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Abstract: There are growing demands for detailed and accurate land cover maps in land 

system research and planning. Macro-scale land cover maps normally cannot satisfy the 

studies that require detailed land cover maps at micro scales. In the meantime, applying 

conventional pixel-based classification methods in classifying high-resolution aerial 

imagery is ineffective to develop high accuracy land-cover maps, especially in spectrally 

heterogeneous and complicated urban areas. Here we present an object-based approach that 

identifies land-cover types from 1-meter resolution aerial orthophotography and a 5-foot 

DEM. Our study area is Tippecanoe County in the State of Indiana, USA, which covers 

about a 1300 km2 land area. We used a countywide aerial photo mosaic and normalized 

digital elevation model as input datasets in this study. We utilized simple algorithms to 

minimize computation time while maintaining relatively high accuracy in land cover 

mapping at a county scale. The aerial photograph was pre-processed using principal 

component transformation to reduce its spectral dimensionality. Vegetation and  

non-vegetation were separated via masks determined by the Normalized Difference 

Vegetation Index. A combination of segmentation algorithms with lower calculation 

intensity was used to generate image objects that fulfill the characteristics selection 

requirements. A hierarchical image object network was formed based on the segmentation 

results and used to assist the image object delineation at different spatial scales. Finally, 

expert knowledge regarding spectral, contextual, and geometrical aspects was employed in 
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image object identification. The resultant land cover map developed with this object-based 

image analysis has more information classes and higher accuracy than that derived with 

pixel-based classification methods. 

Keywords: object-based image analysis; OBIA; orthophoto; land cover classification; 

urban landscape mapping; Indiana 

 

1. Introduction 

Detailed land-cover mapping is an important research topic in land change science and landscape 

planning nowadays. Human activities are constantly changing land cover patterns and influencing 

biophysical processes [1–3]. In turn, human behaviors evolve over time as a result of such human-nature 

interaction in social-ecological systems [4,5]. To estimate urban sprawl and population so as to plan 

transportation and infrastructures accordingly, detailed and accurate Land-Use and Land-Cover 

(LULC) maps generated from high-resolution images are desired in the decision-making process to 

manage sustainable land resources [6,7]. Complexity of heterogeneous land systems and the increasing 

demands for fine-scale land cover mapping challenges classification approaches and techniques for 

detailed land mapping, to support research communities in land-use change [8,9], urban planning [10,11], 

urban environment and ecology [12–14], vegetation managements [2,15–17], impervious surfaces 

mapping [18,19], and urban heat island effects [20,21]. 

Advances in the remote sensing-based data acquisition reveal opportunities for land-cover mapping 

at fine resolution. However, increased sophistication in image processing should be incorporated to 

achieve high mapping/classification accuracy from high-resolution images. Traditional pixel-based 

classification approaches barely suffice the requirement of accurate and detailed land-cover 

classification [14,22–24] due to not accounting for meaningful image objects at different scales and 

resulting in the “salt and pepper” effect/noise (speckles) [3,25–27]. To address the challenges of 

classifying high-resolution remote sensing imagery, researchers are switching from traditional pixel-based 

methods to alternative approaches in image processing, namely the Object-Based Imagery Analysis 

(OBIA) [14,24]. The OBIA approach, advancing in its image segmentation, groups pixels into image 

objects as its basic unit to avoid or minimize “noise” within ground objects. In addition, it integrates 

characteristics within the spectral domain of the high-resolution imagery [28–32]. 

Among all currently available LULC data, the National Land Cover Database (NLCD) and National 

Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) represent the highest spatial 

resolution data that cover the State of Indiana. The NLCD has 30-meter resolution and is generated 

from the Landsat Thematic Mapper (TM) data. NLCD map products are released every five years, 

including NLCD 1992, 2001, 2006 and 2011 [33]. The NASS CDL images with 30-meter resolution 

were produced using satellite imagery from the Landsat 5 TM sensor, Landsat 7 ETM+ sensor, and the 

Indian Remote Sensing RESOURCESAT-1 (IRS-P6) Advanced Wide Field Sensor (AWiFS). The 

images were collected during the growing season by USDA-NASS [34] and for any area that is 

classified as non-agriculture types, using the NLCD data, its original image was masked and replaced 

with the NLCD data. Therefore, although the NASS CDL provides more detailed crop information 
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compared to the NLCD, its non-agricultural information is identical to NLCD. Visual examinations 

revealed that the NLCD maps covering Tippecanoe County of the state of Indiana contain 

misclassified areas when compared to digital aerial orthophotographs. For example, in Figure 1, the 

highlighted forest in the upper left area of the aerial photo was misclassified as woody wetlands in 

