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Abstract: Extraction and interpretation of tectonic lineaments is one of the routines  

for mapping large areas using remote sensing data. However, this is a subjective and  

time-consuming process. It is difficult to choose an optimal lineament extraction method in 

order to reduce subjectivity and obtain vectors similar to what an analyst would manually 

extract. The objective of this study is the implementation, evaluation and comparison of 

Hough transform, segment merging and polynomial fitting methods towards automated 

tectonic lineament mapping. For this purpose we developed a new MATLAB-based toolbox 

(TecLines). The proposed toolbox capabilities were validated using a synthetic Digital 

Elevation Model (DEM) and tested along in the Andarab fault zone (Afghanistan) where 

specific fault structures are known. In this study, we used filters in both frequency and spatial 

domains and the tensor voting framework to produce binary edge maps. We used the Hough 

transform to extract linear image discontinuities. We used B-spline as a polynomial curve 

fitting method to eliminate artificial line segments that are out of interest and to link 

discontinuous segments with similar trends. We performed statistical analyses in order to 

compare the final image discontinuities maps with existing references map. 
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1. Introduction 

In recent years, most lineament extraction methods are either based on visual image interpretation by 

an expert or (semi-) automatic detection by using remote sensing images [1–4]. The automatic methods 

have resulted in savings of time and improve the objectivity of lineament extraction  

process [5–12]. In general, automatic lineament extraction methods are based on edge detection 

techniques that enhance the pixels at the edges on an image, instead of directly extracting edge contours. 

The frequency and connectivity of the extracted edges by common edge detection methods are strongly 

affected by the type and spatial resolution of the source datasets, signal to noise ratio (SNR) and the 

parameters of the edge detection methods [5,9,13]. In other words, most edge detection methods results 

contain fragmented edges and should be ultimately interpreted visually. We discussed the different 

methods for detecting potential edge pixels in part 1 [14]. 

After edge detection, additional processing has to be performed in order to remove the false edge 

responses and to link the gaps between edges. These methods allow the linearization of edge pixels into 

continuous contours, using certain criteria such as closeness or some specific geometric properties such as 

straightness or curvature [15]. Edge linking methods can be classified into two categories [16–18]:  

(1) local processing methods [15,18–20], and (2) global processing methods [21–27]. In local processing 

methods, edge pixels are grouped to form edges by considering each pixel’s relationship to any 

neighboring edge pixels. This method is suitable to link edge pixels in situations where the shape of the 

edge is unknown. The global processing methods use all edge pixels. Pixels displaying similarities such 

as same edge geometry are used to find the best fit of a known shape. The global methods do not need 

to connect the edge pixels. However, these methods have inconveniences: small pieces of edges may be 

missing, or noise pixels may wrongly be handled as edge segments. The edge linking method that follows 

in this paper is based on the Hough transform (HT) method [28] and specifically focuses on linking edge 

pixels that represent tectonic linear features. The Hough transform method is a very robust technique for 

identifying and linking edge pixels that corresponds to linear features. The most important advantages 

of the technique are the relative insensitivity to noise, to object occlusion and to missing line parts 

(gaps) [28–31]. The Hough transform method has been widely used in order to increase the frequency 

and connectivity of detected lineaments [6,26,32–36], which is an efficient method for detecting straight 

lines [30,37,38]. 

However, after the line segments have been extracted using the Hough transform procedure the image 

discontinuities often need to be linked and/or merged [11]. This process is done by reducing  

the number of line segments having common characteristics (e.g., length, orientation), and building  

a new line with stronger characteristics. Several methods have been proposed to link non-overlapping or 

merging partially or fully overlapping line segments [39,40]. 

The main goal of this study is to develop a new MATLAB based toolbox (TecLines) for automatic 

linear image discontinuities mapping from satellite images and digital elevation models (DEM). 
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TecLines operates in two continues steps. In the first step, we implemented the edge detection procedure 

that consists of Butterworth band pass filter, edge detection method in the spatial domain and tensor 

voting framework technique. The first step has been explained in the first part of the TecLines paper 

series [14]. As described above, most of the edge detection methods are weak in confrontation with noisy 

images and the edges whose gray levels change slightly, and usually cannot differentiate the edge from 

a noisy area, which results in detecting false or discontinuous edges. 

In this study, these problems are addressed using edge-linking methods. The goal of edge linking is 

to describe an edge as a linear segment of specified shape and estimate the missing edge pixels from  

the assumed equation of the curvilinear segment [14]. The specific objective of this study is to develop 

a procedure that consists of the integration between Hough transform (HT) method, Tavares-Phadilha 

algorithm [39], and B-spline polynomial curve fitting method [11,41] to extract the curvilinear image 

discontinuities with consideration of the object lengths and orientations as well as the distance between 

neighboring line segments. 

In this second part of the TecLines paper series, the Hough transform method is described in detail, 

and its capabilities for automatic linear image discontinuities extraction, analysis and mapping are 

demonstrated. Also, we demonstrate how TecLines can be used to implement algorithms for linking or 

merging line segments, which are close to each other and have similar directions [39,40], and  

produce map of linear image discontinuities and their statistical analysis. This study also shows  

the implementation of the proposed methods on a synthetic image with known discontinuities and a high 

resolution satellite images (QUICKBIRD-2) from an active tectonic area: the Andarab fault zone in  

NE Afghanistan. 

