map geology and the faults 

and fractures that are associated with ore deposits and (b) recognize hydrothermally altered rocks on the 

base of their spectral signature. The visible and near infrared wavelengths and the shortwave infrared 

region are mostly used in geological applications according to much previous literature [1–8]. Thermal 

remote sensing is valuable for discriminating the Silicate minerals according to their different temperature, 

due to the different spectral channel and their respective spectral emittance variations [9–19], and the SAR 

data has also been successfully used in discriminating the Lithology of the rock according to their 

different Backscattering coefficients under the condition of different Polarization and Surface 

roughness [20,21]. 

Mineral identification is the core and foundation of the geological application of hyperspectral remote 

sensing [22–26]. The basic principle for quantitatively extracting mineral alterations with hyperspectral 

remote sensing is to make a quantitative and comparative analysis between a hyperspectral imagery 

spectrum and mineral spectra measured using laboratory/standard mineral spectroscopy. According to 

previous literature, the methods for mineral alteration identification based on absorption features can be 

classified into two types, including (a) the complex method based on the mineralogy and knowledge of 

diagnostic absorption features for mineral identification (more details can be found in [27]) and (b) the 

spectrum matching algorithm based on calculations of the similarity between the test spectrum and a 

reference spectrum (literature on measuring similarity function based on the whole spectrum has been 

developed by many scientists [28–37]). 

Previous articles on mineral identification using the spectral matching method on the basis of local 

spectral absorption features such as absorption band-position, absorption band-depth, absorption 

symmetry and absorption band-width have been developed by many scientists [38–41]. Clark et al. [37] 

put forward the so-called Spectral Feature Fitting (SFF) method to match target and reference pixel 

spectra by examining specific absorption features in continuum-removed spectra. Júnior [38] presented 

an Analysis of Absorption Band Positioning (AAPB) method. The AAPB method is used to identify 

alteration minerals and map their corresponding abundance by calculating and generating an image 
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related to the pixel spectrum absorption band position. This method can be used as an exploratory stage 

and in the analysis refinement stage for its advantages in discriminating spectra with high similarity and 

proximity. Wang et al. (1996) [39] proposed a model named the Spectral Absorption Index (SAI) for 

extracting alteration mineral information. In fact, the SAI algorithm is a function related to the relative 

spectral band depth, minimizing the impacts of non-absorption material on the spectra through a  

non-absorbing baseline equation and a ratio method. Van Ruitenbeek, et al. (2006) [41] presented a 

method that uses the pixel-dependent information only and that is based on extracting diagnostic spectral 

information of the mineral of interest through band ratios to estimate the presence of white micas at the 

earth surface, and the results showed the predicted wavelengths of white mica in the areas of highest 

probability of containing white mica. The principal component analysis (PCA) and other 

supervised/unsupervised classification methods often also provide an ability to discriminate minerals 

using multi-spectral satellite data (e.g., Landsat Thematic Mapper (TM) data and Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) data) [42–45].  

In spite of these significant contributions mentioned above, no substantial research in China has yet 

attempted to study mineral mapping based on spectral absorption features and an SAI model using the 

HyMap data, particularly to analyze the relationship between the abundance of minerals based on 

spectral absorption features and that based on the SAI model using a PIMA spectrometer. The objectives 

of this paper are (1) to map the abundance of alteration minerals using spectral absorption features and 

SAI based on prior knowledge of mineral spectra, (2) to analyze the relationship between mineral 

abundance (from spectra of test samples collected via field survey) and spectral absorption features and 

the SAI, and (3) mapping the potential ore deposits in the study area.  

2. Geology of the Study Area 

The study area is located in the Tudun area, southeast of Hami City and 20 kilometers from the city 

center, in Xinjiang Uyghur Autonomous Region, NW China (See Figure 1a). The study area is 

geographically divided into two parts (See Figure 1). The first area is the so-called Gold mine area, 
delimited by 94°4′–94°7′E；42°12′–42°15′N, and the second area is the Copper mine area, delimited by 