NLCD 2006. Also, NLCD 2006 did not distinguish roads and buildings (lower left area in the figure) 

properly in residential areas: some residential buildings were classified as medium intensity developed, 

while other residential buildings and roads were labeled into the low intensity developed class. In 

addition, NLCD 2006 classified a number of cultivated crops (shown in the upper right of the aerial 

photo in Figure 1) as pasture/hay, but did not delineate the accurate shape of the crop fields. The 

misclassification in the NLCD, on one hand, is caused by the relatively lower resolution (30 m) of the 

data sources compared with the 1-meter resolution NAIP data. Pixels with mixed land-cover types or 

with spectral similarity are more likely to be wrongly classified. On the other hand, the classification 

used for the NLCD and CDL are more based on the pixel-based classification approaches, the spatial, 

geometrical, and contextual information of the imagery cannot be extensively employed to assist the 

classification. In addition, the NLCD and CDL products are at national scale, the general rules may not 

apply at local scales.  

Figure 1. A visual comparison of the subset of a digital aerial photograph which was taken 

in 2006, and NLCD 2006 in an area of 6.0 × 7.5 km2. 

 

In this paper, we present our study of high accuracy land-cover mapping using OBIA with 1-meter 

resolution aerial photography at a county scale. We referred to the past experience in OBIA application 

in classifying high-resolution aerial photography at relatively smaller [6,35] and larger [3,9] scales. 
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The image interpretation process for a large area tends to either sacrifice operational efficiency or 

classification quality. Moreover, incorporation of non-spectral image characteristics is often 

computationally demanding. Therefore, considering the tradeoffs among the complexity of 

classification, computational time, and classification accuracy, our study employs OBIA with a serial 

of rule sets consisting of relatively simpler segmentation and classification algorithms to reduce the 

computational complexity and completes a logically intact image recognition process. This OBIA 

classification approach produces a land-cover map with seven land types, including tree, crop, grass, 

water, building, road, and open land/bare soil, and it is useful for researchers to do the parcel-level 

biophysical and socioeconomic studies, such as microclimate analyses, land cover change, and human 

comfort and housing value estimation.  

2. Data and Study Area 

Tippecanoe County is located in north-central Indiana (Figure 2), including 10 cities/towns [36], 

with the total area of 503 square miles (approximate 1300 km2) [37]. The county-wide digital 

orthophoto mosaic of the National Agriculture Imagery Program (NAIP) consists of 47 Digital Orthophoto 

Quarter Quads (DOQQ). The 2010 NAIP data for Indiana were acquired between 18 June 2010 and  

27 August 2010. These images contain four bands, including red (465–676 nm), green (604–664 nm), 

blue (533–587 nm), and near infra-red or NIR (420–492 nm). The spatial resolution of the 

orthophotography is 1 meter, and radiometric resolution is 8 bit, whose digital number (DN) values 

range from 0 to 255. The 2010 NAIP data are available in Tagged Image File Format (TIFF).  

The digital elevation models (DEM) and digital surface models (DSM) were created from the 

Indiana Map Color Orthophotography Project in 2005, and both of them were generated by the State of 

Indiana’s vendor, Earth Data (ISDP 2005). The DEM and DSM data were collected during leaf-off 

conditions in March and April, with 5-foot (1.5 m) spatial resolution. The normalized digital surface 

model (NDSM) we utilized in our study is generated by subtracting the corresponding pixel values in 

the DEM from the DSM [38]. 

Figure 2. The study area is the Tippecanoe County that locates in the northwest quadrant 

of the U.S. state of Indiana. 
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3. Methods 

3.1. Spectral Information of Land-Cover Maps and Image Pre-Processing 

Our methods attempt to distinguish land-cover types between buildings, roads (including parking 

lots and other impervious surfaces), open water (such as rivers, ponds and swimming pools), grass, 

tree (including urban tree and forest), open land/bare soil, and active cropland (cultivated vegetation 

covers for the active agricultural use). Figure 3 shows a series of spectral profiles that were derived 

from target pixels in our study area, where a variety of land cover types display intricate spectral 

characteristics both within and among classes. Therefore, using spectral information alone for land 

cover discrimination is not practical. Furthermore, similar to water bodies, shadows from tree canopies 

or high-rise buildings display low spectral reflectance. Pixel-based classification methods alone would 

misclassify large amounts of pixels and produce salt and pepper effects in the thematic map. To solve 

these two major issues, we pre-processed the original aerial photography using spectral 

transformations to enhance useful information while reducing the image spectral dimensions, and then 

employed OBIA for the image classification process.  

