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Abstract: Downscaling is one of the important ways of utilizing the combined benefits of 

the high temporal resolution of Moderate Resolution Imaging Spectroradiometer (MODIS) 

images and fine spatial resolution of Landsat images. We have evaluated the output regression 

with intercept method and developed the Linear with Zero Intercept (LinZI) method for 

downscaling MODIS-based monthly actual evapotranspiration (AET) maps to the Landsat-scale 

monthly AET maps for the Colorado River Basin for 2010. We used the 8-day MODIS land 

surface temperature product (MOD11A2) and 328 cloud-free Landsat images for computing 

AET maps and downscaling. The regression with intercept method does have limitations in 

downscaling if the slope and intercept are computed over a large area. A good agreement 

was obtained between downscaled monthly AET using the LinZI method and the eddy 

covariance measurements from seven flux sites within the Colorado River Basin. The mean 

bias ranged from −16 mm (underestimation) to 22 mm (overestimation) per month, and the 

coefficient of determination varied from 0.52 to 0.88. Some discrepancies between measured 

and downscaled monthly AET at two flux sites were found to be due to the prevailing flux 
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footprint. A reasonable comparison was also obtained between downscaled monthly AET 

using LinZI method and the gridded FLUXNET dataset. The downscaled monthly AET 

nicely captured the temporal variation in sampled land cover classes. The proposed LinZI 

method can be used at finer temporal resolution (such as 8 days) with further evaluation. The 

proposed downscaling method will be very useful in advancing the application of remotely 

sensed images in water resources planning and management. 

Keywords: Colorado River Basin; downscaling; evapotranspiration; Landsat; LinZI method; 

merging; MODIS; WaterSMART 

 

Acronyms and Abbreviations 

AET: Actual evapotranspiration 

BCM: Billion Cubic Meters 

CMS: Charleston Mesquite 

CRB: Colorado River Basin 

ET: Evapotranspiration 

ETM+: Enhanced Thematic Mapper Plus 

FMF: Flagstaff Managed Forest 

FUF: Flagstaff Unmanaged Forest 

FWF: Flagstaff Wildfire 

HIS: Hue-Intensity-Saturation 

HPF: High Pass Filter 

HUC: Hydrologic Unit Code 

IHS: Intensity-hue-saturation 

LiDAR: Light Detection And Ranging 

LinZI: Linear with Zero Intercept  

LST: Land Surface Temperature 

MAE: Mean Absolute Error 

MB: Mean Bias 

MODIS: Moderate Resolution Imaging Spectroradiometer 

NASA: National Aeronautics and Space Administration 

NLCD: National Land Cover Database 

PALSAR: Phased Array L-band Synthetic Aperture Radar 

PCA: Principal Component Analysis 

RMSE: Root Mean Square Error 

SLC: Scan Line Corrector 

SPOT: Systeme Pour I’Observation de la Terre 

SRC: Santa Rita Creosote 

SRM: Santa Rita Mesquite 

SSEBop: Operational Simplified Surface Energy Balance 
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STARFM: Spatial and Temporal Adaptive Reflectance Fusion Model 

TM: Thematic Mapper 

USA: United States of America 

USGS: United States Geological Survey 

WaterSMART: Sustain and Manage America’s Resources for Tomorrow 

WKG: Kendall Grassland 

1. Introduction 

Evapotranspiration (ET), one of the major components of the hydrologic cycle, plays a key role in 

spatial and temporal distribution of water and energy under soil–plant–atmosphere continuum.  

Remote sensing techniques are increasingly used for accurately estimating ET at the field and regional 

scales. Availability of cost-free Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) 

images coupled with higher computing power has helped the modelers in quantifying ET using remotely 

sensed images. The actual ET (AET) maps derived using Landsat images have better spatial resolution 

(60 m vs. 1 km) than the maps created using MODIS images. However, creating seasonal/annual AET 

maps using MODIS images is simpler than using Landsat images due to the higher temporal resolution 

of MODIS (1 day vs. 16 days). Any presence of cloud makes less availability of usable Landsat images 

as compared to usable MODIS images. The trade-off between spatial and temporal resolution of MODIS 

and Landsat images presents a dilemma for the remote sensing community in general and ET modelers in 

particular. It is a natural tendency to try to make use of the best of all available remotely sensed images due 

to the complementary nature of various datasets [1–3]. Use of remotely sensed images having different 

spatial and temporal resolutions resulted in the development of downscaling and multi-sensor data fusion 

techniques. Some researchers have presented nice overview of the state of the art in data fusion [4,5]. 