94°5′–94°11′E; 42°9′40′′–42°13′N. The study area is located at the conjunction of the Tarim plate and 

the Junggar Plate, and it is a part of the Tage Kangguer Devonian and Carbo island arc belt in the 

southeast margin of the Junggar plate, and it is also a part of the Jueluotage Carboniferous island arc in 

the active leading edge of the Tarim plate. The outcrop formation is crystalline basement and cap 

formation. The metallogenic belt underwent multiple phases of deformation related to more intensive 

magmatic activity, the fractures and folds were well developed, producing various types and scales of 

polymetallic deposits with Mo, Cu, Ni, Fe as the main metallogenic elements [46]. The metamorphism 

in the study area is mainly dynamic metamorphism and hydrothermal metamorphism. The formation of 

dynamic metamorphism alterations in the area mainly accompany fault structures, and the corresponding 

distribution occurs in a zonal shape along the tectonic line. The formation of hydrothermal 

metamorphism is located in the fault structure belt and interlayer fracture. The hydrothermal alterations 

include altered stages of pyrite-sericitization, silicification, carbonation, epidotization, chloritization, 

sericitization, kaolinization, and potassic alteration accompanied by formations of pyrite, malachite, 

galena and gold [47]. The Tudun area in Hami City, in East Tien Shan mountain, in Xinjiang Uyghur 
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Autonomous Region, NW China, is a part of the central Asian grassland and desert region, thus, the 

study area has a continental climate with long, cold winters and very hot, dry summers; the average 

annual precipitation is 32 mm, there’s no rivers and other larger water bodies, almost no vegetation 

covering this area. 

Figure 1. Study area of Tudun gold-mine area and copper mine area (a). Location and 

direction of study area in northwest China (b). The study area located in Hami city, Xinjiang 

Uyghur Autonomous Region, and (c) is a false color composite image by R/G/B: 7/4/2 of 

Landsat ETM+ acquired on 12 July 2000 (c). Locations of the two major gold and copper 

mines in the Tudun area. Projection: UTM, zone 48 North, WGS 84. 

 

3. Data and Preprocessing 

3.1. HyMap Dataset 

The HyMap hyperspectral scanner (Manufactured by Integrated Spectronics Pty Ltd, Sydney, 

Australia) is operated by HyVista Corporation and weighs 200 kg. The spectral configuration of the 

HyMap sensor includes four spectral modules acquiring 32 bands each, totaling 128 spectral bands. The 

sensor operates in a tri-axis gyro stabilized platform to minimize image distortion due to aircraft motion. 

The system, integrated with the Global Position System (GPS) and an Inertia Monitoring Unit (IMU), can 

be rapidly adapted into any aircraft with a standard aerial camera port and is transported between 

international survey sites by air freight. Geolocation and image geocoding are achieved with DGPS and 

the integrated IMU. Laboratory calibration and operational system monitoring ensures that the imagery is 

calibrated as required for demanding spectral mapping tasks. The HyMap datasets used in the study are 
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Level 2 reflectance hyperspectral datasets that have been processed through radiometric calibration, 

geometric correction and atmospheric correction with the 6S model, totaling 122 bands without the six 

bands influenced by water vapor; the detailed technical parameters are listed in Table 1 [48]. A flowchart 

of the study is presented in Figure 2. The HyMap airborne data used in this study was captured on 24 

October 2002 with a cloud-free day, in East Tien Shan Mountain, and there’s almost no vegetation in the 

study area. The preprocessing of HyMap data occurred in several steps. The first was to convert the original 

Digital Number (DN) to radiance using the DN-to-radiance conversion factors that accompanied HyMap 

data. The next task was atmospheric correction. The atmospheric effects were removed by the HyCorr for 

HyMap Atmospheric Correction (HHAC) module. The HHAC module was developed by the HyVista Co. 

Ltd. (Sydney, Australia) on the basis of the Second Simulation of the Satellite Signal in the Solar Spectrum 

(6S) module. Then, the spectral reflectance of the captured HyMap data was rebuilt for the further analysis 

and the mineral mapping with the SAI. 

Figure 2. Flowchart of the study. 

 

Table 1. Relevant technical parameters of the HyMap spectrometer [48]. 

Wavelength (nm) Bandwidth (nm) Average Spectral Sampling Interval (nm) Band Number 

VIS：450–890 15–16 15 32 

NIR：890–1350 15–16 15 32 

SWIR1：1400–1800 15–16 13 32 

SWIR2：1950–2480 18–20 17 32 

IFOV 2.5 mr along track, 2.0 mr across track 

GIFOV 3–10 m 

Data coding 16 bit 

SNR >500:1 
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3.2. PIMA 

The Portable Infrared Mineral Analyzer (PIMA) used in the study, manufactured by Zhongdi Co. 