After reprojecting all datasets to the coordinate system of Universal Transverse Mercator (UTM) 

Zone 16 North, North American Datum 1983 (NAD83), we utilized a principal component analysis 

(PCA) function to derive three new bands, which helped to reduce the spectral dimensions of the 

multivariate aerial photography and provided three uncorrelated variables to represent useful 

information (e.g., vegetation covers and imperious surfaces) contained in the RBG bands. The first 

PCA band captured the maximum amount of variation (81%) in the original bands of the aerial 

photograph. The second PCA band that explains 18% of the variance presented high brightness values 

in all vegetation covers, while maintaining variation in brightness values among the different 

vegetation types. The third PCA band (exhibits 1% of the variance) displayed extremely high and low 

brightness values in several specific vegetation types. We also used the Normalized Difference 

Vegetation Index (NDVI) to distinguish vegetation from non-vegetation pixels. We initially assigned 

pixels to vegetation class if their NDVI values were above zero; we recoded these as value “1” and all 

others as value “0”.  

We used the binary NDVI image as a mask to split a PCA image into non-vegetation and vegetation 

parts which helps to reduce the space and time complexity in the object-based classification process. 

Each DOQQ area contains about 6000 × 7500 pixels with 4 bands, which results in more than  

200 megabytes of data for each image. The space complexity does not allow a computer with less than 

16G RAM memory to create more than three layers of segmentation levels for images at such size, and 

the computational time for images at such size highly depends on what feature extraction algorithms 

are used. Therefore, we separated the non-vegetation and vegetation parts in the image in order to 

reduce the computational time and fit the RAM limitation. Besides, we selected as few input image 

layers as possible, and kept as much useful information as possible for the object-based classification. 

For the vegetation part sub image, we chose PCA2 and PCA3 bands as input layers, because both 

bands include distinct vegetation information and exhibit differently in several vegetation types. For 

the non-vegetation part sub image, we selected PCA1, DOQQ band 4 (DOQ4), and NDSM band as 

input layers. This is because the PCA1 band consists of most of the information from aerial 
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photography, and DOQ4 is an NIR band response which contains lower brightness values on 

impervious surfaces such as roads and parking lots. In addition, the NDSM band can assist in elevated 

objects delineation. 

Figure 3. The image spectral response profiles showed that mixtures of spectral 

characteristics exited in the class of buildings and roads, and between different vegetation 

types in the original aerial photography bands and principal component analysis (PCA) 

bands. Lines in the figures with different colors represent different land-cover types. 

(a) The mixture in the spectral response of building and road objects, and the mixture in 

the spectral response of trees, crop and grass objects of 4-band aerial photos. (b) The 

mixture in the spectral response of trees, crop and grass objects of PCA bands. 

(a) 

(b) 
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3.2. Object-Based Image Analysis 

3.2.1. Image Segmentation 

The segmentation process decomposes an image domain into a number of disjoint regions (image 

objects) so that the characteristics of the image objects within each region have high homogeneity and 

strong statistical correlations [14,39]. The segmentation algorithm first identifies a set of starting 

points (seed points) of a segmentation process and then joins contiguous pixels to the seed points if 

they fulfill the homogeneity criteria until certain thresholds are reached [40]. “Scale” is one of the 

important criteria in segmentation process. When the size of a growing region exceeds the threshold 

defined by the scale parameter, the merging process stops. Three criteria are defined in the Definiens 

software (formerly known as eCognition software) to constrain the pixel growing algorithm, namely 

color, shape and scale, to control smoothness and compactness of image objects [41]. Smoothness is 

defined as the ratio of an object’s perimeter to the perimeter of this object’s boundaries that run 

parallel to the image borders [42]; compactness is the ratio of an object’s perimeter to the square root 

of the number of pixels within that image object [40]. 

We used two segmentation algorithms in our study: multi-threshold (MT) segmentation and 

quadtree-based (QT). Although the commonly used multi-resolution (MR) segmentation is effective in 

separating an image into meaningful image objects, its processing time is much longer than that of QT 

and MT segmentation (approximate 10 time longer in our study), especially when it is applied to 

process large datasets. The segmentation algorithms used in this study tend to balance the computation 

time and product accuracy for the data-rich analyses in the complex landscape. MT segmentation splits 

an image object domain according to the pixel value(s) assigned to the thresholds [41]. QT 

segmentation represents images at multiple resolutions based on the pixel values within a given image 

object: the absolute difference of pixel values within the image object is compared with a threshold 

value (a user defined scale parameter). If the absolute difference is greater than the threshold, the 

segmentation process will decompose the image object into four new equally sized squares [43]. 

