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Abstract: This paper presents a hybrid ensemble method that is comprised of a sequential 

and a parallel architecture for the classification of tree genus using LiDAR (Light 

Detection and Ranging) data. The two classifiers use different sets of features: (1) features 

derived from geometric information, and (2) features derived from vertical profiles using 

Random Forests as the base classifier. This classification result is also compared with that 

obtained by replacing the base classifier by LDA (Linear Discriminant Analysis), kNN  

(k Nearest Neighbor) and SVM (Support Vector Machine). The uniqueness of this research 

is in the development, implementation and application of three main ideas: (1) the hybrid 

ensemble method, which aims to improve classification accuracy, (2) a pseudo-margin 

criterion for assessing the quality of predictions and (3) an automatic feature reduction 

method using results drawn from Random Forests. An additional point-density analysis is 

performed to study the influence of decreased point density on classification accuracy 

results. By using Random Forests as the base classifier, the average classification accuracies 

for the geometric classifier and vertical profile classifier are 88.0% and 88.8%, respectively,  
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with improvement to 91.2% using the ensemble method. The training genera include pine, 

poplar, and maple within a study area located north of Thessalon, Ontario, Canada. 

Keywords: LiDAR; ensemble classification; tree genera; Random Forests  

 

1. Introduction 

Tree genera or species identification is crucial in many environmental studies. Methods to obtain such 

information include field validation, aerial photo interpretation, the use of hyperspectral sensors and  

others [1,2] However, the ability of airborne LiDAR to acquire 3D information has drawn much attention 

to the potential to augment or replace other methods, for example: [3–10]. The objective of this paper is to 

discuss and apply the classification of tree genera obtained from a LiDAR sensor using an ensemble 

method, using two types of features that are developed independently and then combined sequentially 

and in parallel.  

An ensemble method in classification is the training of multiple (base) classifiers to solve the same 

problem. Ensemble classification in different disciplines has been called committee-based learning, 

multiple classifier systems, or the mixture of experts [11–13]. Base classifiers refer to individual 

classifiers used to construct ensemble classifiers, where training can be done separately for each. The 

final classification decision combines the predictions of multiple base classifiers. There are two 

motivations for using an ensemble classification for this project; the first is to increase classification 

accuracy and the second is to design a framework allowing the training of tree samples using two sets 

of features derived from different perspectives.  

Ensemble classification not only combines decisions from different classifiers, but also provides a 

useful tool for combining multisource remote sensing data [14], or different types of information, such 

as spatial and spectral information [15]. The two main ways of combining classifiers are parallel and 

sequential [13]. For parallel ensemble, base classifiers are trained in parallel (e.g., bootstrap 

aggregating, or bagging [16]) with a final decision made by majority or weighted voting [17]. For 

sequential ensemble, base classifiers are trained sequentially (e.g., boosting [18]). Parallel and 

sequential ensemble can be applied separately [19,20] or combined as in bagboosting [21]. The major 

criterion for an effective ensemble system is to provide an increase in classification accuracy [22–24]; 

examples of such studies in remote sensing where accuracies have increased include [11,24–27]. 

Ensemble classification works best when the base classifiers are diverse, a condition that can be 

achieved by using different sets of features or different subsets of training data [28]. Ideally the data 

should be subset to train the base classifiers separately with different datasets, but due to a limited 

amount of data, our classifiers are trained with the same training data. However, the diversity of our 

ensemble is increased by using two different sets of features. One of the biggest challenges of using 

the ensemble method is to design how the classifiers should be combined, and a method is proposed 

here that incorporates the use of both parallel and sequential ensemble methods. 

Random Forests were chosen for running the base classifier [29,30]. In [29] margin was calculated 

as a measure of the confidence of prediction, which required, however, knowing the true class, 

normally obtained by field verification. In our hybrid ensemble, “pseudo-margin” is proposed as a 
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measurement of the confidence of prediction, where field validation data is not necessary. In [29] two 

means of measurements for measuring feature importance are used: the first, the mean decrease 

accuracy (MDA), and the second, the Gini index. Both provide good insight into which features play a 

more significant role in the classification, but the number of features that should be used for 

classification remains subjective. In our research, an automatic method for choosing an optimal number 

of features for classification using Random Forests output is provided, avoiding this subjectivity.  