Data fusion has been used in different forms and formats for a wide range of applications. Cliche et al. 

(1985) [6] used image fusion for integrating Systeme Pour I’Observation de la Terre (SPOT) panchromatic 

images with multispectral channels for image sharpness enhancement. The intensity-hue-saturation (IHS) 

transformation was applied for merging SPOT panchromatic images (10 m resolution) with 

simultaneously acquired SPOT multispectral images (20 m resolution) [7]. Comparison of three merging 

methods, Hue Intensity Saturation (HIS), Principal Component Analysis (PCA), and High Pass Filter 

(HPF), has shown that the HIS method distorted the spectral characteristics of the data the most, and 

HPF the least [1]. Price (1999) [8] used a band correlation method for merging high spatial resolution 

imagery with data from additional lower spatial resolution bands. An assessment criteria was proposed 

to evaluate the quality of merged products resulting from merging high spectral and high spatial 

resolution satellite data [9]. With the development of various fusion methods, Karathanassi et al. (2007) [10] 

evaluated different indicators to compare fusion methods and found that the peak signal-to-noise ratio 

indicator was the most appropriate for the evaluation of data fusion methods. Wavelet transform was used 

for merging SPOT panchromatic images with simultaneously acquired SPOT multispectral images [11]. 

The wavelet decomposition technique was used for merging Landsat Thematic Mapper (TM) images 

with the SPOT panchromatic images [12,13]. Gao et al. (2006) [14] used MODIS and Landsat images 

for predicting daily Landsat surface reflectance based on the Spatial and Temporal Adaptive Reflectance 

Fusion (STARFM) model. A semi-physical fusion approach used Landsat and MODIS images for 
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relative radiometric normalization, cloud/cloud shadow and scan line corrector (SLC)-off gap filling, 

and predicting Landsat data [15]. Forest mapping has been carried out based on image fusion of Landsat 

and MODIS images [16]; fusion of multispectral/hyperspectral images and light detection and ranging 

(LiDAR) data [17]; and fusion of Landsat, Radarsat-1, and Phased Array L-band Synthetic Aperture 

Radar (PALSAR) [18]. Though image fusion has many advantages, it has some limitations too [19]. 

Furthermore, all of these applications do not include thermal bands. 

AET estimation using energy balance methods involves thermal bands for land surface temperature 

(LST). Though LST using satellite data is frequently used in many disciplines including hydrology,  

there is limited literature available on the fusion of high spatial and temporal resolutions of thermal  

data. Earlier works on thermal data fusion used different terms, such as disaggregation [20–22],  

downscaling [23–25], enhancement [26–28], merging [28,29], and sharpening [30,31]. A few recent 

publications have presented a nice overview of the literature related to the remotely sensed LST 

disaggregation and its applications [32–34]. Ha et al. (2013) [32] broadly classified these techniques into 

two categories: downscaling, where images from a coarse spatial resolution is converted to fine 

resolution using statistically based models with regression or stochastic relationships among parameters 

without changing radiometric properties of the image; and fusion, where two or more images 

from the same sensor or different sensors are combined to obtain higher spectral and spatial resolution. 

Zhan et al. (2013) [34] identified thermal sharpening and temperature unmixing as two subtopics related 

to disaggregation of remotely sensed LST. 

Disaggregation technique is based on fitting a statistical relationship between radiometric  

surface temperature (dependent variable) and the normalized difference vegetation index (independent 

variable) [22]. It is assumed that a unique functional relationship exists between radiometric surface 

temperature and vegetation indices at multiple spatial scales. However, there is further evidence that 

these statistical relationships are specific to different climatic and land use characteristics [31]. 