For images with vegetation portion, we executed the MT segmentation first to: (1) distinguish 

between the pure vegetation objects and mixed image objects; and (2) assign zero values to  

non-vegetation at a super level (coarser level). Secondly, we applied a second MT segmentation to 

extract grass, tree (mainly forest), and shadow objects from the vegetation image objects. Forest 

objects display the highest values in the PCA3 band, followed by grass, and shadows, thus we were 

able to distinguish these three classes by the brightness value of the PCA3 band. After that we utilized 

QT segmentation to split the images into a finer level of image object domains, with different scale 

parameters (Table 1), for both vegetation portions and non-vegetation portions respectively. As a 

result, large and square image objects were generated for areas with low spectral variation within large 

vegetation fields (e.g., regular rectangular crops and grass fields), whereas high spectral variation 

within heterogeneous areas, such as complicated urban centers, were segmented into small, square 

image objects. Because of higher spectral variances among the tree canopies, their image objects 

turned out to be much smaller than the size of crop objects after QT segmentation processes (Figure 4). 

Therefore spectral and spatial characteristics can be further used along with the geometry information 

to separate trees from other vegetation categories. For the non-vegetation part of the image 
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segmentation processes, we employed MT segmentation at the very beginning to extract the water 

class which displays extremely low value in the DOQ4 band. A sub image object level was firstly 

created by QT segmentation, and the second sub image object level was generated by MT 

segmentation to delineate image objects that have above-zero heights by using the NDSM band.  

Table 1. Segmentation methods and parameter settings used in the object-based 

classification procedures. 

 Parameters

Segmentation Methods Domain Scale Band Weight Threshold 

Vegetation Part 

Band Included: 

PCA2; PCA3 

MT1 All pixels 50 PCA2: 1 non-vegetation ≤ 0 

QT1 All pixels 100 PCA2: 1 -- 

MT2 Unclassified 25 PCA3: 1 0 < grass ≤ 18 

QT2 Unclassified 25 
PCA2: 0.5 

PCA3: 0.5 
-- 

Non-vegetation Part 

Band Included: 

PCA1; DOQ4; 

NDSM 

MT1 All pixels 50 DOQ4: 1 
vegetation ≤ 0 

15 < water ≤ 80 

QT All pixels 250 
PCA1: 0.5 

DOQ4: 0.5 
-- 

MT2 All pixels 100 NDSM: 1 non-elevated ≤ 0

Figure 4. The quadtree-based (QT) segmentation partitions an image into objects of trees 

(small squares) and crops (large squares). (a) Image of PCA2 band within a 800 × 1000 

pixels area. (b) After the QT segmentation, most of the large squres represent the crops, 

and most of the small squares represent the trees. The blue squares are the non-vegetation 

image objects with assigned classes, whose borders were inherated from the upper level of 

Multi-threshold (MT) segmentation results. 

 
(a) (b)

3.2.2. Vegetation Classification 

We separated vegetation areas into three categories for each aerial photo: tree, grass, and crop. 

After a close examination of the characteristics of these three vegetation classes, we decided to 
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delineate these vegetation objects using their own distinct spatial and spectral features so that we can 

find the boundaries of each vegetation type. 

In the PCA2 band, a number of crop field objects exhibit extremely high brightness values, while 

other crop field objects display brightness values that are similar to those of trees and grass. In the 

PCA3 band, most tree objects show higher brightness values compared to crops and grass. Therefore, 

we initially delineated the “bright crops” by using brightness values from the PCA2 band 

(Mean_PCA2 > 140). For the remaining unclassified area (trees, grass and “dark crops”), spectral and 

geometry features were used together to delineate objects using a QT segmentation. A QT 

segmentation on the PCA3 band resulted in very small squares for most of the tree objects and larger 

squares for the areas with lower spectral variation, such as crop fields. Our selection criteria 

(Mean_PCA3 ≥ 25 AND Area < 1024 pixels) via observing the samples extracted most of trees from 

the unclassified image objects. Neighbors of tree objects were then merged to the tree class if they 

satisfied certain criteria, including area, relative border to the tree objects, and mean difference to the 

tree objects.  