Ltd., Nanjing, China, is a spectrometer operated in laboratory/field surveys that works in the SWIR 

spectral region. The main technical parameters can be described as follows: the working spectral region 

ranges from 1300 nm to 2500 nm, the spectral resolution is 7 nm, the spectrum sampling interval is 2 nm, 

the signal to noise ratio (SNR) is 2500:1, and the average duration of a standard measurement is 

37 seconds. The PIMA spectrometer has an advantage of low cost, lightweight, fast testing and no 

sample preparation. The test samples include rock, soil and water. Moreover, the spectrometer has a 

built-in light source, so light is not a factor and it can be used to carry out indoor/underground spectral 

testing. In addition, using the PIMA, different crystal forms of the same type of mineral can 

be distinguished. 

4. Methods 

4.1. Spectral Absorption Features of Main Alteration Minerals 

The analysis of minerals using the near infrared (NIR) spectral region is an important tool for 

identifying and studying minerals and analyzing their components. Some parts of the infrared spectrum 

can be absorbed due to the bending and stretching of chemical bonds between atoms in a mineral crystal 

lattice. According to certain diagnostic spectral absorption features of molecular bonds, the mineral can 

be identified, and the degree of crystallinity of the mineral can be distinguished. These characteristics of 

minerals presented within the NIR spectral region are of great importance for geological field surveys. 

Based on the above-mentioned principle, we can discriminate single minerals from phyllosilicate 

(e.g., clay minerals, chlorite, antigorite), identify silicate minerals containing OH molecular bonds 

(e.g., epidote, amphibole), and sulfate minerals (e.g., alunite, ferric potassium alum, gypsum) and 

carbonate minerals (calcite, dolomite) can also be identified. Different degrees of mineral crystallinity 

cause infrared absorption peaks with different positions and shapes. The degree of crystallinity of a 

mineral indicates the temperature and chemical environment of hydrothermal alteration minerals during 

the mineralization process. Additionally, the degree of crystallinity of a mineral, to some extent, has 

something to do with the clay weathering of the mineral alteration system. 

Spectral features relevant to mapping of alteration minerals can be detected in two wavelength regions. 

The first is visible and near infrared (VNIR) with a spectral scope from 400 to 1100 nm (usually via 

electronic processes), and the corresponding alteration minerals are related to ferric and ferrous oxides, 

silicates, sulfates and sulfides, and REEs; the second is shortwave infrared (SWIR) with a spectral range 

from 1100 to 2500 nm (vibrational processes), and the corresponding alteration minerals are carbonates 

and OH bearing minerals, such as clays, micas, chlorites, talc, epidote, amphiboles and sulfates. Based on 

different responses in the NIR and SWIR spectral ranges, a variety of minerals can be classified. Most of 

these alteration minerals show most diagnostic absorption features in the VNIR and SWIR spectral regions 

[5,49]. The main molecular bonds that cause absorption features in the spectral range from 1300 to 2500 

nm for minerals and the corresponding main and secondary diagnostic absorption features are given in 

Table 2. The number of example minerals listed in Table 2 is limited because not all alteration minerals 

are active in the SWIR spectral region (and hence do not show diagnostic absorption features, and their 
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corresponding detailed absorption features are described in Figure 3). Once the spectral data have been 

obtained, according to the spectral matching method related to diagnostic spectral absorption features, it 

can be used to identify alteration zoning, changes in mineral proportions, mineral occurrence and mineral 

composition [50]. 

Table 2. Main molecular bonds related minerals with corresponding absorption 

features [51]. 

Molecular Bond Absorption Feature (μm) Example of Mineral of SWIR 

Al-OH 2.160–2.220 Montmorillonite, Illite, Muscovite, Kaolinite 

Mg-OH 2.300–2.360 Epidote, Chlorite, Antigorite 

Carbonate (CO3) 2.300–2.350 Calcite 

Figure 3. Detailed absorption features of samples of minerals from the USGS mineral library 

that are listed in Table 2. (a) Minerals with Al-OH molecular bonds; (b) Minerals with  

Mg-OH and CO3 molecular bonds. 