In this research, two different sets of features for the two base classifiers are calculated. The first set of 

features used for classification is derived from the geometry of the LiDAR point distribution reflected from 

the tree. Previous studies with a similar approach for obtaining tree species/genera metrics include [4]  

and [6], both fitting curved surfaces to the individual LiDAR tree crowns to obtain characteristic shape 

metrics. In [31–33] the alpha shapes of tree crowns were computed and metrics from the shapes 

obtained for tree species classification; in particular, in [31] a classification rate of 78% was shown for 

Scot pine, Norway spruce and deciduous trees. The second set of features is derived from the vertical 

profile of the reflected LiDAR points, including the statistics summarizing the point distribution within 

specific height percentiles or the entire profile. Examples of research using the vertical distribution of 

height and/or intensity include [3], in which classified Norway spruce and Scots pine were classified 

with an accuracy of 95%, [5], in which oak, red maple and yellow poplar were classified with an 

accuracy of 64%; [8] and [34], in which there was an accuracy of 74% for classifying spruce, birch and 

aspen, and 88% for classifying large Norway spruce and birch trees. Further, in [9] an accuracy of up 

to 90% was achieved classifying Scots pine, and in [10] eight deciduous were distinguished from 

seven coniferous genera with up to 74.9% classification accuracy. 

In our previous work, 24 features were derived based on geometric information [35]; a full list of 

geometric and vertical profile features (a total of 78) can be found in [36]. Subsequently, the number of 

features was reduced to six and 26 respectively, and an ensemble method was introduced that 

combines the two classifiers and improves classification results. In [32] and [37] it was demonstrated 

that the accuracy in estimating tree attributes decreases when the pulse density decreases; thus an 

additional density sensitivity analysis was performed to assess the lower limit for the suggested 

classification scheme. In summary, detailed discussions of the following topics form the basis for this 

paper: (1) an automatic feature selection method from the output of Random Forests, (2) using  

pseudo-margin and ensemble classification for improving classification accuracy, and (3) study the 

relationship between LiDAR point density and classification accuracy. 

2. Study Area and Data 

The field sites are located north of Thessalon, about 75 km east of Sault Ste. Marie, Ontario, 

Canada. There are eight field sites including one site along an electricity transmission line right-of-way 

(ROW) and seven other woodlots in the surrounding area named Poplar1, Poplar2, Maple1, Maple2, 

Maple3, Pine1, Pine2 and Corridor (Figure 1). During field validation performed between 30 July and  

12 August 2009 and 8–10 August 2011, we identified white birch (Betula papyrifera Marsh.), balsam fir 

(Abies balsamea (L.)), sugar maple (Acer saccharum Marsh.), red oak (Quercus rubra L.), jack pine 

(Pinus banksiana Lamb.), trembling aspen (Populus tremuloides), white pine (Pinus strobus L.), and 

white spruce (Picea glauca (Moench Voss)). Tree height and dbh of each tree was measured; we also 
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recorded the location of the tree using a handheld GPS for the verification of location in the LiDAR data. 

We field validated 189 trees, of which 160 belong to the genera of interest (pine, poplar and maple).  

Figure 1. Map of the study area and the locations of the eight field survey sites.  

 

LiDAR data was collected on 7 August 2009 using a Riegl LMS-Q560 scanner; the flight altitude 

varied from 122·m to 250 m above ground level. The pulse density is about 40 pulses·m−2 with up to 

five returns per pulse. Individual trees were isolated from the LiDAR scene at the original pulse 

density and then the density of points was reduced to 20, 10, 5, 2.5 and 1.25 pulses·m−2. Pulse return 

examples for pine, poplar, and maple trees for 40 and 1.25 pulses·m−2 scans are shown in Figure 2. 

Figure 2. Return distribution examples of maple (a) at 40 pulses·m−2, maple (b) at 

1.25 pulses·m−2, pine (c) at 40 pulses·m−2, pine (d) at 1.25 pulses·m−2, poplar (e) trees at 

40 pulses·m−2 and poplar (f) trees at 1.25 pulses·m−2.  

  

3. Methods  

3.1. Overview of the Methodology 

Geometric features were derived by clustering LiDAR point clouds that represent individual trees. 

The merging-splitting algorithm that groups representative points (belonging to a single branch) into a 
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common cluster is described in [35], best-fit lines passing through each cluster centroid are drawn and 

the characteristics of those lines are calculated. The features also include metrics related to the convex 

hull of the LiDAR point cloud and 3D buffering of individual points. The second set of features 

(height attributes and intensity attributes) summarizes the properties of the vertical point distribution 

within each tree crown, including the mean, standard deviation, coefficient of variation, kurtosis and 

skewness of the height and intensity distribution for the entire crown. Each tree is height normalized 

and segmented into 10 slices stacked vertically. The 10th percentile features represent the LiDAR 

points belonging to the bottom 10th percentile of the tree crown height, whereas the 90th percentile 

features represents the points located at the top of the tree. Features include “first of many” returns, 

“single return” and “last of many” returns.  

There are originally 24 geometric features and 78 vertical profile features derived for each tree.  

To reduce the model complexity and improve classification efficiency, the numbers of features were 

reduced to 6 and 26 respectively; the method of feature reduction is discussed in Section 2.3. By using 

Random Forests, LDA, kNN and SVM as the base classifiers, the classification was performed 

separately and then jointly. SVM is a supervised classifier that maximizes the distance from the data to 

the decision boundaries [19]. To train the data into kernel space, we have used the linear kernel function; 

the method we use to find the separating hyperplane is Sequential Minimal Optimization (SMO).  