The grass class was initially separated using an MT segmentation based on brightness values in the 

PCA3 band. Grass objects were merged with neighboring objects that satisfied specified criteria in the 

aspects of size, mean difference, density, and relative border to the grass objects. The merging criteria 

for neighbor objects (relative border to grass class > 0) are area ≥ 4096 pixels and density ≥ 2.  

Density = 
ඥ# ௩ܲ

1 + √VarX + VarY
 (1)

where Pv is the number of pixels; √VarX	+	VarY is the radius of the fitted ellipsoid [41]. 

Density, as formulated in Equation (1), describes the distribution of pixels within an image object [41]. 

Based on this formulation, a perfectly square object has the greatest possible density. As a result, the 

image object merging step grouped most square-shaped grass image objects. With most of the large 

areas of tree and grass identified, the remaining large unclassified image objects were patches of “dark 

crop”. We defined image objects with area ≥ 100,000 pixels as “dark crop”. For the tree classification 

rules, the unclassified objects with mean_PCA3 < 25 were classified as “dark crop”. We applied the 

QT segmentation for the second time with a smaller scale parameter to split the remaining unclassified 

image objects. This process helped to extract the remaining unclassified tree objects at a finer scale. Again, 

these image objects (with Mean_PCA3 ≥ 25 AND Area < 526 pixels) were assigned to the tree class.  

3.2.3. Non-Vegetation Classification 

Four categories were discriminated from the non-vegetation parts of the images: building, road 

(including parking lots and other non-elevated impervious surfaces), water, and open land (soil near 

water) (Figure 5). The most straightforward approach to extract buildings is to identify the elevated 

image objects with relatively regular shapes and certain criteria on the sizes in the segmented NDSM 

layer. We applied the MT segmentation process to the NDSM layer, and assigned elevated objects, 

e.g., elevation > 0 meter, to the building class. However, some elevated objects, such as elevated roads 

(overpass), were also extracted and wrongly assigned to the building class. In addition, the NDSM 

layer is not completely consistent with the aerial photography. The elevation model data were 
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collected earlier (in 2005) than the aerial photos (in 2010). As a result, some buildings shown in the 

NDSM data had been removed at that time of 2010, and are not shown on the aerial photographs. 

Newly constructed buildings after 2005 appear on aerial photographs but not in the NDSM data. In 

either case, the MT segmentation process cannot completely separate all buildings from other 

impervious surfaces, such as roads and parking lots. Moreover, spectral overlapping between roof and 

a number of other image objects (e.g., parking lots) prevented the complete separation of buildings. 

Therefore we have to rely on expert knowledge regarding spatial, textural, and geometric 

characteristics of image objects.  

Figure 5. A binary diagram of the object-based rule used in the classification. 

 

After classifying the vegetation objects, we distinguished the non-vegetated objects. First, we 

identified road and building categories according to their elevation, area, shape and brightness values 

in the PCA1 band. The remaining unclassified image objects were classified based on their spatial 

relationships. Finally, misclassified objects, such as road, building and water, were examined and 

reclassified using their geometry and spatial relationship features. 

The first step in the non-vegetation classification was to extract road image objects. Expert 

knowledge in spatial and spectral features was applied to identify roads. We used the “multi-resolution 

segmentation region grow” (MRSRG) algorithm in three continuous steps to reshape and merge 

segmented image objects based on the MR segmentation criteria [40] (Figure 6). As to the parameter 

settings, the PCA1 band was selected as the only active layer for image object growth. The respective 

homogeneity criteria for each segmentation were: (1) scale = 10,000, shape = 0.1, compactness = 0.5; 

(2) scale = 250, shape = 0.3, compactness = 0.5; and (3) scale = 50, shape = 0.5, compactness = 0.8. 

These three segmentations first targeted large areas with an emphasis on spectral information, then 

smaller areas with an emphasis on object shapes. The last segmentation step merged the objects with 

similar mean brightness values. The results of both MR segmentation) and spectral difference (SD) 

segmentation (growing image objects based on their brightness values with specific criteria) were 

similar. The expert rules for road extraction include mean layer values, geometry, and class-related 

features, demonstrated in Table 2. 
  

TCGWBOR

TCG

TC

T C

CG

C G

WBOR

WO

W O

BR

BC RR

T: Tree 
C: Active cropland 
G: Grass 
W: Water 
B: Building 
R: Road 
O: Open land/bare soil 
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Table 2. Classification Specification for Road Classes. 