Thermal sharpening technique can be used for estimating surface temperature at higher resolutions 

(~250 m) using the visible/near infrared wavebands to obtain enough spatial details for discriminating 

AET from individual maize and soybean fields [35]. Hong et al. (2011) [36] compared input downscaling 

and output downscaling, each with two different disaggregation processes, subtraction and regression, 

for downscaling ET maps. They showed that output downscaling with regression (slope-intercept 

method) between Landsat and MODIS images is the most preferred scheme, while input downscaling 

with subtraction is the least preferred scheme. This was in part due to higher vulnerability caused by 

georeferencing disagreement between Landsat and MODIS images using the subtraction process than 

the regression process. Other than registration disagreement between Landsat and MODIS images, there 

are other sources of uncertainty, such as viewing and solar geometry, acquisition times, atmospheric 

correction, and emissivity estimation [3,37]. Furthermore, the application of regression will depend upon 

the geographical extent of the image similar to domain size effect on flux estimation [38]. 

Actual ET estimated using Landsat images is instantaneous and extrapolated to daily AET using 

different integration techniques (see Chavez et al. 2008 [39]). In this way, Landsat-based daily AET can 

be estimated for the day of satellite overpass. However, only a limited number of usable Landsat images 

can be obtained during a year because of cloud cover and the 16-day temporal resolution. It is reasonable 

to obtain annual AET based on a few daily AET estimates because any bias is compensated over a longer 

period of time [40–42]. However, it becomes challenging to obtain a representative monthly AET, 
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particularly for a month when no Landsat scene is available. Downscaling becomes an attractive option 

to obtain Landsat-based monthly AET using annual Landsat AET and MODIS-based monthly AET. 

In this paper we developed a novel methodology to downscale the MODIS-based monthly AET to 

Landsat-based monthly AET and validated the downscaled AET maps with field measurements. We also 

compared the newly developed method with the regression (slope-intercept) method and evaluated the 

validity of the slope-intercept method under a larger geographical extent in the Colorado River Basin in 

the western United States. 

2. Study Area 

This study was carried out in the Colorado River Basin (CRB), which has an area of about 630,000 km2. 

The Colorado River is one of the major rivers in the western United States. It flows about 2300 km 

through seven states (Wyoming, Colorado, Utah, New Mexico, Arizona, Nevada, and California) before 

draining into the Gulf of California (Figure 1). The annual flow of the river has ranged from 6.5 billion 

cubic meters (BCM) to 29.6 BCM during 1906–2000 [43]. The Colorado River supplies water to more 

than 25 million people and irrigates more than 12,000 km2 of cropland across the seven basin states [44]. 

The combined reservoir storage capacity (74.0 BCM) within the basin is about four times the long-term 

average annual flow (16.7 BCM). Based on the National Land Cover Database (NLCD, 2006) [45], 

shrubland (61%) is the most dominant land cover followed by evergreen forest (19%), grassland (8%), 

and deciduous forest (4%). Cropland and pasture/hay constitute about 2% of the CRB. The mean annual 

AET of shrubland, evergreen forest, grassland, and cropland during 2010 were 262 mm,  

447 mm, 224 mm, and 538 mm, respectively [41]. Major crops grown in the CRB are forage, alfalfa, 

wheat, cotton, and vegetables. Hydrology of the CRB is mainly dependent on snow accumulation as the 

Colorado River is primarily a snowmelt-driven system. The large areal extent and relief of the basin 

results in substantial climate variability within the CRB. The reader can see Kumar and Duffy (2009) [46] 

for additional detail on geo-topographic and climatic conditions of the study area. 

3. Method 

3.1. Regression (Slope-Intercept) Method 

Hong et al. (2011) [36] used linear regression to combine MODIS and Landsat imagery to generate 

slope and intercept values to obtain both high temporal and high spatial resolution. The regression 

method assumed that the linear relationship between coarse resolution images is valid between fine scale 

resolution imagery. Thus, for this output downscaling, a first order linear regression between two AET 

maps from MODIS images was calculated. Then, the regression was applied to the evapotranspiration 

map derived from the Landsat image to predict disaggregated AET map. We used their output regression 

method to compute slope and intercept values for downscaling monthly AET maps. Hong et al. (2011) [36] 

did not constrain the regression line to the zero intercept in order not to change the regression coefficient. 

We generated slope and intercept for each month based on MODIS monthly and annual AET using the 1st 

order regression analysis. Those slope and intercept values were used with the Landsat-based annual AET 

maps to generate monthly AET maps at the Landsat scale. 
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Figure 1. Location of the study area showing the Colorado River Basin with river network, 

sub-basin (Hydrologic Unit Code: HUC 8) boundaries, and validation flux towers. 