  

In Figure 3a the absorption features of muscovite, illite, kaolinite and montmorillonite are located 

in the vicinity of 2205 nm, 2215 nm, 2205 nm and 2205 nm, respectively. The secondary spectral 

absorption features of muscovite are located at 2125 nm, 2345 nm and 2440 nm. Illite’s secondary 

diagnostic absorption feature is located at 2345 nm and kaolinite’s secondary spectral absorption feature 

is located at 2165 nm. Figure 3b shows detailed spectral absorption features of minerals with Mg-OH 

bonds and carbonate (CO3) bonds. As depicted in Figure 3a, the main diagnostic spectral absorption 

features of Al-OH molecular-bonding related minerals such as epidote, chlorite and antigorite are 

respectively located at 2335 nm, 2325 nm and 2325 nm, and the CO3-related mineral calcite’s main 

diagnostic spectral absorption feature is located at 2335 nm. The secondary diagnostic absorption feature 

of epidote is located at 2225 nm, chlorite’s secondary diagnostic spectral absorption features are located 

at 2245 nm and 2386 nm, antigorite’s secondary diagnostic spectral absorption feature is located at 

2115 nm and calcite’s secondary spectral absorption feature is located in the vicinity of 2165 nm. 
  

(a) 

(b) 
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4.2. Spectral Absorption Features and the SAI Model 

The parameters characterizing the spectral absorption features are usually spectral absorption  
band-position, absorption band-width, absorption band-depth, absorption band-area, absorption  
band-slope, and the absorption band-symmetry (See Figure 4). The spectral characteristics of alteration 

minerals can be represented by these parameters. Throughout the analysis of the relationship between 

spectral absorption features and alteration minerals, it was found that the spectral absorption  

band-position was available and helpful for discriminating alteration minerals, whereas the spectral 

absorption band-depth could be used to retrieve the abundance and distribution of alteration minerals. 

Figure 4. Spectral absorption features and SAI index model [24,41]. 

 

The detailed information of these parameters can be vividly depicted as in Figure 4. Therein,  
the absorption band-position is located at point M, which has the minimum value of spectral reflectance 

compared with the whole spectral region. The spectral absorption band-width W is the difference in 

wavelength between the two shoulders (point P1 and P2) of point M, and it can be expressed by the 

following equation: 
ܹ ൌ ௣మߣ െ ௣భ (1)ߣ

where W is the spectral absorption band-width, P1 and P2 are the shoulders for point M, and λ is the 

wavelength. The symmetry can be defined as follows: 

ܵ ൌ
௣మߣ െ ௠ߣ

ܹ
 (2)

where S is the symmetry of the spectral absorption band, λm and ߣ௣మ are the respective wavelengths of 

points M and P2, and W is the spectral absorption band-width. 

The spectral absorption band-depth H is defined as the distance between point M and the  

non-absorption baseline, which passes through the two points P1 and P2. Before calculating the distance, 

we give an equation for the spectral reflectance difference as follows: 
ߩ∆ ൌ ௣భߩ െ ௣మ (3)ߩ

where Δρ is the spectral reflectance difference between points P1 and P2. Then, the non-absorption 

baseline is represented by the following equation: 

ܹ ∙ ߩ െ ߩ∆ ∙ ߣ ൌ ௣భߩ െ Δߩ ∙ ௣భ (4)ߣ
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The distance H between point M and the non-absorption baseline can be calculated by the 

following equation: 

ܪ ൌ
ெߣଶሺߩ െ ଵሻߣ െ ଶߣெሺߩ െ ெሻߣ

ଶߣ െ ெߣ
 (5)

where H is the above-mentioned distance, λi is the wavelength of each point, and ρi is the corresponding 

reflectance of each point. 

Then, the spectral absorption index (SAI) is defined as the reciprocal of the ratio between the 

reflectance of point M and the corresponding value of the spectral absorption baseline, and it can be 

described by the following equation: 

ܫܣܵ ൌ
௣భߩܵ ൅ ሺ1 െ ܵሻߩ௣మ

௠ߩ
 (6)

where, SAI = spectral absorption index, S is the symmetry mentioned above, and ߩ௣భ, ߩ௣మ, and ߩ௠ is the 

corresponding reflectance of  point P1, P2, and M. 