Road Class 1 Road Class 2 Road Class 3 Road Class 4 

Mean PCA1 ≥ 320 Mean PCA1 ≥ 350 Density Mean ≤ 1.5 Mean NDSM ≤ 5 
Rel. border to road3 ≥ 0.25 
Mean Absolute difference of 
Mean PCA1 compare to 
road1 ≤ 50 

Density ≤ 1.5 Mean NDSM ≤ 5 Mean PCA1 ≥ 100 

Mean NDSM ≤ 5  Rel. border to road1 > 0 

100 ≤ Area ≤ 10,000  Shape index ≤ 2 

Road Class 5 Road Class 6  

Area ≤ 2000 pixels Mean NDSM ≤ 5  

Mean PCA1 ≥ 300 Rel. border to road5 ≥ 0.4  

Figure 6. The building and road image objects were effectively refined and merged after 

using multi-resolution image region grow algorithm (MRSRG). (a) The building and road 

image objects after quadtree-based segmentation. (b) Image objects after the first time of 

MRSRG with parameters: scale = 10,000, shape = 0.1, compactness = 0.5. (c) Image 

objects after the second time of MRSRG with parameters: scale = 250, shape = 0.3, 

compactness = 0.5. (d) Image objects after the third time of MRSRG with parameters: 

scale = 50, shape = 0.3, compactness = 0.8. 

 
(a) (b)

 
(c) (d)

Building objects are either adjacent to or mixed with the road objects, and elevation and spectral 

information cannot completely separate buildings from road objects. Therefore, we first distinguished 
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building objects based on their NDSM information at the pixel level. The image objects with height 

above zero are assigned to the “elevated” class. Those elevated objects were then merged into building 

objects if they satisfy the criteria listed in Table 3. The feature shape index (shown in the Equation (2)) 

that described the smoothness of an image object’s border was used in extracting compact and smooth 

road segments from building objects. Shape index is calculated from the image object’s border length 

divided by four times the square root of its area [41]. 

Shape index =
bv

4ඥ#Pv

 (2)

where bv is the image object’s border length; 4ඥ#Pv is the border of a square area with Pv number of 

pixels [41].  

Table 3. Classification specification for building classes. 

Building Class 1 Building Class 2 Building Class 3 Building Class 4 

NDSM > 0 (elevated) NDSM > 10 Rel. Border to Building1 > 0 Mean PCA1 > 300 

Mean Absolute difference of 

Mean NDSM compare to 

elevated ≤ 50 

Rel. Border to 

Building1 ≥ 0.5 

Mean Absolute difference of 

Mean PCA1 compare to 

Buildings 1 and 2 ≤ 20 

Density ≥ 1.8 

Density > 1    

Area ≥ 64 pixels    

After applying the above rules, most buildings, roads, water and open land were assigned to the 

corresponding categories. However, a number of road image objects were misclassified as buildings 

either because their mean layer brightness values were similar, or the road objects contained high 

elevation features (e.g., a few patches of overpass and filament road objects have been classified as 

buildings). In addition, multiple road objects (asphalt parking lots) with low reflectance were 

mislabeled and assigned to the water class. Therefore, we also defined and applied separation rules for 

both buildings and water image objects (shown in Table 4). After applying these rules, the 

misclassified objects were reclassified to road. Other remaining small unclassified image objects were 

merged to different classes based on the weight of their relative borders to each category. 

Table 4. Rules for reclassification of mislabeled building image objects and water  

image objects. 

 To Road Class 1 To Road Class 2 To Road Class 3 To Road Class 4 To Road Class 5 

Building 
Class 

Density < 1.2 
Rel. border to 
Road > 0.75 

   

Area ≤ 100 pixels Mean NDSM < 8    

Water 
Class 

Mean NDSM > 0 Area ≤ 500 pixels
Area ≤ 1000 
pixels 

Area ≤ 2000 
pixels 

Area ≤ 5000 
pixels 

Mean PCA1 ≥ 200 
Rel. border to 
Road ≥ 0.5 

 
Rel. border to 
Road > 0.75 

Rel. border to 
Road > 0.25 

    Shape index > 2.5
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4. Results and Discussion 

Our OBIA approach generated a land-cover map of Tippecanoe County in the state of Indiana with 

7 classes. The county examined is composed of 2.64% (34.7 km2) buildings of all kinds; 5.08%  

(66.9 km2) non-building asphalt and concrete; 3.45% (45.4 km2) bare soil/rock; 28.04% (369.4 km2) 

vegetation (14.91% tree/forest and 13.13% grass,); 59.66% (785.7 km2) active cultivated cropland; and 

1.13% (14.9 km2) open water bodies. The classification results of our object-based approach were 

compared against that of traditional pixel-based method with supervised classification. The four-band 

aerial photographs were used as input data for the pixel based method, and the training samples for 

every class were selected by using the experts’ prior knowledge, and the polygons of pixels were 

digitized for those categories. The sample size for the single family residential building is approximate 

50 pixels, and the sample sizes for other categories are least 100 pixels. We used the stratified random 

sampling accuracy assessment with approximate 80 random selected points per class (600 points total) 

to validate the classification results (in ERDAS software). The overall accuracy of our OBIA 

classification results achieved 93% (Table 5), compared to the maximum likelihood pixel based 

method (over all accuracy = 79%) that we tested in our research (Table 6). 