2. Data 

In this paper, we demonstrate the performance of the TecLines for edge detection, where validation 

has been performed on a synthetic and a real dataset. 

2.1. Synthetic Dataset 

Applying the real dataset to detect the edges may obtain an irregular pattern, and hence the accuracy 

of the edge detection may decrease. Most of the performance evaluation of edge detection methods has 

been proposed according to the presence or absence of ground truth data [42–48], which are based on 

the characteristic of the images (i.e., real images, synthetic images) [42,47–49]. Several studies consider 

the binary edge maps generated by other edge detection methods (such as the Sobel method or the Canny 

method) to be optimal ground truth data [50,51]. However, this assumes that the binary edge maps 

generated by those methods are perfect. Moreover, different configurations or implementations of each 

method might produce different results [44,52]. In addition, a large number of approaches that rely on 

ground truth use simple synthetic images [53–56], because it is easy to specify the ground truth edge 

locations [42,43]. In these cases, the edge detection can be quantitatively evaluated based on the known 

ideal detection considered to be the ground truth [56]. The synthetic Digital Elevation Model (DEM) 

(Figure 1) used here is the result of landscape evolution algorithm created using set river incision and 

different uplift rates across tectonic faults. The lineaments and drainage system adapts to the evolving 

surface conditions. The resolution of the surface development model is independent of that of the 
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underlying continuum box [57]. The surface model follows the concept of the cellular automaton 

implemented on a regular Eulerian mesh. It incorporates an effective filling algorithm that guarantees 

flow direction in each cell computation of discharges and bedrock incision. This model was designed to 

be employed to synthetic topographies [57]. 

Figure 1. The synthetic Digital Elevation Model (DEM) that is the result of landscape 

evolution algorithm created using set river incision and different uplift rates across tectonic 

faults. The drainage system adapts to the evolving surface conditions. 

 

2.2. Real Dataset 

Study Area and Data 

We evaluated the performance of TecLines on a satellite image of the active Andarab fault zone, 

northeastern part of Afghanistan with a complex pattern of faults (Figure 2A). The tectonic activity in 

the northeast of Afghanistan is usually interpreted as a consequence of the collision between the Indian 

and Eurasian subcontinent [58,59]. The large east-west trending, right-lateral and strike-slip fault zones 

(for example, the Hari Rud, and Andarab fault systems) are key structures that have played an important 

role in the westward-extrusion of the Northern Afghan Platform [58–60]. The selected area has a long 

history of damaging earthquakes [60]. 

The Andarab fault is dextral and coincides with an approximately 150 km long, east-west-trending 

valley north of the intersection between the Paghman and Hari-Rud faults. Andarab fault lies in the north 

of Kabul in a transition region between the aseismic interior of Afghanistan and the eastern plate 

boundary. In the high valley of Darya, many evidences of recent tectonic movements were observed 

along the fault trace [58,61]. Wellman [62] also described ridges that have 25 m of dextral displacement. 

Several surveys were measured between 1880 and 1940 about tectonics of the study area but the tectonic 

activity is poorly known. Their re-measurement may reveal surface deformation associated with the 

tectonics of the region. However, as yet none of these early surveys have been re-measured. 
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Figure 2. (A) location of the study area in northeast Afghanistan; (B) panchromatic band of 

the Quickbird-2 (1 m spatial resolution) for 2 March 2006 of the study area. 

 
 

(A) (B) 

The study area is approximately 10 km2. In this study, we used panchromatic band of the Quickbird-2 

(1 m spatial resolution) for 2 March 2006 (Figure 2B). This data is in UTM coordinate system, datum 

“WGS84” and zone 42 N. 

3. Methodology 

TecLines is a new MATLAB based framework that contains various functions for automatic detection 

and extraction of linear image discontinuities from satellite images and digital elevation models (DEM). 

Besides import and export functions that support the raster and vectors in standard file formats, TecLines 

provides functions for image filtering in the frequency and spatial domains to produce primary binary 

edge maps. Performing the computation of the Tensor voting framework produces final binary edge 

maps in TecLines. In addition, TecLines extracts line segments from final binary edge maps by 

employing standard Hough transform functions. A set of functions serves the grouping and merging line 

segments, which results in final linear image discontinuity maps. Comparing results with published/ 

non-published linear image discontinuity maps and statistical analysis is also possible in TecLines. An 

overview of the edge linking procedure using TecLines toolbox can be found in Figure 3. 

3.1. Hough Transform (HT) 

In this study, we implemented the Hough transform (HT) method [28,29] by writing a set of 

MATLAB based functions. The Hough transform is a common and effective method for identifying the 

locations and orientations of straight lines in binary images. The main idea behind the Hough transform 

method is simple: in the image (𝑥-y space), if all the points (𝑥𝑖, 𝑦𝑖) are located on a line 𝐿, described by 

Equation (1), then the corresponding sine curves 𝑝, described by Equation (2) form a bundle intersecting 

a point 𝑙 (𝑐, 𝑚) in the Hough parameter space (Figure 4). 
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𝑦𝑖 = 𝑚𝑥𝑖 + c (1) 

𝑐 = 𝑦𝑖 − 𝑚𝑥𝑖 (2) 

Figure 3. Overview of the essential components of linear image discontinuities extraction 

and grouping using TecLines. 