The multiclass classifier was built based on a one-versus-all relation and to combine the base 

classifiers; the final decision was made by the largest number of votes.  

The ensemble model uses a geometric classifier as the first classifier, followed by a combination of the 

geometric and vertical profile classifiers. In this paper, the relationship between classification accuracies 

and point density was also investigated by performing the classification with reduced point densities. 

3.2. Random Forests  

Random Forests itself is an ensemble classifier; it combines many classifications (categorical data) 

or regression trees (continuous data) for making a final labeling decision (class labels) [29,30] or 

predictions (values). The classification algorithm was implemented within the randomForest package 

for R [29,38]. In Random Forests, a certain portion (typically 37%) of training data is partitioned for 

estimating the classification accuracy and the partitioned data is called the out-of-bag (OOB) data, 

whereas using the rest of the data (in-bag) is used for tree construction. The importance of each feature 

can be calculated as follows: first, by estimating the OOB error from a classification tree, e; second, by 

random permutation the fth feature will produce a new OOB error ef; and third, by the MDA value for 

each feature, calculated by ef – e. This value is averaged over all trees and normalized by the standard 

deviation. If a feature has large MDA, it is a more important feature. Additionally, the proportion of 

vote and margin for each LiDAR tree were calculated and recorded. Some examples of remote sensing 

studies using Random Forests as classifiers are [39] for land type classification using LiDAR height 

and intensity metrics, [40] for crop classification and [28], which mapped seven types of forests using 

Random Forests with features derived from LiDAR and aerial photographs. Some studies compared 

the classification results with several classifiers, including Random Forests: Such as [26] classifying 

coniferous, deciduous, mixed and other classes with Random Forests, SVM and decision trees, and [41], 

which used Random Forests and SVM for studying the influence of spatial resolution on the derived 
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maps. In this manuscript we focus our study using Random Forests and also compare results among 

LDA, kNN and SVM. Let ⊂  be the features selected for classification, y be a predicted class 

label such that y ∈ L. According to [42], the binary indicator variable for voting the L instances with 

given X, can be written as ( | ). Adapted from their notation, the average vote for a LiDAR tree to 

be assigned as one of the classes can be defined as Equation (1), the summation of all votes for the 

particular class divided by the number of classifiers (T) that make this decision: ( ) = 1 ( | ) , where ⊂  (1)

The final label (y*) is decided by the majority voting (MV) scheme over T base classifiers described 

by Equation (2): ∗ = ( ) = argmax∈ 1 ( | ) (2)

For the partitioned training data, one can obtain the margin, described by [7] as: ( ) = 1 ( = | ) − max 1 ( | )  (3)

The margin is defined as the distance from the data point to the decision boundary. In Random 

Forests, the margin is recorded as the proportion of votes for the correct class minus the maximum 

proportion of the incorrect classes. The larger the value of MG(X), the more confident one is of the 

correctness of the classification, whereas a negative margin indicates an incorrect prediction. Thus, the 

margin becomes an important indicator to evaluate the quality of label prediction provided by Random 

Forests. Such a post-evaluation of the label prediction often plays a key role to confirm or modify 

current decision outcomes in an iterative inference such as on-line learning [43], active learning [44], 

and combining multiple decision outcomes [45], as is discussed in our study.  

The measurement of the margin requires the field-validated data or the reference data, Y. This 

makes MG only available for evaluating classification containing the reference information, and not 

applicable for evaluating the classification with prediction, where Y is normally not known prior to the 

classification. In order to assess the confidence of prediction without using the field validated data, we 

propose a new concept of pseudo-margin (PG). PG measures a degree of confidence in label prediction 

with unseen test data. Instead, PG assumes that the correct class label is supported by the maximum 

proportion of the vote (label prediction) and its confidence is evaluated by measuring the difference 

between the first and second majority votes using Equation (1). Thus, PG over the test sample X is now 

described as below: ( ) = max∈ 1 ( | ) − second_max∈ 1 ( | ) (4)

For our ensemble model, we use PG(X) for estimating the confidence of prediction instead of 

MG(X) to improve the usability of the model. To interpret PG(X), the larger the value, the more 

confidence can be placed on the prediction and the value of PG(X) will always be positive. This value 
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will be used to filter out LiDAR trees that potentially exhibit incorrect classification from the first 

classifier and will be fully discussed in Section 2.4.  