Table 5. Accuracy assessment on classification result using Object-Based Imagery 

Analysis (OBIA). 

 

Kappa 

% 

Reference 

Total Count 

Map Total 

Count 

Number of 

Correct 

Producer’s 

Accuracy (PA) % 

User’s Accuracy 

(UA) % 

Building 84.51 62 72 62 100.00 86.11 

Road 95.40 78 75 72 92.31 96.00 

Tree/Forest 91.81 89 86 80 89.89 93.02 

Grass 87.71 77 84 75 97.40 89.29 

cropland 96.11 159 140 136 85.53 97.14 

Water 88.83 63 70 63 100.00 90.00 

Openland/ 

Bare soil 
96.89 72 73 71 98.61 97.26 

Overall accuracy = 93.17%; Overall Kappa statistics = 91.9%  

Table 6. Accuracy assessment on classification result using pixel-based method. 

 

Kappa 

% 

Reference 

Total Count 

Map Total 

Count 

Number of 

Correct 

Producer’s 

Accuracy (PA) % 

User’s Accuracy 

(UA) % 

Building 60.33 67 82 53 79.10 64.63 

Road 76.50 92 80 64 69.57 80.00 

Tree/Forest 76.31 96 110 88 91.67 80.00 

Grass 75.97 98 94 75 76.53 79.79 

Cropland 82.49 108 90 77 71.30 85.56 

Water 87.07 80 80 71 88.75 88.75 

Openland/ 

Bare soil 
73.25 76 81 62 81.58 76.54 

Overall accuracy = 79.42%; Overall Kappa statistics = 75.95% 
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The OBIA method provided a robust classification result for the fine resolution land-cover 

mapping, and it can be used to facilitate a large amount of researches and managements in terms of the 

landscape planning, regional land-use and land-cover changes, environmental and sustainability as 

noted in the beginning of this paper. By using OBIA classification method for the land-cover mapping 

in our study, we identified three representative areas to demonstrate the benefit of using object-based 

methods (Figure 7, tables 5 and 6). In the pixel-based classification results, “salt and pepper” effects 

were apparent. Also, the crop class was frequently confused with the grass and tree classes using  

pixel-based approaches; buildings are easily misclassified as soil, road, and parking lot. As a result,  

a number of grass areas were incorrectly classified as crops and were frequently located in urban, 

residential areas, and forest areas. The spectral similarities within the different land-cover types 

(especially for those similar materials) cannot be effectively separated them without other 

characteristics from the ground objects. On the other hand, the object-based approach was able to 

separate crops and grass objects, as well as to distinguish shadows from grass. Moreover, the elevation 

model cannot be used directly in the pixel-based method, thus a number of buildings, which had 

similar spectral responses to roads, were classified as road and vice versa. In addition, rivers have low 

spectral reflectance, which is similar to some asphalt roofs and road segments, so they were frequently 

classified as buildings or roads classes. The object-based method integrated NDSM data that can 

extract, group, and reshape elevated objects and separated image objects with comparable brightness value. 

Figure 7. A comparison between pixel-based and object-based classification results.  

The first row shows the image of original DOQQ with RGB band combination display. 

The second row of images is the pixel-based classification results. The third row of image 

is the object-based classification results. Each column shows the same location on the map. 
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Our study area is covered by 47 aerial photo quarter quads with corresponding NDSM datasets, 

totaling 26 Gigabyte of data. In order to reduce the time and memory demands of the class delineation 

process, we conducted a PCA and NDVI transformation on the original four-band data, thus creating 

more compact inputs with useful information. Different band combinations were selected as the input 

layers for object-based image classification of the vegetation and non-vegetation portions of the 

images. In addition, we utilized segmentation algorithms with less computationally demanding  

(QT and MT segmentation methods) to divide image domains into objects and only included features 

that contributed to the object separation. 