 

3.2. Linear with Zero Intercept (LinZI) Method 

Theoretically, AET estimated using Landsat images should be the same as AET estimated using 

MODIS images for homogeneous surfaces. However, there may be some differences due to spatial 

resolution, viewing and solar geometry, acquisition time, atmospheric correction, sensor bandwidth, 

geolocation error, and emissivity estimation. Since most of the pixels in an image may not be homogeneous, 

we hypothesize that it is simpler to express a linear relationship with zero intercept between Landsat and 

MODIS estimated AET as 

),,(),,( kjikji tyxMtyxL ×=α  (1)

where L(xi, yj, tk) is AET using Landsat images for pixel location (xi, yj) and time domain tk (daily, 

monthly, seasonal, or annual), α is a multiplying factor, and M(xi, yj, tk) is AET using MODIS images 
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for the same location and time domain. We have named this approach as linear with zero intercept 

(LinZI) method. 

Thus, we can write annual AET using Landsat and MODIS images as 

),,(),,( ajiaji tyxMtyxL ×=α  (2)

where L(xi, yj, ta) is annual AET using Landsat images for pixel location (xi, yj), and M(xi, yj, ta) is annual 

AET using MODIS images for the same pixel location. 

We assumed that the linear relationship between Landsat and MODIS-based AET is valid at different 

time scales. This assumption is reasonable as we are estimating the same process of water loss due to 

evaporation and transpiration, i.e., AET using two different data acquisition systems. Therefore, for 

monthly AET, we can write  

),,(),,( mjimji tyxMtyxL ×=α  (3)

where L(xi, yj, tm) is monthly AET using Landsat images for pixel location (xi, yj), and M(xi, yj, tm) is 

monthly AET using MODIS images for the same pixel location. The physical significance of this equation 

is that there is a linear relationship between monthly AET estimated using MODIS and Landsat images. 

By combining Equations (2) and (3), we have 

),,(
),,(

),,(
),,( aji

aji

mji
mji tyxL

tyxM

tyxM
tyxL ×=  (4)

4. Data 

4.1. Landsat Data 

We downloaded all the 328 cloud-free (less than 10% cloud) Landsat images (Thematic mapper and 

Enhanced thematic mapper plus) of the CRB for 2010 from EarthExplorer (http://earthexplorer.usgs.gov/). 

The CRB is covered by 44 different paths/rows ranging from path 33 to 40 and row 30 to 38. Landsat 

Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data excluding the panchromatic 

band were used in the analysis. Total cloud-free images during 2010 for each path/row ranged from 5 to 

11. The Operational Simplified Surface Energy Balance (SSEBop) model [41] algorithm was 

implemented with Landsat images using Model Maker in Erdas Imagine 2011 (version 11.0.4) 

(Intergraph Corporation, Huntsville, AL, USA) to compute daily AET on the day of the satellite overpass. 

We computed daily AET using instantaneous AET fraction as explained in Singh et al. (2014) [41]. The 

daily reference ET was computed using standardized equation [47]. Actual ET estimated on the day of the 

satellite overpass was used with reference ET to compute ET fraction, the ratio of AET to the reference 

ET. Finally, we upscaled daily AET to annual AET as follows: 

( )
=

×=
n

i
fioiannual EFETET

1

 (5)

where ETannual is the total annual AET (mm), EToi is the reference ET (mm) for period i (days), and EFfi 

is the representative ET fraction (–) for period i. This approach may not work for estimating monthly 

AET without a representative monthly ET fraction due to the limited number of usable Landsat images. 

However, it works well for estimating annual AET as any bias is compensated over a longer period of 
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time [40–42]. Reader can refer to Singh et al. (2014) [41] for more details on the processing of the 

Landsat images used in this study. 

4.2. MODIS Data 

We used 16-day MODIS normalized difference vegetation index (MOD13A2.005) and 8-day LST 

and emissivity (MOD11A2.005) data for 2010 from the National Aeronautics and Space Administration 

(NASA) Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/lpdaac/get_data; 

accessed on 18/01/2012). MOD13A2 products are computed from atmospherically corrected bidirectional 

surface reflectance acquired daily from the Terra satellite and provided every 16 days at 1-km spatial 

resolution. MOD11A2 products are derived as the average of daily acquired land surface temperature at 

1-km spatial resolution from the Terra satellite over an 8-day period. We obtained monthly and annual 

AET after processing the MODIS data using the SSEBop model. Refer to Senay et al. (2013) [48] for 

the processing approach and data requirement. 