 

Figure 4. Lines through a point in the image space and (m, c) space. 

 

Since the parameter m in Equation (1) has infinite values for vertical lines, a different pair of 

parameters (Polar Coordinates), denoted 𝑝  and θ , are used for the lines in the Hough transform.  

The Hough transform in image (x–y space) space is defined as 

𝑓(θ, 𝑝) = ∬
𝐷

𝐹(𝑥, 𝑦)δ(𝑝 − 𝑥 cos θ − 𝑦 sin θ)𝑑𝑥𝑑𝑦 (3) 

In the Equation (3), D is the whole image area (x–y space) where the image center is the origin, δ is 

the Dirac delta function, 𝑝 is the distance between the origin and a particular line and θ is the angle 

formed by the normal to the line and the x-axis. The 𝑝 and θ of each line in the image space is measured, 

and the results are stored in a matrix that is called the accumulating array (Figure 5). The gray intensity 
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of the pixel (x, y) is 𝐹(𝑥, 𝑦), accordingly the value 𝑓 (θ, 𝑝) in the (θ, 𝑝) space is the accumulating gray 

intensity of the pixels of the corresponding line in the image space. Through accumulating array, the 

specific parameter (θ, 𝑝) is extracted with set the number of peak value in the accumulator array with 

respect to the candidate straight line. However, since the lengths of the lines in the x–y space are different, 

the peak value extraction in the (θ, 𝑝) space will cause false detection [63]. This problem is solved by 

normalizing gray intensity value in the (θ, 𝑝) space and setting a threshold for length of acceptable lines 

[64]. An overview of the Hough transform procedure can be found in Figure 5. 

Figure 5. Simplified flow chart for Hough transform procedure. 

 

3.2. Grouping, Linking and Merging Line Segments 

The Hough transform result is a set of line segments with a wide range of length and orientation.  

We propose to link or merge segments with similar length and orientation in order to form continuous 

lines. In TecLines, we used two methods, an algorithm proposed by Tavares-Padilha [39] and a  

B-spline method [11,41] for linking non-overlapping line segments, or for merging line segments 

partially or completely overlapping. The main advantage of these methods is the consideration of the 

lengths, orientation and distance between neighboring segments as explicit weights for the grouping and 

the determination of the orientation and placement of the resulting line. 

In this step, we implemented the Tavares-Padilha algorithm for generating an intermediate linear 

discontinuities map. In the first step, all line segments with azimuth less than a specified threshold are 

classified together in one class. The search area is defined using a maximum distance from line segments 

and two circle sectors with positive and negative directions. The radius of circle sectors is obtained by 

adding half the length of the line segment with the specified value that is selected by the user. The user 

can also define the opening angle of circle sectors. Then, the Tavares-Padilha algorithm is performed 

that involves five steps: 
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(1) Define point (𝑥𝐺 , 𝑦𝐺) as a pair coordinates of the centroid by using the two segment endpoints 

(four points) and segment lengths: 

𝑥𝐺 =
𝑙𝑖(𝑎𝑥 + 𝑏𝑥) + 𝑙𝑗(𝑐𝑥 + 𝑑𝑥)

2(𝑙𝑖 + 𝑙𝑗)
 (4) 

𝑦𝐺 =
𝑙𝑖(𝑎𝑦 + 𝑏𝑦) + 𝑙𝑗(𝑐𝑦 + 𝑑𝑦)

2(𝑙𝑖 + 𝑙𝑗)
 (5) 

where a = (𝑎𝑥, 𝑎𝑦) and b = (𝑏𝑥, 𝑏𝑦) are the endpoints of segment i, and c = (𝑐𝑥, 𝑐𝑦) and d = (𝑑𝑥, 𝑑𝑦) 

are the endpoints of segment j and 𝑙𝑖 𝑎𝑛𝑑 𝑙𝑗 are the lengths of segments i and j, respectively (Figure 6). 

The merged line will contain this centroid. 

Figure 6. (A) Merging of two non-overlapping, (B) partially overlapping and (C) totally 

overlapping segments by Tavares-Padilha method. The red segments are merged to  

the green lines. 

   

(A) (B) (C) 

(2) The orientation of the merged line (θr) is defined as the weighted sum of the orientations of  

the given segments. If |θ𝑖 − θ𝑗| ≤
𝜋

2
 then 

θ𝑟 =
𝑙𝑖θ𝑖 + 𝑙𝑗θ𝑗

𝑙𝑖 + 𝑙𝑗
 (6) 

else 

θ𝑟 =

𝑙𝑖θ𝑖 + 𝑙𝑗 (θ𝑗 − 𝜋
θ𝑗

|θ𝑗|
)

𝑙𝑖 + 𝑙𝑗
 

(7) 

(3) (𝑋𝐺 , 𝑌𝐺 ) coordinate system is defined on the centroid (𝑥𝐺 , 𝑦𝐺 ). The 𝑋𝐺  axis is parallel to  

the direction θ𝑟 of the merged line. 