5. Results 

With the SAI model and on the basis of knowledge regarding spectral absorption features, using the 

interactive data language (IDL software, produced by ITT Co. Ltd., Boulder, CO, USA) to do coding of 

these absorption features, spectral absorption features relating to the main molecular bonds of  

Al-OH, Mg-OH and CO3 were extracted from HyMap hyperspectral data of the study area (See Figures 

5 and 6). With these results from the HyMap hyperspectral data, mapping of the corresponding alteration 

minerals was carried out (See Figure 7). 

Figure 5. Alteration of mineral calcite extracted from HyMap data of the Gold-mine area. 

(a) is the spectral absorption index (SAI) image of calcite, (b) is the spectral absorption index 

(SAI) image of epidote, (c) is the spectral absorption index (SAI) image of muscovite, (d) is 

the spectral absorption index (SAI) image of antigorite. 

 
  

(a) (b) 
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Figure 5. Cont. 

Figure 6. Alteration minerals by SAI extracted from HyMap data of Copper-mine area. (a) is 

the alteration mineral SAI image related to Al-poor muscovite, (b) is the alteration mineral 

SAI image related to Al-rich muscovite, (c) is the alteration mineral SAI related to antigorite 

information and (d) is the alteration mineral SAI image related to epidote information. 

(c) (d) 

(d) 

(a) (b) 

(c) 
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Figure 7. Mineral information extraction with the application of the SAI model and spectral 

absorption features from the HyMap data. (a) Mineral mapping of the gold-mine area 

(b) Mineral mapping of the copper-mine area. 

 
Mus. = Muscovite 

Analysis of Alteration Mineral Information Extracted from Spectral Absorption Features 

With knowledge of the minerals’ spectra and their diagnostic spectral absorption features, the 

parameters mentioned in Section 4.2 and the corresponding SAIs were calculated from the HyMap data. 

According to the knowledge of mineral spectra, with the information extracted from the spectral 

absorption features, the major minerals related to the information were predicted and delineated, and 

they are listed in Table 3. In the table, the spectral absorption features used to distinguish Al-poor 

Muscovite from Al-rich Muscovite were available in only eastern Tien Shan, Xinjiang Uyghur 

Autonomous Region. In fact, the identification accuracy for Al-poor muscovite and Al-rich muscovite 

was less than 70% through the field survey. During the identification of alteration minerals, we found 

that it was difficult to distinguish epidote from calcite using only single bands as they have similar 

absorption features. Therefore, by combining the main absorption features listed in Table 3 with other 

secondary absorption features described in Figure 3, calcite could be distinguished from epidote and 

micas. Then, mineral mapping was carried out for the two study areas with the SAI model (See 

Figures 5 and 6). 
  

(a) (b) 
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Table 3. Detailed absorption feature information.  

Band-Position 

(nm) 

Absorption Shoulders 

(nm) 

Band-Width 

(nm) 
Band-Symmetry 

Major Minerals 

Extracted 

2330 
* b104 = 2192 

b115 = 2379 
187 0.173 Calcite 

2210 
b103 = 2174 

b108 = 2262 
88 0.394 Al-poor Muscovite 

2192 
b102 = 2156 

b110 = 2297 
141 0.677 Al-rich Muscovite 

2335 
b109 = 2279 

b119 = 2444 
165 0.395 Epidote 

2396 
b114 = 2363 

b120 = 2460 
97 0.335 Antigorite 

* bi is the band number of the HyMap data used in the study 

Figure 5a is the resulting SAI image located in the vicinity of 2330 nm, namely b112 (band 112) and 

its two shoulders are b104 and b115. The mineral extracted from hyperspectral data was mainly calcite. 

Figures 5b and 6d are SAI images located in the vicinity of 2335 nm with shoulders located in the vicinity 

of 2279 nm and 2444 nm, and the main mineral information presented was epidote. Figures 5c and 6b are 

SAI images located in the vicinity of 2192 nm with shoulders in the vicinity of 2156 nm and 2297 nm, and 

the main mineral information extracted from the HyMap data was Al-rich muscovite. Figure 6a is an SAI 

image located in the vicinity of 2210 nm with shoulders at 2174 nm and 2262 nm, and the mineral 

information extracted from the airborne data mainly presented as Al-poor muscovite. 5d and 6c are SAI 

images located in the vicinity of 2396 nm with shoulders in the vicinity of 2363 nm and 2460 nm, and the 

main mineral extracted from the airborne data was antigorite. 