4.3. Gridded FLUXNET Data 

Jung et al. (2009) [49] created a global spatially and temporally explicit AET map based on upscaling 

of observations from the eddy covariance towers (FLUXNET) using the model tree ensemble approach. 

They used FLUXNET data, meteorological and remote sensing observations, and a machine learning 

algorithm to create gridded FLUXNET data. Their model tree ensemble approach provided a benchmark 

for the upscaling water fluxes from the FLUXNET sites to the global scale. This dataset is used as a 

reference dataset [50,51], so we used it to validate our newly created Landsat-based monthly AET data. 

5. Evaluation of Downscaled Products 

5.1. Validation Using Eddy Covariance Flux Towers 

The downscaled monthly AET was compared with the eddy covariance measurements carried out at 

the eddy covariance measurement sites (Table 1). These sites are Flagstaff managed forest (FMF) [52], 

Flagstaff unmanaged forest (FUF) [52], Flagstaff wildfire (FWF) [52], Santa Rita Creosote (SRC) [53], 

Santa Rita Mesquite (SRM) [54], Kendall grassland (WKG) [55], and Charleston Mesquite (CMS) [56]. 

All of these sites, except for the Charleston Mesquite site, are part of FLUXNET [57]. The data used 

from the FLUXNET sites are Level 2 data, so they have data gaps ranging from about 7% (Flagstaff 

wildfire site) to 22% (Santa Rita Creosote site). The data collection and methodology for these sites are 

described in the respective references given in Table 1. 

Eddy covariance flux measurements are representative of the weighted average of the fluxes from the 

upwind source areas. For comparison, we used the AET values of pixels that have a flux tower without 

any knowledge of the spatial extent and relative importance of upwind source areas (footprint).  

In general, the footprint of flux measurements depends upon the wind velocity and direction, surface 

roughness, measurement height, and atmospheric stability [58]. It should be also noted that there are 

systematic and random errors associated with the eddy covariance measurements resulting into lack of 

closure in the surface energy balance [59–61]. Thus, a part of uncertainty associated with the model 
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evaluation also results due to uncertainty and bias associated with the flux measurement and overlook 

of the flux footprint. 

Table 1. Details of eddy covariance towers used for validating downscaled monthly actual 

evapotranspiration maps. 

Sl. 

No. 
Site 

Latitude 

(°) 

Longitude  

(°) 

Elevation 

(m) 

Tower 

Height 

(m) 

Land  

Cover 

Landsat 

Path/Row 

No. of  

Cloud-Free 

Images 

Reference 

1 
Flagstaff managed 

forest 
35.1426 −111.7273 2160 23 

Ponderosa 

pine forest 
37/36 6 

Dore et al.  

(2012) [52] 

2 
Flagstaff 

unmanaged forest 
35.089 −111.762 2180 23 

Ponderosa 

pine forest 
37/36 6 

Dore et al.  

(2012) [52] 

3 Flagstaff wildfire 35.4454 −111.7718 2270 4 
Ponderosa 

pine forest 
37/35 7 

Dore et al.  

(2012) [52] 

4 
Santa Rita 

Creosote 
31.9083 −110.8395 991 4.25 

Open shrub 

land 
36/38 9 

Kurc and Benton 

(2010) [53] 

5 
Santa Rita 

Mesquite 
31.8214 −110.8661 1120 6.4 

Woody 

Savannas 
36/38 9 

Scott et al.  

(2009) [54] 

6 Kendall Grassland 31.7365 −109.9419 1531 6.4 Grassland 35/38 7 
Scott et al.  

(2010) [55] 

7 
Charleston 

Mesquite 
31.6637 −110.1776 1200 14 

Riparian 

woodland 
35/38 7 

Scott et al.  

(2004) [56] 

5.2. Evaluation Using Gridded FLUXNET Data 

We compared our monthly AET maps at the Landsat scale with those of the gridded FLUXNET data 

(Jung et al. 2009) [49] at the subbasin level (Hydrologic Unit Code: HUC 8). The HUCs are based on a 

nationally consistent watershed dataset that divides the United States into six levels: region (HUC2), 

subregion (HUC4), basin (HUC6), subbasin (HUC8), watershed (HUC10), and subwatershed (HUC12). 