(4) Coordinates for the endpoints a, b, c and d of both segments in the (𝑋𝐺, 𝑌𝐺) coordinate system  

are determined: 

δ𝑋𝐺 = (δ𝑦 − 𝑦𝐺)𝑠𝑖𝑛θ𝑟 + (δ𝑥 − 𝑥𝐺)𝑐𝑜𝑠θ𝑟 (8) 

δ𝑌𝐺 = (δ𝑦 − 𝑦𝐺)𝑐𝑜𝑠θ𝑟 − (δ𝑥 − 𝑥𝐺)𝑠𝑖𝑛θ𝑟 (9) 
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where (δ𝑋𝐺 , δ𝑌𝐺) are the coordinates of the point δ in the (𝑋𝐺, 𝑌𝐺) coordinate system. The endpoints 

coordinates in the new coordinate system are a(X,G), = (𝑎𝑋𝐺, 𝑎𝑌𝐺), 𝑏(𝑋,𝐺) = (𝑏𝑋𝐺, 𝑏𝑌𝐺), c(𝑋,𝐺) = (𝑐𝑋𝐺, 

𝑐𝑌𝐺) and d(𝑋,𝐺) = (𝑑𝑋𝐺 , 𝑑𝑌𝐺). 

(5) The two orthogonal projections over the axis 𝑋𝐺 of the four endpoints a, b, c and d, which are 

farther apart, define the endpoints of the merged line [39]. 

In the final step we fit intermediate line segments with a polynomial curve by using B-spline method. 

We set the knots (𝑛 + 1) as 𝑝0, 𝑝1, 𝑝2, . . . , 𝑝𝑛 for all line segments (𝑛) within each group. The 𝑝0 and 𝑝1 

knots are the starting and midpoints of the first segment, and 𝑝𝑛−1 and 𝑝𝑛 are the mid and end points of 

the last segment. The mid point of the other line segments is 𝑝2, . . . , 𝑝𝑛−2 knots. The polynomial curve 

𝐶(𝑢) is called a spline of degree 𝑛 with the knots 𝑝𝑖, … , 𝑝𝑚, where 𝑝𝑖 ≤ 𝑝𝑖+1 and 𝑝𝑖 < 𝑝𝑖+𝑛+1 for all 

possible 𝑖, if 𝐶(𝑢) is 𝑛 − 𝑟 times differentiable at any knot when 𝑝𝑖 < 𝑝𝑖+1 = ⋯ =  𝑝𝑖+𝑟 < 𝑝𝑖+𝑟+1: 

𝐶(𝑢) = ∑ 𝑝𝑖 𝑁𝑖
𝑛(𝑢) (10) 

where the 𝑁𝑖
𝑛(𝑢)  is a basis function that form a smooth curve with minimal support and certain 

continuity properties. Therefore, we defined B-splines 𝑁𝑖
𝑛  with knots 𝑝𝑖 < 𝑝𝑖+1  for all 𝑖  by using 

Equation (5). 

𝑁𝑖
𝑛(𝑢) = 𝑝𝑖

𝑛−1𝑁𝑖
𝑛−1(𝑢) + (1 − 𝑝𝑖+1

𝑛−1)𝑁𝑖+1
𝑛−1(𝑢) (11) 

where 𝑝𝑖
𝑛−1 = (𝑢 − 𝑝𝑖)/(𝑝𝑖+𝑛 − 𝑝𝑖) is the local parameter with respect to support of 𝑁𝑖

𝑛−1 (Figure 7). 

From the definition above, 𝑁𝑖
𝑛(𝑢) is a piecewise continuous polynomial of degree (𝑛) that is positive in 

(𝑝𝑖 − 𝑝𝑖+𝑛+1) and zero outside of [𝑝𝑖 − 𝑝𝑖+𝑛+1]. 

Figure 7. Approximation of line segments into a smooth curve using B-spline. 

 

3.3. Accuracy Measurements 

In order to evaluate the TecLines toolbox applicability, we considered two different analyses: 

qualitative and quantitative analyses. In the qualitative analysis, the results of the TecLines were 

compared with a reference map, which is based on manual extraction of the linear image discontinuities, 

by visual interpretation. The quantitative analysis is mainly for analyzing the directional, length and 

positional accuracy of the extracted image discontinuities. For directional accuracy assessment, rose 

diagram method is utilized to compare results with a reference map (ground truth). It should be noted 

that the discontinuities length weighted the rose diagrams, and thus, these orientations were 

influenced by longer discontinuities. 
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Length and positional accuracy were assessed by arithmetically finding the matching percentages of 

the extracted discontinuities within a reference map specific buffer zone. Buffer size is initially based 

on the resolution of the dataset used. If a discontinuity is located in the buffer zone of the reference 

discontinuities, then it is considered matched. Therefore length accuracy (LA) is defined as the ratio 

between the total length of all correctly extracted discontinuities (True positive: TP) and the total length 

of all the discontinuities in the image reference dataset, which are visually interpreted as true 

discontinuities (𝑇𝐷): 

𝐿𝐴 =
𝑇𝑃

𝑇𝐷
 × 100 (12) 

It is also necessary to measure the percentage of falsely extracted discontinuities (False positive: FP). 

False positive is defined as the subtraction between TP, in terms of length, and all extracted 

discontinuities (AD). False negative (FN) is the total lengths of the discontinuities in the reference map 

that are not classified as discontinuities [65,66]. 

Accuracy requires that discontinuities should be detected as close as possible to their correct 

positions. In a given image, the discontinuities positions and lengths can be varying according to 

resolution and procedures. In this study, by comparing the discontinuities extracted using TecLines with 

a reference map, the accuracy was computed as follows. 