6. Validation of Results Using Field Survey Based on Spectral Knowledge 

To further validate and assess the accuracy of the results from spectral absorption features and SAI 

modeling, a field survey were carried out from 20 to 27 April 2010 with cloud-free days and a light 

wind, and during this season, the average atmospheric temperature is 15.2 °C. Before this job, the 

locations of sampling points were reasonably chosen on the basis of the results from the HyMap data, 

the results of previous literature and the alignment of gold ore veins and copper ore veins as the baseline 

combined with geological and terrestrial materials (see Figure 8). During the field survey, a total of 664 

rock samples were collected, the number from the Copper mine area and Gold mine were 594 and 70, 

respectively. All the samples collected were prepared for processing using PIMA and the corresponding 

spectra were to be measured. 

Measurement and Quantitative Analysis of Mineral Spectra in the Laboratory with a PIMA Spectrometer 

Based on spectral knowledge combined with the advantages of the PIMA, the spectra of 594 rock 

samples were processed using the spectrometer. With the spectrum measurement work carried out in the 

laboratory, a total of 1226 spectra were measured using PIMA in the two regions of the study area, 
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among which 145 spectra of 70 samples collected in the gold-mine area were measured and 1081 spectra 

of 594 samples collected in the copper-mine area were measured.  

Figure 8. Distribution of sampling point locations. 

 

The spectra were interpreted using the spectral analyzing software infrared mineral spectrum 

measurement and analysis system (IMSMAS) affiliated with the PIMA. Using knowledge of the spectral 

absorption features, every rock sample was identified and discriminated with IMSMAS, and the relative 

abundance of the corresponding minerals was determined. A flowchart describing the quantitative 

analysis of the mineral spectra is shown in Figure 9. 

During the process of quantitative analysis of the mineral spectra and quality control inspection, we 

found that 65 spectra of 31 samples were not identified, and we call them inefficient spectra. The 

remaining 1161 efficient spectra were processed and the results are summarized and listed in Table 4. 

Table 4 presents all the alteration minerals identified using PIMA, and the relative abundance of each 

mineral is described and classified into 6 levels including 15%–30%, 30%–45%, 45%–60%,  

60%–75%, 75%–90%, and >90%. The number of spectra and samples of each percentage are listed in 

Table 4. Considering the accuracy of the PIMA and the impacts of environmental factors on the 
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measurements, we concluded that the relative abundance of one mineral being less than 15% had little 

effect on the whole spectra. Therefore, in the study, minerals with relative content below 15% were not 

counted and are not listed in Table 4. The spectra of the main minerals identified during the analysis are 

described in Figure 10. In the figure, pure spectra were presented to illustrate the validity of the PIMA 

data (to demonstrate that the PIMA spectra are similar to the USGS spectra). 

Figure 9. Flowchart of mineral spectrum processing for quantitative analysis. 

 

Table 4. Results of mineral identification and quantitative analysis obtained from the 

PIMA spectrometer. 

Mineral Components 

Relative Amount (%) 
Epidote Chlorite Muscovite Illite Calcite Kaolinite Quartz 

15–30 (%) 
Number of Spectra 120 51 136 21 11 14 45 

Number of Samples 105 43 107 19 10 13 41 

31–45 (%) 
Number of Spectra 89 31 62 21 9 8 23 

Number of Samples 81 28 55 19 9 8 22 

46–60 (%) 
Number of Spectra 77 11 50 23 7 8 41 

Number of Samples 70 10 48 18 7 8 39 

61–75 (%) 
Number of Spectra 131 5 57 17 7 4 41 

Number of Samples 116 4 50 13 7 4 39 

76–90 (%) 
Number of Spectra 172 1 36 12 18 5 36 

Number of Samples 148 1 31 12 16 5 33 

>90 (%) 
Number of Spectra 189 2 16 17 34 25 59 

Number of Samples 161 2 14 15 26 25 51 

Total Spectra 778 101 357 111 99 64 245 

Total Samples 681 88 305 96 75 63 225 

From Table 4, according to the classified percentage of each mineral, we divided these minerals into 