The area of subbasins within the CRB ranges from about 400 km2 to about 12,000 km2, with a mean of 

4600 km2. We selected HUC8 for comparison based on the spatial resolution of the gridded fluxtnet data 

(≈50 km) and because runoff data are available at HUC8 levels. Many agencies including the United 

States Geological Survey (USGS) use the HUC system for assessing, developing, planning, and managing 

water resources in the United States. 

5.3. Evaluation Using MODIS-Based AET 

Senay et al. (2013) [48] used the SSEBop model to generate monthly and annual AET maps of the 

conterminous United States for 2000–2011 using MODIS data. Their validation using eddy covariance 

data from 45 Ameriflux stations corresponded well with the flux measurements; R2 values were up to 

0.9 for individual flux towers with an overall R2 of 0.64 (N = 528) for all towers. Additional validation 

showed that these SSEBop model-based AET maps are of good accuracy over different land cover types, 

across a wide elevation range, and under various climatic zones [51]. They found overall root mean 

square error ranging from 26 to 32 mm/month which was attributed to random error due to pooling 
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validation sites from different agro-ecological zones. We extracted monthly AET of the study area from 

these SSEBop model-generated AET maps and compared the downscaled AET maps. 

A comparison was made using different statistical variables such as mean bias, mean absolute error 

(MAE), root mean square error (RMSE), and coefficient of determination (R2). 

6. Results and Discussion 

6.1. Monthly Evapotranspiration Using the Regression (Slope-Intercept) Method 

Computed values of slope and intercept using the regression method have shown that their 

progression followed a distinct trend (Figure 2). Higher values of slope and lower values of intercept 

were found during the crop growing season (May–August), while lower values of slope and higher 

values of intercept were found during rest of the year. We used these monthly slope and intercept values 

to generate downscaled monthly AET maps for the Colorado River Basin (Figure 3). The spatial 

distribution of AET maps generated using the slope-intercept method are very different from that of the 

MODIS-based AET maps (Figure 4). MODIS-based monthly AET maps were derived using 8-day 

MODIS thermal data and other ancillary data. Since 8-day thermal data are based on daily acquired 

MODIS images, MODIS-based AET maps have better temporal representation. MODIS-based AET maps 

capture daily variability in water losses due to ET more precisely, so the spatial distribution of ET has 

higher confidence. On the other hand, slope-intercept method-based AET maps have very smooth ET 

variations except for the crop growing seasons (Figure 3, May–August). There are no similarities in 

spatial variation of monthly AET between MODIS-based AET (Figure 4) and regression (slope-intercept) 

based monthly AET (Figure 3). Computing slope and intercept values over a large area, such as the 

Colorado River Basin, dampens the vigor of this approach. In addition, the slope-intercept method is not 

effective if the areas under consideration are experiencing a dynamic change such as a rainfall event or 

a disturbance that happens over a very short period of time [16,36]. Since identification of a suitable area 

of interest for computing slope and intercept is subjective, it is more reasonable to limit the pixel-to-pixel 

localized relationship. 

6.2. Monthly Evapotranspiration Using the LinZI Method 

We computed monthly AET maps of the study area at the Landsat scale using the linear with zero 

intercept (LinZI) method as described in the methods Section 3.2. The monthly progression of AET 

showed a gradual increase in AET during the crop growing season and a subsequent decline with 

progress of the season (Figure 5). Though the maximum monthly AET during crop growing season 

exceeded 100 mm at some pixels (<0.01%), we have used 100 mm as upper limit only for map representation 

purpose so that there is more contrast in the AET variation from month to month. As presented under 

Section 4.1, we had only 5–11 cloud-free Landsat images for each path/row. Considering that cloud free 

Landsat images were not available for each month in the entire study area, it is impressive to see that the 

temporal and spatial variation of AET was nicely captured by these maps generated using LinZI method. 

For example, monthly AET progressions of three different land covers (irrigated cropland, evergreen 

forest, and shrubland) showed that the AET of shrubland mainly depends upon moisture variability 

caused by precipitation (Figure 6). The monthly AET of shrubland varies substantially from month to 
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month depending upon the moisture availability from precipitation. On the other hand, irrigated cropland 

and evergreen forest have access to moisture mainly because of irrigation and groundwater, respectively. 