𝐴𝑐 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 +

𝑇𝑃
𝑇𝐷

2
 ×  100  (13) 

where Ac stands for accuracy. The value of Ac for accurate edge linking methods should be close to 

100%. In order to evaluate the performance of the proposed edge linking procedure a reference dataset 

is required. The references dataset for both synthetic and QuickBird 2 images are determined based on 

manual extraction of the linear image discontinuities (Figure 8). 

Figure 8. (A) The reference discontinuity map for real dataset that is based on manual 

extraction from panchromatic band of QuickBird-2; (B) The reference map of the synthetic 

DEM consists in the digitized traces of the modeled discontinuities (black line). 

  

(A) (B) 
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4. Testing and Evaluating TecLines 

4.1. Performance Evaluation of the TecLines on a Synthetic Digital Elevation Model (DEM) 

Accuracy assessment is based on 21 known discontinuities in the synthetic image (Figure 8B).  

The total length of these features is 1021 m. The range of parameters to be used in edge linking procedure 

should be large enough to cover a wide range of extraction results. 

To select the optimum set of parameters, we implemented 81 sets of combinations of mentioned 

parameters for Hough transform step. In the first step we extracted the peak value in the Hough domain 

(the (θ, 𝑝)  space), where cutoff (H (%)) ∈  ((200, 300, 400)) and the normalization factor  

(𝑇) ∈ ((0.01, 0.05, 0.1)). The line segments extracted use the minimum distance, pixels, between two 

edges (FG) ∈  ((1, 3, 5)), and the minimum number of pixels that define the length of expected lines 

segments (ML) ∈  ((3, 5, 10)), Then, we selected the image discontinuities map as the best results using 

visual interpretation. In this study, the best results for Hough transform method are produced by:  

H(%) = ((400)), 𝑇 = ((0.01)), FG = ((5)), and ML =((5)). The result of the Hough transform is shown 

in Figure 9A. 

Figure 9. (A–C) the line segments extracted by Hough transform, Tavares-Padilha algorithm, 

and final resulting lineament map was obtained by B-spline method, respectively. 

   

(A) (B) (C) 

In the next step, the Tavares-Padilha algorithm and B-spline curve fitting method are used to fit  

polynomial curves between neighboring line segments. We used 81 set of combination parameters for 

generating intermediate discontinuities map (Figure 9B) using Tavares-Padilha algorithm, where  

the maximum azimuth difference (MAD) ∈  ((10, 15, 20)), the opening angle of circle segment  

(OACS) ∈  ((10, 20, 30)), the maximum distance from line segments (MDLS) ∈  ((5, 15, 25)), and the 

minimum length of accepted segment (MLAS)  ∈  ((1, 3, 5)). 

Finally, we performed B-spline method using 243 set of combination of the parameters, where  

the acceptable length for the fitted curve (ALFC)  ∈  ((10, 20, 30)), the maximum distance between line 

segments (MDBL)  ∈  ((5, 10, 15)), the maximum azimuth difference between line segments  

(MADBL)  ∈  ((5, 10, 15)) and the minimum accepted length of the line segments (MALL)  ∈  ((1, 3, 5)). 

The final discontinuity maps are shown in Figure 9C. 
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4.1.1. Qualitative Accuracy Assessment 

Figure 9 visually shows the extracted discontinuities results using a synthetic DEM. As can be  

seen in Figure 9A, Hough transform found most of the references linear discontinuities (Figure 8B) but 

is affected by background textures. The Tavares-Padilha algorithm has relatively good responses on  

the specified discontinuities. In this step, small line segments are eliminated, and the numbers of  

the discontinuities are reduced (Figure 9B). The best result achieved uses B-spline method, and  

the number of remained line segments is near to the reference dataset (Figure 9C). 

4.1.2. Quantitative Accuracy Assessment 

In this section, we compared TecLines performance quantitatively on the synthetic DEM with  

a reference image discontinuities map (Figure 8B). For the directional analysis, rose diagrams for all of 

the discontinuities maps are produced (Figure 10). The result of the Hough transform (Figure 10A) has 

the major orientations of E-W and N-S. Also, the minor orientation is indicated in NE-SW. Figure 10B 

shows the E-W and N-S orientation for extracted discontinuities using Tavares-Padilha algorithm.  

The orientation of the final discontinuities map resulted by B-spline method (Figure 10C) is E-W which 

is quite similar to the rose diagram for the reference discontinuities (Figure 10D). 

Figure 10. (A–C): Rose diagrams for discontinuities extracted by Hough transform, 

Tavares-Padilha algorithm and B-spline method, respectively. (D): Rose diagram for 

reference lineament map. 
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We evaluated the length and overall accuracies of the discontinuities summarized in Table 1. These 

results are indicated that B-spline method provides more consistent results than Tavares-Padilha 
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algorithm and Hough transform. There are 21 known lineaments in the synthetic dataset. The total length 

of these features is 1021 m. The number of extracted line segments by using Hough transform is 456 

and the total length of them is 1763 m (Figure 9A). As seen in Figure 9A, 80% of the known 

discontinuities are correctly detected using Hough transform. The percentage of line segments that are 

extracted as false positive is around 55%. After Tavares-Padilha algorithm, the numbers of the discontinuities 

are reduced to 185 line segments with 1320 m total length. (Figure 9B). The length accuracy is improved 

to 85%, while false positive percentage is reduced to 30%. 