three types including major minerals, secondary minerals and other components. The main minerals 

include epidote/chlorite alteration minerals, muscovite, illite alteration minerals, quartz, silica and calcite 

alteration minerals. The spectra of the main minerals were included in a comparative analysis with 

standard spectra from the USGS mineral library (see Figure 10), which showed a high degree of 

consistency. The main component of the secondary mineral was kaolinite. Other mineral components 

are at very low percentages (no more than 3%), which can be neglected. Considering the low amount of 

the secondary minerals and other mineral components, a comparative analysis between the testing 

spectra and the standard spectra of the USGS mineral library was not carried out in this study. The illite 

identified using PIMA is a common clay mineral, a hydrated mica that shares with other Al-clays 

(i.e., smectite and kaolin group) the AlOH feature located at approximately 2200 nm. The mineral illite 
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has a property of being rich in potassium and aluminum but poor in iron. In this study, the illite identified 

using PIMA was regarded as Al-rich muscovite extracted from HyMap data on the basis of SAI 

modeling. In addition, observation of these major minerals’ spectra revealed that illite was often 

accompanied by alteration minerals, such as kaolinite, muscovite, epidote and chlorite. In general, 

through the validation of the HyMap data results with the field survey and the test spectra measured 

using PIMA, the results of mineral mapping from HyMap data have a very high degree of consistency 

with the field survey. 

Figure 10. Comparative analysis between the spectra of the main minerals identified in the 

study and the USGS mineral library. The main minerals identified using the spectrometer 

are (a) epidote, (b) quartz, (c) illite, (d) calcite, (e) muscovite and (f) chlorite. 

 

(a) (b) 

 

(c) (d) 
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Figure 10. Cont. 

(e) (f) 

To find the relationship between mineral abundance and these spectral absorption features, a 

comparative analysis was conducted and the absorption features of the several main minerals based on 

the model mentioned in Section 4.2 were calculated, and the detailed information is presented in 

Figure 11. In the figure, considering that the secondary minerals and other rare components play an 

unimportant and inconspicuous role in all the categories of minerals identified using PIMA, and taking 

the limited spectrum of calcite into account, only four main minerals, including muscovite, epidote, 

quartz and illite, were described. The figure shows that the SAI and the spectral absorption band-depth 

correlate well with one another and with the variation of relative alteration mineral abundance (the values 

of the SAI and the spectral absorption band-depth decrease with the corresponding reduction of relative 

alteration mineral abundance), whereas there was no obvious positive relationship between the spectral 

absorption band-symmetry and the abundance of alteration minerals. 

7. Ore Prospecting 

The study area is located at the conjunction of Tarim plate and the Junggar Plate, which is a part of the 

Tage Kangguer Devonian and Carbo island arc belt in the southeast margin of the Junggar plate of the 

Jueluotage Carboniferous island arc in the active leading edge of the Tarim plate, and the deposits in an 

outcrop of Middle Carboniferous Series Wutongyaozi Formation (C2wd) are light-red/gray felsic 

porphyry, dark green/light gray diabase and carbonaceous shale/metamorphic siltstone. The rock mass in 

the study area is granite and diorite from the Middle Variscan period. Metamorphism in the area is mainly 

dynamic metamorphism and hydrothermal metamorphism related to structural fracturing and 

hydrothermal alteration. The formation of dynamic metamorphism in the area is mainly accompanied with 

fault structures, and the corresponding distribution shows a zonal shape along the tectonic line. The 

formation of hydrothermal metamorphism is located in the fault structure belt and interlayer fracture, and 

the corresponding magnitude and intensity depends on the structure’s scale and properties. 
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Figure 11. Statistics of spectral absorption features of alteration minerals identified using 

PIMA and the relationship between the spectral absorption features (including SAI, spectral 

absorption band-depth, spectral absorption band-width, spectral absorption  

band-symmetry and spectral absorption composition) and the relative abundance of 

alteration minerals. 