So monthly AET of irrigated cropland and deep rooted evergreen forest is not limited by the moisture 

availability but mainly by the atmospheric water demand. 

Figure 2. Slope and intercept values using regression method for each month based on 

MODIS annual actual evapotranspiration and corresponding monthly actual evapotranspiration 

for the Colorado River Basin for 2010. 

 

Figure 3. Downscaled monthly actual evapotranspiration map of the Colorado River Basin 

using regression (slope-intercept) method for 2010. 

 
   



Remote Sens. 2014, 6 10494 

 

 

Figure 3. Cont. 

 

Figure 4. Monthly actual evapotranspiration map of the Colorado River Basin using 8-day 

MODIS land surface temperature for 2010. 
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Figure 4. Cont. 

 

Figure 5. Downscaled monthly actual evapotranspiration map of the Colorado River Basin 

for 2010 using linear with zero intercept (LinZI) method. 
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Figure 5. Cont. 

 

Table 2. Evaluation statistics using mean bias, root mean square error (RMSE), and coefficient 

of determination (R2) for downscaled (LinZI method) monthly actual evapotranspiration against eddy 

covariance measured monthly actual evapotranspiration (N = 12). 

Site Mean Bias (mm) RMSE (mm) R2 

Flagstaff managed forest −8 19 0.53 
Flagstaff unmanaged forest 22 32 0.64 

Flagstaff wildfire −16 22 0.52 
Santa Rita Creosote 1 10 0.61 
Santa Rita Mesquite −2 12 0.72 
Kendall Grassland −9 13 0.81 

Charleston Mesquite 7 20 0.88 

6.3. Comparison of Downscaled Monthly AET Maps with the Eddy Covariance Measurements 

In general, the downscaled monthly AET using the LinZI method was in good agreement with the 

eddy covariance–measured monthly AET at the selected flux sites, except at the Flagstaff unmanaged 

forest and Flagstaff wildfire sites (Table 2, Figure 7). The mean monthly bias ranged from −16 mm 

(Flagstaff wildfire) to 22 mm (Flagstaff unmanaged forest), while R2 ranged from 0.52 (Flagstaff wildfire) 

to 0.88 (Charleston Mesquite). Both MODIS-based monthly AET and the LinZI downscaling method 

overestimated monthly AET compared to the field measurement at the Flagstaff unmanaged forest. In 

contrast, the LinZI downscaling method underestimated monthly AET compared to the field 

measurement at the Flagstaff wildfire. We had six cloud-free Landsat images for the Flagstaff 

unmanaged forest and seven for the Flagstaff wildfire sites (Table 1). The LinZI downscaling method 
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captured the monthly variability well with the 6 Landsat scenes at the Flagstaff managed forest but not 

at the Flagstaff unmanaged forest. The wind rose diagram shows that more than 30% of the wind at the 

Flagstaff unmanaged forest site was from the northeast (Figure 8). 

Figure 6. Monthly progression of actual evapotranspiration based on downscaled 

evapotranspiration maps using the LinZI method for sampled cropland, evergreen forest, and 

shrubland pixels (red star) for 2010. The background map shows the spatial distribution of 

actual evapotranspiration using LinZI method for July 2010 in the Colorado River Basin. 

 

Figure 7. Progression of monthly actual evapotranspiration for 2010 at (a) Flagstaff 

managed forest; (b) Flagstaff unmanaged forest; (c) Flagstaff wildfire; (d) Santa Rita Creosote; 

(e) Santa Rita Mesquite; (f) Kendall Grassland; and (g) Charleston Mesquite sites. 
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Figure 8. Wind rose diagram based on measured wind speed and wind direction for 2010 at 

the eddy covariance sites. 
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The tower height at this site is 23 m, so considering the general “rule of thumb” of 1:100 height to 

fetch ratio [62], we can expect that the flux tower is actually looking toward the area circled in Figure 9a. 

The encircled area has some vegetation but also includes some unvegetated areas thus having low AET. 

This may explain the discrepancy between measured and downscaled AET at this site. 