Table 1. Quantitative measures obtained by Hough transform, Tavares-Padilha algorithm 

and B-spline method for synthetic dataset. True positive (TP) is the number of correctly 

extracted discontinuities. False positive (FP) is the number of line segments erroneously 

classified as discontinuities. False negative (FN) is the amount of line segments that were 

not classified as discontinuities. 

Method 𝑻𝑷 (m) 𝑭𝑷 (m) FN (m) 
Length Accuracy  

(Matching Percentages) (%) 

Overall 

Accuracy (%) 

Hough Transform 817 946 204 80 60 

Tavares-Padilha 868 452 153 85 72 

B-spline 970 223 51 95 90 

The number of remaining line segments after B-spline method drops to 43 segments. Their total length 

is 1193 m. Figure 9C shows that we detected 20 known linear features from the original 21 features.  

The accuracy assessment shows that 95% of the known discontinuities are detected as true positive and 

5% are detected as false negative. The percentage of discontinuities that are false positives is about 20%. 

According to this result, the accuracy of the results after B-spline is increased to 90%. 

4.2. Experimental Results and Accuracy Assessment Using Real Dataset 

We used statistical tools (frequency, lengths of discontinuities histograms, and azimuth rose 

diagrams) in order to evaluate the performance of Hough transform and polynomial interpolation.  

We analyzed and compared the statistical relationship between the extracted discontinuities and  

a reference discontinuities map (Figure 9A) that is based on manual extraction method. In addition, we 

compared the final result of the TecLines with a discontinuities map that is extracted automatically using 

LINE module of PCI Geomatica [67]. 

To select the optimum set of parameters for Hough transform, we started with initial 81 sets of 

combinations of mentioned parameters, where cutoff (H (%)) ∈ ((300, 500, 700)), the normalization 

factor (𝑇) ∈ ((0.01, 0.05, 0.1)), the minimum distance, pixels, between two edges (FG) ∈  ((1, 3, 5)),  

and the minimum number of pixels that define the length of expected lines segments (ML) ∈  ((3, 5, 10)) 

(Figure 11). The 243 initial discontinuity maps are generated from three input binary edge maps by using 

these sets of parameter combinations. Then, we compared the results and reference map using visual 

interpretation and selected three discontinuity maps, which have been more similar with reference 

dataset, as the best results. In this study, the best results for Hough transform method are produced by: 

H(%) = ((500)), 𝑇 =  ((0.01)), FG =  ((3)), and ML = ((5)). 
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Figure 11. (A–C) The binary edge datasets that are produced by Sobel, LOG and Canny 

edge detection methods and tensor voting, respectively. (D–F): Hough domains from Sobel, 

LOG and Canny binary edge maps, respectively. Points on (D–F) images show peak values 

in matrix H. 

   

(A) (B) (C) 

   

(D) (E) (F) 

HT-derived line segments from three edge map sources demonstrate in Figure 12. The corresponding 

statistics are summarized in Table 2. 

Table 2. Statistics of extracted image discontinuities lenghts, which are derived from the three 

binary edge map sources (Sobel, LOG, and Canny) using TecLines, reference discontinuity map 

(manual extraction) and extracted using LINE module of the PCI Geomatica. 

Parameters 

TecLines Toolbox 

Manually PCI Hough Transform Tavares-Padilha B-Spline 

Sobel LOG Canny Sobel LOG Canny Sobel LOG Canny 

Mean (m) 32 35 22 98 89 96 392 320 288 433 379 

St deviation (m) 45 31 30 112 97 105 145 120 113 275 285 

Sum (km) 75 84 88 56 43 58 42 35 47 44 32 

Min (m) 5 2 2 10 14 9 200 115 114 34 158 

Max (m) 353 256 281 540 372 511 895 695 781 1508 1762 

Count  2324 2362 4043 1481 1298 2725 892 875 1293 101 85 

Range (m) 348 254 279 530 358 502 695 580 667 85 1604 

Median (m) 11 23 10 180 134 173 365 319 275 12 271 
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The second step concerns the identification, and concatenation of line segments to form one long 

discontinuity based on collinearity and proximity. We applied Tavares-Padilha algorithm using 81 sets 

of combination parameters for generating intermediate discontinuities maps. We selected the appropriate 

combination of the parameters by visual interpretation where the maximum distance from line segments 

(MDLS) ∈ ((10, 20, 30)), the maximum azimuth difference (MAD) ∈ ((10, 13, 15)), the radial distance 

(MAD) ∈ ((10, 15, 20)), the opening angle of circle segment (OACS) ∈ ((10, 20, 30)), and the minimum 

length of accepted segment (MLAS) ∈ ((1, 3, 5)). Acceptable results are obtained in this study when we 

set the maximum certain distance from the first line segment less or equal to 20 m. while the maximum 

azimuth difference between the segments is set to 13°. The appropriate radial distance is set to a distance 

of 20 m plus half the line segment length and the opening angle is set to 20°. The intermediate 

discontinuities maps after applying Tavares-Padilha algorithm are displayed in Figure 12. The resultant 

statistics are summarized in Table 2. 