 
* Scaling factor = 1000 

In the Gold-mine area, the hydrothermal alteration mainly produced epidote, muscovite, calcite and 

antigorite alterations, which were extracted from the HyMap data. From Figure 7 showing the mineral 

alteration distribution and the field survey carried out from April 20 to 27 in 2010, we found that most 

of the epidote and calcite minerals appeared in a wide range of block distribution, and the two minerals 
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had a close spatial relationship and simultaneously existed in some areas of the study area. In the northern 

and northwestern part of the distribution area of the two above-mentioned minerals, there was 

mineralized muscovite alteration showing a sheet or block distribution. In addition, the distribution of 

antigorite extracted from the HyMap data is more fragmented and scattered, occurring mainly in the 

southern part of the distribution area of epidote and calcite. 

In the Copper-mine area, the main minerals extracted from the HyMap data included epidote,  

Al-poor muscovite, Al-rich muscovite and small amounts of antigorite and kaolinite. The Al-poor 

muscovite with a sheet distribution is distributed in the north and northeast region of the copper-mine 

area, and the Al-rich muscovite shows a block distribution enclosed by the distribution area of Al-poor 

muscovite. The epidote/chlorite mineral alterations were distributed in the south of the copper area, the 

area of which was surrounded by scattered antigorite. From Figure 8, we found that muscovite, epidote 

and chlorite show spatial overlap and intersecting zone demonstrating a close spatial relationship 

between muscovite and epidote/chlorite. 

In general, in the Gold-mine area in the north of the study area, the cause of muscovite, calcite and 

epidote mineral alteration, had a direct and close relationship with that of granite and diorite, and the 

close spatial relationship among these three mineral alterations predicted better prospecting for gold ore 

in the area. In the Copper-mine area in the southern part of the study area, the spatial distribution and 

relationship of the Al-poor muscovite, Al-rich muscovite, epidote and chlorite mineral alterations 

predicted this region as a better area for prospecting copper ore. 

8. Conclusions 

In the study, mineral alterations, such as epidote, calcite, Al-poor muscovite, Al-rich muscovite and 

antigorite were identified based on the SAI model and spectral absorption features using HyMap 

hyperspectral data. A comparative analysis was performed with previous literature results to show the 

quality of the mineral mapping results based on HyMap data, and it revealed a high degree of consistence 

with the previous literature. To further validate the results of the mineral mapping from HyMap images, 

a field survey was carried out and rock samples were collected from 20 to 27 April 2010 for further 

laboratory spectral analysis. During the field survey, we found that the results had a good degree of 

consistence with the local geology. In the laboratory work, the spectra of rock samples were processed 

using a PIMA. Quantitative analyses of the rock samples’ spectra and the relative abundance of alteration 

minerals were determined using the IMSMAS. Based on the SAI and other spectral absorption features, 

the relationship between these spectral absorption features and the relative abundance of minerals was 

analyzed. The results showed that the spectral absorption band-depth and the SAI had a higher degree 

of consistency with the relative abundance of minerals than the other spectral absorption features, in 

particular the spectral absorption band-depth provides a better representation. Then, the ore prospecting 

potential of the study area was predicted in the paper. The distribution and close spatial relationship 

among the minerals extracted from the HyMap data showed good ore prospecting potential for the Gold-

mine area and the Copper-mine area. 

Through the cross-validation, the field survey and the spectral analysis with IMSMAS, we concluded 

that the SAI model and the spectral absorption features showed high accuracy and precision in mineral 

identification and mineral mapping because the model could reduce the influence of solar radiance 
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variation. However, there is a problem that needs to be resolved. Before quantitative analysis with the 

SAI model and spectral absorption feature calculation equations, the reflectance spectra of the HyMap 

data should be reconstructed on the basis of rigorous calibration and both atmospheric and 

geometric correction. 

The SAI model on the basis of spectral absorption features has universal significance. It can be widely 

used for mineral identification and quantitative analysis. The premise before using the model is that these 

spectral absorption features should be calculated and consummated. In addition, the SAI model can be 

characterized as a function of single scattering albedo so it can be used to map the abundance of mineral 

alterations, but the precision and accuracy should be improved in a further step. Another problem 

occurred during the mineral identification process: although the SAI model puts the emphasis on single 

spectral absorption features, in practical geological applications, it is difficult to distinguish and classify 

those minerals that have similar spectral absorption features such as epidote and chlorite. 
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