The main input parameters to Random Forests include: (1) labeled training samples, (2) the number 

of feature variables randomly sampled at each split (mtry = 2 for the geometric classifier and 5 for the 

vertical profile classifier), (3) the number of trees generated within each iteration (ntree = 1000 for this 

example), and (4) minimum size of terminal nodes (nodesize = 1 for this example). These values were 

set according to the suggestion from [38] where ntree is a large number; mtry ≈ square root of the 

number of feautres and nodesize = 1 is the default for classification trees. Random Forests produces the 

following output: (1) a ranking of each feature variable's importance calculated by MDA measured 

using OOB data, (2) a randomForest classification object for testing the validation data, and (3) vote 

and margin calculated for every LiDAR tree and class. 

3.3. Feature Reduction  

In order to simplify the base classifiers, the number of features was reduced by an automatic feature 

reduction method. Feature reduction for each classifier was performed in two steps. The first is to 

remove the highly correlated features to avoid issues of multi-collinearity. This initial reduction was 

conducted by calculating the pairwise correlation table and then removing features with r > 0.85, an 

empirically-determined threshold. The second step was performed in order to conduct a more rigorous 

feature reduction over the initial filtering results by Sequential Backward Selection (SBS) [46,47]. In 

SBS, a user-defined objective function J is needed to assess the performance of the feature subset; the 

optimal subset of features can be chosen by removing one least important feature at a time, starting 

with the full feature set until a single feature remains. By either maximizing or minimizing the 

objective function, the optimal number of features can be finally determined.  

In our current study, SBS was modified to make it more suitable for the Random Forests 

applications by introducing a new objective function for optimally reducing the feature dimensionality. 

The goal of the objective function J is to determine the best partition between the number of features to 

be removed from the full feature set and the number of features which should remain. The MDA, 

discussed in Section 2.2, was employed as a criterion for identifying the optimum number of features 

chosen without a subjective cut-off in SBS.  

All features were ranked in descending order, with which the cumulative MDA values were 

calculated separately for both geometric and vertical profile classifiers. Then, by removing one least 

important feature at a time, new cumulative MDA values can be obtained, until only one feature is left 

in each classifier. In the next step, we analyzed the changes in slopes of the cumulative MDA values 

by plotting them against the number of features being removed (circles in Figure 3). Both graphs (one 

for geometric features and one for vertical profile features) show that the cumulative MDA values 

decrease as the number of features removed increases. In both graphs, the decreasing rate increases 

because the important features are being removed later and at a certain point, the decreasing rate is 

abruptly changed when a significant feature starts to be eliminated. This property was adopted for the 

feature reduction. 
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Figure 3. Cumulative MDA (mean decrease accuracy) values for geometric classifiers (a) 

and cumulative MDA values for vertical profile classifiers (b); the residual sum of squares 

residual for fitting two linear lines through the cumulative MDA curve; dotted line shows 

where the residual sum of square minimizes. Solid lines represent li and lj at optimized J. 

 

The objective function J was derived from the fitting of two linear functions through each curve.  

The first line li regresses through the cumulative MDA values that are being removed from SBS, while, the 

second line lj will regresses through the cumulative MDA values remaining for each classifier. Let li be the 

linear function through the 1st to nth values and lj be the linear function through the nth to fth values 

such that Pi and Pj be the predicted MDA for the best fit line of li and lj. The rate of change for li and lj 

measures the relative importance of the removed feature with respect to the rest of the features.  

The optimum fitting was then found by minimizing the residual sum of squares from each point to the 

lines Equation (5), where the cumulative MDA measured at kth feature is denoted as A(k). The result 

of the analysis for the geometric classifier is shown in Figure 3a and result of the vertical profile 

classifier is shown in Figure 3b. = ( − ( )) + − ( )  (5)

In Figure 3a, the result demonstrates that the best subset of features should be chosen when 13 

features are removed (6 remaining) for the geometric classifier. In Figure 3b, the result demonstrates 

that the best subset of feature should be chosen when 39 features are removed (26 remaining) for the 

vertical profile classifier. The optimal number of features was chosen when the sum of residuals 

minimizes for both graphs, meaning this partition is best represented by two linear functions.  
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3.4. Geometric Classifier, Vertical Profile Classifier and Ensemble Methods  

The objective of this section is to construct the ensemble classifier, jointly using sequential and 

parallel schemes. The ensemble classification combines the geometric features and vertical profile 

features and hence improves classification accuracy. Our model is dubbed a “hybrid ensemble” system 

because it combines the benefits of sequential and parallel approaches. As mentioned, the base 

classifier for this hybrid system is Random Forests; in Random Forests 25% of the randomly selected 

(stratified by class size) data were partitioned for training the classifier while the remaining data (75%) 

was partitioned for validation. This 25:75 ratio was chosen based on [35] and this process was repeated 

20 times with 20 different sets of training and validation samples to achieve an average accuracy for 

each classifier. Figure 4 illustrates an overall workflow of the hybrid ensemble classification system.  

First, the ensemble model was constructed to combine decisions sequentially and then in parallel.  