QT segmentations at multiple scales were used to extract the tree objects. Using multiple scales 

provides two benefits. First, after applying several scale parameters in the QT segmentation, we found 

that 100 was the best value for the initial segmentation, as it generated moderate sized objects with 

distinctive features. When using scale parameter higher than 100, the QT segmentation did not 

generate adequate objects; when using scale parameter lower than 100, much more information was 

generated and the program terminated due to the overflow of random-access memory (RAM). Second, 

when an image domain contains a specific class of object (e.g., tree canopy objects), we employed QT 

segmentation again with smaller scale parameters to obtain small object squares if their neighbors have 

apparent variance in pixel values. The repeated QT segmentation at finer scales is similar to using 

some types of texture analysis, but with reduced computation cost. One drawback of our method is that 

it produces zigzag edges in many patches of vegetation. This is mainly because of the restricted shape 

(square) of image objects generated in the QT segmentation process. 

We classified vegetation types in an order that mimic the human recognition and mitigate the 

redundancy within the feature extraction processes: first bright colored crops, then trees, followed by 

dark colored crops, and finally grass. In theory, each vegetation type can be discriminated regardless of 

the classification order. However, using a systematic order can enhance the efficiency of the object 

delineation process. For example, the PCA2 band response showed very high brightness values in 

certain crop fields, which we named as “bright crops”. Meanwhile in the PCA3 band, those same 

“bright crops” displayed brightness values similar to the tree class. Therefore, first extracting the 

“bright crops” via mean PCA2 band brightness values helped to reduce confusion in tree class 

discrimination. Most tree areas, especially forest areas, were divided into small square objects due to 

the high spectral variation in the tree canopy pixel values and shadows in the tree canopies. We first 

utilized mean layer values to discriminate tree objects, as grass and shadow objects have low mean 

layer values in the PCA2 and PCA3 bands. Then we examined neighbors of tree objects to identify 

shadow objects. According to their geometry (area) and spatial relationship (relative border to tree) 

features, shadow and tree objects were identified respectively. Finally, the remaining unclassified 

objects with low mean layer value objects were assigned to the grass class.  

During the feature selection and extraction procedures, we used the “multi-resolution segmentation 

region grow” (MRSRG) process to merge image objects. This process is similar to the spectral 

difference (SD) segmentation process that grows neighboring image objects according to their mean 

image layer intensity values and merges neighboring objects based on user-defined spectral difference 

criteria [40]. Although SD segmentation is designed to reshape existing image objects, when it deals 

with large image datasets such as a subset of our study area, the computational time is much greater 

than that of the MRSRG method. After the QT segmentation, we also used density and shape index 
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features to separate buildings and roads. These features yielded more effective and efficient results 

than the “ratio of length to width” feature.  

The NDSM datasets were generated from the 2005 Indiana Map Digital Elevation and Surface 

Models. Due to a discrepancy in the time of measurement, the 2010 NAIP data are not completely 

comparable with the NDSM data. Identification of missing and recently constructed building objects 

requires additional datasets. Furthermore, the inaccuracy of elevation data in the NDSM dataset 

introduced error when comparing the heights among objects. A few water objects, such as ponds, 

displayed a positive value, while a number of the elevated objects and roads have negative value on the 

NDSM layer. Inaccurate elevation information resulted in the misclassification of a few image objects. 

We did not use NDSM datasets for tree delineation because the NDSM datasets have a spatial 

resolution of 5 feet, which was not fine enough to capture the elevation of trees in our study area.  

5. Conclusions  

The object-based approach was used to classify high-resolution aerial photography and ancillary 

elevation data for relatively more detailed land cover mapping. The classification results show that this 

approach is more effective than pixel-based methods in terms of classification accuracy. While only 

spectral reflectance is considered in pixel-based approaches, the OBIA method utilizes multiple 

segmentation algorithms that help improve classification accuracy. Using elevation and spatial 

relationship information, image objects with similar spectral responses can be effectively differentiated 

and assigned to corresponding classes. This study also demonstrates an efficient method for land-cover 

mapping with very high spatial resolution images at a relatively broader spatial scale. Spectral 

transformation and separation of the land type within the imagery can be performed to reduce 

complexity and work load during the OBIA process. These are essential procedures to maintain 

reasonable computational cost while processing large-area high-resolution images. Parameters used in 

the rule sets are sample values specifically for the study area we chose, and may vary for other 

locations of interest, but the similar principles and procedures can be applied to other areas. Using 

additional ancillary data, such as 1-meter resolution LiDAR (Light Detection and Ranging) may 

further help generate more accurate land-cover maps, which is among our planned future work.  
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