Figure 12. (A–C): Extracted line segments using HT for binary edge data sources from 

Sobel, LOG method and Canny methods, respectively; (D–F): Intermediate discontinuity 

map after applying Tavares-Padilha algorithm; (G–I): Final lineament maps from polynomial 

interpolation using B-spline method for Sobel, LOG and Canny edge data sources, 

respectively. (J): Extracted discontinuities using PCI. 
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Figure 12. Cont. 

   

(G) (H) (I) 

 

(J) 

In the next step for fitting polynomial curve between grouped line segments, we performed B-spline 

method using 243 sets of combination of the parameters, where the acceptable length for the fitted curve 

(ALFC) ∈ ((40, 50, 60)), the maximum distance between line segments (MDBL) ∈ ((15, 20, 25)), the 

maximum azimuth difference between line segments (MADBL)  ∈ ((5, 10, 15)) and the minimum 

accepted length of the line segments (MALL) ∈ ((1, 3, 5)). The best result was achieved when we set the 

length of the extension to 40 m, the maximum distance to 20 m, the maximum azimuth difference to 15°, 

and minimum accepted length of the line segments to 5 m. The final discontinuities maps are displayed in 

Figure 12 and corresponding statistics are summarized in Table 2. 

4.2.1. Qualitative Accuracy Assessment 

As shown in Figure 12 and statistical analysis results summarized in Table 2, linear image 

discontinuities derived from the Sobel, LOG and Canny methods binary edge map sources are similar in 

the general shape and spatial distribution of the extracted discontinuities. The visual comparison of these 

results and a reference map shows the result of the Canny method is more acceptable than the results of 

the other two methods (Figure 12). 

4.2.2. Quantitative Accuracy Assessment 

We compared TecLines performance quantitatively on the real dataset with a reference discontinuities 

map, which is obtained by manual extraction. For the directional analysis, rose diagrams for all of the 

discontinuities maps are produced (Figure 13). The rose diagrams in Figure 13A–C show the similarity 
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in major orientation azimuth for HT line segments from all three data sources. The N-S and E-W 

azimuthal direction are dominant in these rose diagrams, but NE-SW and NW-SE azimuthal directions 

for discontinuities derived automatically from the LOG data source are remarkable. However, these rose 

diagrams indicated that the frequency of the discontinuities in the major orientation is different. The 

highest frequencies in these orientation occurred in the results of the Canny method. The major 

orientations of the Tavares-Padilha algorithm for Sobel and Canny results (Figure 13D,F) are similar, 

which are N-S and E-W. The rose diagram for the LOG data source is indicated by a different pattern in 

the azimuthal orientations, and the azimuthal orientation extended in all directions. The distribution of 

azimuth directions for discontinuities extracted by polynomial interpolation method and a reference 

discontinuity map is similar. The major orientations in TecLines results are NE-SW and E-W azimuthal 

directions, but the frequency of discontinuities in that azimuthal direction in extracted discontinuities by 

TecLines are more than the frequency of discontinuities in manually and automatically (PCI) extracted 

discontinuities. In other words, TecLines is more capable than the visual interpretation method for 

discontinuities mapping, because TecLines is able to detect small discontinuities that cannot be 

recognized by visual discontinuities extracting and mapping. 

Figure 13. (A–C): Rose diagram for extracted line segments by Hough transform from 

binary edge maps produced by Sobel, LOG and Canny methods, respectively; (D–F): Rose 

diagrams for intermediate discontinuities map extracted using Tavares-Padilha algorithm 

from three data sources (Sobel, LOG and Canny); (G–I): Rose diagrams for final 

discontinuities map extracted using B-spline method from three data sources (Sobel, LOG 

and Canny). (J) and (K): Rose diagrams for manually and automatically (PCI) extracted 

discontinuities, respectively. 
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Figure 13. Cont. 

   

(G) (H) (I) 

  

(J) (K) 

The range of length of the final extracted discontinuities using Sobel, LOG and Canny methods are 

695, 580 and 667 m, respectively. As can be seen in Figure 14, the most of the extracted discontinuities 

are between 200 and 400 m in all of the three methods. The discontinuities with length between 200 and 

400 m are 52%, 65% and 68% of the extracted discontinuities using Sobel, LOG and Canny methods, 

respectively. The total number of the extracted discontinuities after applying LINE module is 85 with 

range in length from 158–1762 m, and with a geometric mean length of 379 m. Eighty percent of the 

discontinuities have lengths between 200 and 400 m. 

Figure 15 shows the superimposition of linear image discontinuities extracted from Canny data 

sources and the reference discontinuities, which are extracted manually and automatically by LINE 

algorithm in PCI Geomatica software. There is a good agreement in orientation and position between 

extracted discontinuities using Canny method, the result of the LINE algorithm and the reference map. 

We assessed the length and overall accuracy of the discontinuities and also evaluated the matching 

percentages of the results within a reference fault map specific 50 m buffer zone. The buffer size was 

initially based on the resolution of used dataset (QuickBird with 1 meter resolution). As seen in Table 3, 

the length accuracy (matching percentages) for Sobel, LOG, Canny and PCI approaches are 70%, 61%, 

81% and 72%, respectively. These results are indicated that Canny method correctly extracted 81% of 

the known discontinuities and provides more consistent results than the other methods. However, the 

false positive achieved using PCI is the lowest but the overall accuracy of the Canny method is greater 

than other methods. 
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Figure 14. (A–C): Frequency of extracted discontinuities length by polynomial interpolation 

method from Sobel, LOG and Canny data sources, respectively; (D-F1): Frequency of length 

for automatically (PCI) extracted discontinuities; (D-F2): Enlarged image of (D-F1).  