The reason for this two-step process was to minimize the amount of processing time when the number 

of samples is large. Instead of analyzing all the trees using two sets of features, trees that have higher 

prediction confidence will be filtered out and the decision made by the first classifier will be simply 

accepted. Hence, only the trees that are considered problematic will be classified using both classifiers, 

increasing the overall efficiency of the classification process. Therefore, the main objective of the first 

classifier is to filter out the trees that have a higher chance for misclassification and pass those to the 

second step. This step is performed by using a parameter σ from the PG(X) calculated from the testing 

data where σ is obtained from the distribution of MG(X) exhibited from the training data. This is an 

automated process and the estimation of σ is further discussed in section 2.5. The objective of the second 

classification procedure (parallel) is to combine decisions made from two classifiers for those filtered 

trees; the classifier with a higher calculated PG(X) will be responsible for the final decision (Figure 4). 

This second step considers both classifiers instead of simply taking the decision made by the second 

classifier, in case the first classifier is a better classifier; in that situation the final decision can be reverted.  

Three experiments have been conducted in order to understand the hybrid ensemble system that has 

been developed. In the first experiment, classification accuracies are compared using the geometric 

classifier as the first classifier for filtering trees, followed by parallel ensemble classification as 

suggested in Figure 4, and using the vertical profile classifier as the first classifier, followed by parallel 

ensemble classification. The results for both experiments are elucidated in Table 5. 

For the second experiment, the performances of different base classifiers are tested. Classification is 

performed using Random Forests, LDA, kNN and SVM with geometric features (geometric classifier) 

and vertical profile features (vertical profile classifier), separately and then combined. Features from 

each classifier are selected using the feature selection procedure (Section 2.3). However, the ensemble 

model that uses LDA, kNN and SVM as base classifiers is obtained from average voting rather than 

our proposed model, because the suggested ensemble model involves using the margins obtained from 

Random Forests (Equations (3) and (4)) that are not present in the LDA, kNN and SVM classifiers.  

The third experiment explores the relationship between classification accuracies with the change in 

point density. The densities of individual trees are reduced by removing every other point (with respect 

to GPS time recorded by the scanner). Therefore, each LiDAR tree will have its original density level  

(40 pulses·m2), and reduced to 20 pulses·m2, 10 pulses·m2, 5 pulses·m2, 2.5 pulses·m2 and 1.25 pulses·m2. 

The classification procedures (individual classifiers, separately and jointly) are repeated for the 
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different density levels. For each experiment and scenario, the ensemble processes are repeated 20 

times and mean ensemble classification accuracy is obtained for each case.  

Figure 4. Summary of the ensemble method using the geometric classifier as first 

classifier: MGg and MGv indicate the margin obtained from the geometric and the vertical 

profile classifiers, respectively; Vg and Vv represent the vote proportions obtained from the 

geometric and vertical profile classifiers, respectively; Yg* and Yv
* correspond to the final 

predictions from geometric and vertical profile classifiers respectively. 

 

3.5. Parameter σ Estimation  

As discussed in Section 2.4, σ is a parameter for separating trees that are selectively classified by 

different classification processes; it is a threshold designed for filtering the potential misclassified 

trees. The value for σ can range from 0 to 1; as σ approach 0, all trees will accept decisions made by 

the first classifier and none require a second classifier. Conversely, as σ approach 1, all trees will 

require the judgments from both classifiers.  

In order to objectively and automatically decide on a threshold value, σ, from the training data,  

the following method is proposed. The MG(X) distribution of the training data is examined by plotting 

the frequency distribution of the margin calculated from the training data. To associate the relationship 

between MG(X) and classification accuracy, the distribution is classified into two groups using 80% as 

an example displayed in Figure 5a. To interpret the 80%—it is the acceptable estimated classification 

accuracy for filtering trees from the first classifier in Figure 4. By changing this value the margin 

distribution in Figure 5a will not change since the margin distribution is independent of acceptable 

classification accuracy,  rather how it is being grouped (the black and grey bars) will alter. Figure 5a 

shows the frequency distribution of MG(X) calculated from the training samples, grouped by correctly 

classified for at least 80% (and less than 80%) with 20 randomly selected sample subsets. 

The goal of making this plot is to select an optimal margin value σ that best separates between 

these two groups and uses this value for filtering. The two groups from Figure 5a are treated as 

two different distributions and normalized by the total frequency. This is done because the 

total frequency count of the less-than-80%-chance-correctly-classified group is much less than the  
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more-than-80%-chance-correctly-classified group. However, both distributions have been treated as 

equally important. Using Figure 5b, the optimal σ is chosen by treating this graph as a binary 

classification problem using a threshold. The optimal partition is estimated by testing different values of 

σ so that the total incorrect margin (frequency × width of the histogram bar) is minimized-tested over 

different σ values. For example, if σ = 0.25, the black bars with values larger than 0.25 correspond to a 

margin for incorrect classification (less than 80% chance) and the grey bars with values smaller than 

0.45 correspond to a margin for incorrect classification (more than 80% chance). The total incorrect 

classification is the sum of these two values. Using this method, σ = 0, 0.05, …, 1.00 is tested and the 

margin for incorrect classification for each σ is recorded with the objective to minimize the total 

incorrect margin. Figure 5c shows that the total incorrect classification minimizes at σ = 0.45 with this 

given dataset. 

Figure 5. Frequency distribution of the LiDAR (Light Detection and Ranging) trees that 

are correctly classified for at least 80% (and less than 80%) with 20 randomly selected 

sample subsets (a). Normalized frequency distribution of (a) is shown in (b). Margin for 

incorrect classification (for more and less than 80% chance) and total margin for incorrect 

classification at different σ (c).  

 
  

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

Margin

F
re

qu
en

cy

 

 

Less than 80% chance classified correctly using training data

More than 80% chance classified correctly using training data

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

Margin

N
or

m
al

iz
ed

 F
re

qu
en

cy

 

 

Less than 80% chance classified correctly using training data

More than 80% chance classified correctly using training data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

Different values of 

M
ar

gi
n

 

 

Margin for incorrect classification (less than 80% chance)

Margin for incorrect classification (more than 80% chance)

Total incorrect classification

(a)

-1
(b)

Maximum of 0.54

-1

(c)

σ



Remote Sens. 2014, 6 11236 

 

 

4. Results and Discussion  

In this paper, an ensemble method is employed to combine features derived from the geometry of 

LiDAR points reflected from individual trees with features derived from vertical point distribution.  

The advantage of using geometric features is that these features relate closely to the biophysical 

interpretation of trees, with the advantage of vertical profile that they are computationally simple.  

The proposed classification method is useful in many environmental applications since genera 

identification is one of the most critical parameters, especially when performing an inventory of the 

individual tree resolution. Examples of applications include supplementing information for existing 

forest inventories and for commercial or non-commercial forest management purposes. Improved 

classification accuracies also improve estimates of forest parameters such as for carbon budgets and 

biomass volumes. Also, our method can be useful in vegetation management near human infrastructure, 

or for urban planning purposes.  

4.1. Selected Feature Tables 

From the feature reduction experiment using the geometric classifier, the numbers of features have 

been reduced from 24 to 6 and from 78 to 26 for the vertical profile classifier. The list of selected 

geometric classifier features are shown in Table 1 and the list of selected vertical profile classifier 

features are shown in Table 2. 

Table 1. List of selected geometric features. 

No.  Description  

F1 Average derived best bit line segment lengths divided by tree height 

F2  Average line segment lengths multiplied by the ratio between tree crown height and tree height 

F3  Volume of the tree crown convex hull divided by the number of points in the crown 

F4 Average distance from each point to the closest facet of the convex hull  

F5. 

Buffer each LiDAR point outward at a radius of 2% of the tree height, calculate the overlapped 

volume of the spheres divided by the number of points in the tree crown  

F6 Tree crown height divided by the tree height 

Table 2. List of selected vertical profile features, F = first; S = single; L = last;  

SD = standard deviation; CV = coefficient of variation. 

10th Percentile 50th Percentile 90th Percentile

% of canopy return (V1S, V2L) 

% return count (V3F, V4S, V5L)   % return count(V6F, V7S, V8L)

Mean height of canopy return (V9F, V10L) 

    SD of height (V11F, V12S)

SD height for canopy return (V13F, V14L) 

CV height for canopy return (V15F, V16S) 

Kurtosis of variation height for canopy return (V17S, V18L) 

Skewness of variation height for canopy return (V19S, V20L) 

Mean intensity (V21L)   Mean intensity (V22F, V23S)

SD of intensity (V24F)     

CV intensity of canopy return (V25L) 

Skewness of variation intensity of canopy return (V26S) 
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4.2. Classification Performance 

By using Random Forests as a base classifier, the classification accuracies using geometric features 

and vertical profile features separately are 88.0% and 88.8%, respectively. When the base classifier is 

replaced by LDA, the classification accuracies are 85.6% and 78.0%, if replaced by kNN, the 

classification accuracies are 85.3% and 70.9%, and if replaced by SVM, the classification accuracies are 

79.1% and 80.4% when using geometric and vertical profile features independently. The classification 

accuracy improves to 91.2% using the ensemble method when running Random Forests as the base 

classifier and using the geometric classifier first for filtering LiDAR trees; the classification accuracy is 

90.3% when vertical profile classifier is run first. The ensemble classification accuracy from LDA is 

89.4%, 85.6% if kNN is being used and 88.7% if SVM is being used. The results are summarized in 

Table 3.  