(E-G1): Frequency of length for manually extracted discontinuities; (E-G2): Enlarge the 

image of (E-G1). 
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Figure 15. Superimposition of discontinuities extrapolated from Canny data sources (black 

lines) and the reference discontinuities, which are manually extracted (green lines), and 

automatically lineaments extracted by PCI Geomatica software (violet lines). 

Table 3. Quantitative measures obtained by TecLines and PCI for panchromatic band of 

QuickBird-2. True positive (TP) is the number of correctly extracted discontinuities. False 

positive (FP) is the number of line segments erroneously classified as discontinuities. False 

negative (FN) is the amount of line segments that were not classified as discontinuities. 

Method 𝑻𝑷 (km) 𝑭𝑷 (km) FN (km) 
Length Accuracy (Matching 

Percentages) (%) 

Overall 

Accuracy (%) 

Sobel 31 11 13 70 62 

LOG 27 8 17 61 56 

Canny 36 9 8 81 73 

PCI 32 6 12 72 67 

An analysis of the processing time is carried out on a MacBook Pro (Intel Core 2 Duo with  

2.66 GHz) with 8 GB of RAM, and with an NVIDIA GeForce 320 M graphics card. Due to the large 

numbers of parameters used, which increases the number of iteration during image discontinuities 

extraction, the average computational costs for every individual step are analyzed. These parameters are 

set as a trade-off between the risk of selecting the wrong discontinuity on the image and the 

computational cost. The average computational costs for every individual step for TecLines (Canny 

method) and PCI Geomatica are shown in Figure 16 and summarized in Table 4. Note that the image 

discontinuity extraction procedure using TecLines consists of seven steps, whilst LINE module of the 

PCI Geomatica performed consists of three steps. Therefore, the total computational time for TecLines 

is more than PCI but in similar steps such as edge detection, performing time for the TecLines is less 

than PCI. In addition, the time necessary for a manual image discontinuities extraction from 

panchromatic band of the QuickBird 2 with 1 m resolution, and using ArcGIS 10 is about 30 min. 
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Figure 16. Comparison of run time between TecLines and PCI steps on the same datasets. 

 

Table 4. Computational time for image discontinuities extraction using TecLines toolbox, 

and LINE module of the PCI Geomatica software. 

Step 
Time (Sec) 

TecLines (Canny) PCI 

Frequency filtering 15 -- 

Edge detection 35 40 

Morphological filtering 20 18 

Tensor voting framework 65 -- 

Hough transform 50 -- 

Grouping discontinuity 20 -- 

Linking discontinuity 35 45 

5. Concluding Remarks 

We developed a new MATLAB based toolbox in order to extract linear image discontinuities from 

satellite images and DEM. In this second paper of a two-paper series on TecLines, we propose  

an innovative approach which combines Hough transform method to extract line segments and 

polynomial curve fitting to linking or merging neighbor line segments and eliminate the small or isolated 

line segments, which have been applied in the part of the north-east of the Afghanistan (Andarab  

fault zone). 

Extracted linear image discontinuities are correlative with the individual fault (Andarab fault) and  

the aggregate fault patterns of Hindukush-Pamir area. Comparing the experimental result with the similar 

automatic (LINE algorithm on PCI software) extraction method shows that the proposed toolbox 

produces a discontinuity map with higher overall accuracy and matching percentage than PCI when 

Canny method is used. Note that the PCI used the Canny method in the edge detection step. In addition, 

the experimental results showed that Canny method correctly extracted 81% of the references 
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discontinuities and provides more consistent results than PCI with a 72% matching percentage. The 

overall accuracies achieved using Canny method and PCI are 73% and 67%, respectively. Note that 

TecLines may produce different results with different accuracies when using other dataset. These results 

prove the applicability of the presented toolbox (TecLines) for automatic extraction of linear image 

discontinuities from satellite images and DEM. 

It should be considered that a high efficiency in the extraction of image discontinuities cannot be 

taken as a proxy for the efficient extraction and statistical analysis of tectonic lineaments. The mapping 

and interpretation of tectonic lineaments is a very complex research field that requires the integration of 

methods and approaches. This procedure includes the interpretation of geological, geomorphological 

and seismological data, which are obtained by multi-scale and multi-temporal analysis. Therefore, 

TecLines can be used as a preliminary tool for extracting linear image discontinuities prior to a more 

detailed investigation. 

Furthermore, the quality and reliability of extracted linear image discontinuities by TecLines are 

improved in spite of noise and partial disconnection without any prior knowledge. A time-consuming 

task is avoided. The experimental results have shown the computational time of the presented toolbox 

with respect to the LINE module of the PCI Geomatica is acceptable. An observation reveals that time 

requirements for edge detection and linking steps, as essential components for the overall efficiency, are 

minimal in comparison to the time required for similar steps in other algorithms. 

The proposed toolbox has the flexibility of allowing users to set parameters to meet application 

requirements. Also, users can write their own MATLAB functions in order to expand the toolbox 

capabilities. The proposed toolbox is available from the TecLines website [68]. This provides new 

opportunities for education and research in tectonic lineament analysis. 
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