The classification accuracies from using geometric features alone is lowest in SVM and highest in 

Random Forests, the classification accuracies from using vertical profile alone is lowest in kNN and 

highest in Random Forests. Random Forests produces the best results over all other classification 

scenarios when geometric or vertical features are used independently or jointly in our ensemble 

classification. All four methods indicate that by combining both feature classes, the classification 

accuracy can be increased. The comparison of classification accuracies among different base classifiers 

(Random Forests, LDA, kNN, and SVM) indicates that Random Forests is an efficient classifier that 

outperforms the other three.  

Table 3. Classification accuracies (%) with using different base classifiers. 

 Geometric Vertical Ensemble 

Random Forests 88.0 88.8 91.2 

LDA 85.6 78.0 89.4 

kNN 85.3 70.9 85.6 

SVM 79.1 80.4 88.7 

With a focus on the analyses using Random Forests as the base classifier, the confusion matrix for 

classification by geometric and vertical profile is provided in Table 4. The confusion matrix for the 

ensemble classification results is shown in Table 5. The confusion matrices are computed by using 75% of 

the 160 LiDAR trees for classification, repeated 20 times, with results of 2400 trees assessed.  

When individual classifiers are compared (Table 4), both classifiers have the largest errors when 

trying to separate pine from poplar; this is attributed to the similarity between the vertical point 

distributions for pine and poplar, with points located mostly at the top of the tree crown. For the 

geometric classifier, the ratio between the tree crown height and tree height for both genera are also 

similar, again resulting in confusion. Conversely, highest accuracy is observed in maple classification 

by both classifiers.  

By comparing the results from the geometric classifier alone with the ensemble classification using 

the geometric classifier as the first classifier and results from the vertical profile classifier alone with the 

ensemble classification using the vertical profile classifier as the first classifier (Tables 4 and 5), 

accuracies for all genera are improved (except for producer’s accuracy for maple; vertical profile 
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classifier). This implies that using the margin and pseudo-margin is effective for automatically filtering 

out LiDAR trees that are difficult to classify by the first classifier. The improvements in accuracies 

also suggest that the ensemble method outperforms the single classifier alone. Table 4 shows that 

individual classifiers (geometric features and vertical profile features) differ in their classification 

decisions; for example, the producer’s accuracy for pine has the largest difference. The differences 

indicate that there is potential for improving the accuracy after combining the classifiers.  

Table 4. Confusion matrix for individual classifier: bold number: geometric classifier (average 

accuracy of 88.0%); italic numbers: vertical profile classifier (average accuracy of 88.8%). 

    Expected 
User’s Accuracy (%) 

    Pine Poplar Maple 

P
re

d
ic

te
d

 

Pine 856 906 115 132 19 12 86.5 86.3 

Poplar 123 87 771 736 2 7 86.0 88.7 

Maple 27 13 1 19 486 488 94.6 93.8 

Producer’s Accuracy (%) 85.1 90.1 86.9 83.0 95.9 96.3     

Table 5. Confusion matrix for ensemble classification, Bold number: geometric classifier 

as first classifier (average accuracy of 91.2%); italic numbers: vertical profile classifier as 

first classifier (average accuracy of 90.3%). 

    Expected 
User’s Accuracy (%) 

    Pine Poplar Maple 

P
re

d
ic

te
d

 

Pine 903 908 94 109 5 21 90.1 87.5 

Poplar 86 80 786 777 3 5 89.8 90.1 

Maple 17 18 7 1 499 481 95.4 96.2 

Producer’s Accuracy (%) 89.8 90.3 88.6 87.6 98.4 94.9     

By combining the decisions made by the two classifiers, the classification accuracy improved from 

88.0% to 91.2% if the geometric classifier is being used as the first classifier and 88.8% to 90.3% if the 

vertical profile classifier is being used as the first classifier (Table 5). Since the original accuracies  

(with the single classifier alone) are trade high, the marginal improvement that we achieve is 

impressive. Although the most common way of assessing classifiers is the classification accuracy, the 

benefits of ensemble classification is beyond the increase in classification accuracy. Ensemble 

classification allows the utilization of different training data types to better suit the individual base 

classifier. Identical tree genera can appear different simply due to varied environmental or site conditions 

(e.g., an open windy environment versus a closed forest with lots of overlapping tree crowns).  

4.3. Results from Point Density Analysis 

The relationship between classification accuracy with different pulse densities is shown in Figure 6, 

with error bars showing the standard error for each point within the 20 trials. For all classifiers, the 

accuracy stays at about the same level for 40, 20 and 10 pulses·m−2, and then begins decreasing at 5, 2.5 

and 1.25 pulses·m−2. The geometric classifier and vertical classifier show similar results for all density 
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levels except at 1.25 pulses·m−2, where the accuracy for vertical profile classifier is 3% lower than 

geometric classifier. Also, ensemble classification shows higher classification accuracy at all density 

levels. It can be concluded that there are opportunities to reduce the pulse density to 10 or 5 pulses·m−2, 

resulting in lower costs in data acquisition and processing handling for comparable results, although 

the tradeoff between classification accuracy and pulse density will need to be considered if the pulse 

densities decrease further. Two one-tailed t-tests were conducted to verify that the increase in 

classification accuracies resulted from ensemble classification is statistically significant. One t-test 

examines the relationship between geometric classifier to ensemble classification and the other t-test 

examines the relationship between vertical profile classifier to ensemble classification. There was a 

significant difference in the scores for geometric classifier (M = 0.88, SD = 0.01) and ensemble classifier 

(M = 0.91, SD = 4.49×10−3); t(10) = −6.37, p = 4.07 × 10−5). There was also a significant difference in 

the scores for vertical profile classifier (M = 0.88, SD = 0.02) and ensemble classifier (M = 0.91,  

SD = 4.49×10−3); t(10) = −2.99, p = 6.71 × 10−3). 

Figure 6. Classification accuracy of the geometric, vertical profile, and ensemble 

classifiers, using the geometric classifier as the first classifier at different LiDAR pulse 

density levels. 

 

In order to study the performance of the classifiers with the reduction of LiDAR point density,  

an experiment studying the relationship between classification accuracy and point density was performed. 

Results showed that similar classification accuracy can be obtained at lower density levels (down to  

5 pulses·m−2) and accuracy dropped for individual classifiers and for the ensemble classifier when the 

density level was lower than 5 pulses·m−2. This indicated that there is a trade-off between classification 

accuracy and pulse density; however, the trade-off is higher when the pulse density falls beyond  

5 pulses·m−2. This result shows there is room for reducing the pulse density to trade for slightly lower 

classification accuracy, and this normally results in lower costs. 

5. Conclusions 

The three major contributions of this paper include first, the implementation of an automatic feature 

reduction method that utilizes the results obtained from Random Forests. Feature reduction is an 

important procedure to avoid overfitting and keeping the final classification model realistically 

parsimonious. Many of the remote sensing studies that use Random Forests as a classifier did not 
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perform this analysis [19,22,26,40,41], and some use a fixed threshold (e.g., [7] and [25]). There are 

two advantages of using an optimization method to reduce the number of features, the first is to avoid 

the subjectivity compared to the use of a threshold, the second is to avoid the problem of identifying 

effective thresholds for each new dataset to be analyzed. 

The second contribution of this paper is the use of the pseudo-margin for estimating the quality of 

prediction, where the pseudo-margin is derived from the margin. Margin measures the distance of a sample 

away from the decision boundary and is therefore useful to assess the confidence of prediction.  

However, the measurement of the margin requires prior knowledge of the species label. Hence, we 

developed pseudo-margin that does not require the prior knowledge and is suitable to use for 

prediction. During the prediction process, σ (a pseudo-margin value) is used for separating trees with 

higher prediction confidence from those with lower prediction confidence, and this value is optimally 

estimated by analyzing the margin distribution of training data. Also, the pseudo-margin is also used in 

the parallel part of the model for making the final decision. 

The third contribution involves the development and application of a hybrid ensemble classification 

system for improving overall classification accuracies. Instead of using the traditional parallel or 

sequential ensemble system, we have designed a hybrid system that overcomes some traditional 

limitations. When building a parallel model, all features from all classifiers have to be derived; 

however, by using one of the classifiers to filter out trees that have high prediction confidence a priori, a 

smaller subset of classifications is necessary and workload is substantially reduced. Moreover, when 

compared to a pure sequential model, this hybrid model also benefits from being able to revert decisions. 

When ensemble models are designed sequentially, decisions made by the first classifier are passed to the 

second model and the second classifier makes the decision (assuming there are only two classifiers), yet, 

the performance of the classifier differs for each sample and the final classifier in the sequence does not 

always make the best decision. Our hybrid system incorporates a parallel system within the sequential 

framework such that in the second step, a comparison between the two classifiers is made and if the 

first classifier has a higher prediction confidence, the final decision can be made by the first classifier.  

The overall goal of this work is to improve the classification accuracies from a single classification 

model. Our results showed that it is possible to improve classification accuracy by using an ensemble 

classification system with overall classification accuracy increases observed from 88.0% to 91.2%. 

Although the sample size for this research is limited, the design of the hybrid system is suitable for the 

classification of large amounts of data. Instead of classifying all trees with two classifiers, the first 

classifier intelligently selects trees that have higher prediction confidence and makes final 

classification decisions at that point. Only the lower prediction confidence samples are judged by two 

classifiers. Ensemble classification allows for flexibility in combining classifiers, and in the future 

additional feature types can easily be integrated into this framework as extra base classifiers, forming a 

modular classification design.  
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