The majority of the wind at the Flagstaff wildfire site was from the south and southeast (Figure 8), 

where there is good forest cover within the footprint (Figure 9b). So the fluxes measured at this site are 

mostly some of eddies from the dense forest cover having higher AET values. The downscaled monthly 

AET at 30-m spatial resolution shows lower AET values than measured AET, while MODIS monthly 

AET at 1-km spatial resolution is in some agreement with the flux tower measurement at the Flagstaff 

wildfire site (Figure 7). 

Most of the previous methods for enhancing the resolution quality of satellite images are limited to 

the visible and near infrared bands. Very limited works have been done for enhancing the data using 

thermal bands. Some of the previous works done using thermal data were constrained due to limited area 

specific computation. Our proposed methodology using the LinZI method in this manuscript is not 

limited by any such constraint and will be applicable to any geographical area of extent under different 

climatic conditions and land use characteristics. AET estimated using any energy balance based models or 
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any other models can be used for downscaling using the LinZI method. Thus, the LinZI method will 

overcome many limitations of disaggregation technique based on statistical relationship [31]. 

Figure 9. False color composite (Band 4, 3, 2) of Landsat 5 Thematic Mapper showing  

(a) Flagstaff unmanaged forest flux tower location (image acquired on 26/06/2010); and  

(b) Flagstaff wildfire flux tower location (image acquired on 13/08/2010). The circled areas 

show the approximate footprint for majority of wind direction. 
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6.4. Comparison of Downscaled Monthly AET Maps with the Gridded FLUXNET Dataset 

Comparison of downscaled monthly AET with the gridded FLUXNET dataset at the subbasin level 

(HUC8) shows that the LinZI method had performed better than the slope-intercept method during both 

non-growing and growing seasons (Table 3). In general, the slope-intercept method has very low R2 

values (maximum R2 = 0.24), indicating a limitation of its applicability in larger study areas. When 

compared to the slope-intercept method, the LinZI method performed better throughout the year with 

lower mean bias and RMSE and higher R2. Although the LinZI method resulted in better performance 

when compared to the slope-intercept method, overall we found lower values of R2. This may be 

attributed to the very coarse resolution (≈50 km) of the gridded FLUXNET dataset. It was reported that 

good agreement in surface fluxes is limited when the length scale of surface heterogeneity is less than 

the mapping resolution [3]. Additionally, study has shown that there is a trade-off between spatial resolution 

and uncertainty of AET estimates, with lower uncertainty in the coarser resolution relative to higher 

uncertainty in the finer resolution AET estimates [63]. There is also a limitation in capturing spatial variability 

in soil moisture and therefore AET over large areas under extremely dry and wet conditions [64]. 

In general, the model output agreed better with the gridded FLUXNET data during the non-growing 

season than during the growing season. This was most likely due to less spatial variability in AET during 

the non-growing season, resulting in better agreement with coarser resolution of the gridded FLUXNET 

dataset. The resolution of gridded FLUXNET data is about 50 km, and the mean area of the subbasin (HUC 8) 

is only about 4600 km2. Depending upon the shape and size of subbasins within the study area, we had 

only from 0 to 6 pixels of gridded FLUXNET data in each subbasin. Zonal statistics computation of 

downscaled monthly AET maps for each subbasin resulted in the majority of the subbasins having only 

one pixel of the gridded FLUXNET data. In general, we found that a higher number of pixels of gridded 

FLUXNET data in a subbasin resulted in better correlation. 

Table 3. Comparison statistics using mean bias (MB), root mean square error (RMSE), and 

coefficient of determination (R2) for downscaled monthly AET maps against gridded 

FLUXNET dataset (N = 126). 

Month 
Slope-Intercept Method LinZI Method 

MB (mm) RMSE (mm) R2 (–) MB (mm) RMSE (mm) R2 (–)

January −3 6 0.01 −4 6 0.75 
February 2 5 0.01 0 8 0.53 

March 8 10 0.08 4 12 0.50 
April 6 9 0.05 1 9 0.34 
May 24 44 0.14 18 22 0.32 
June 21 42 0.13 10 17 0.43 
July 13 38 0.19 7 20 0.23 

August 19 40 0.24 20 26 0.20 
September −5 12 0.15 −8 12 0.45 

October −8 9 0.25 −10 12 0.08 
November −1 3 0.02 −4 6 0.13 
December −7 8 0.01 −9 9 0.55 
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Figure 10. Comparison of mean monthly actual evapotranspiration at the 

subbasin (Hydrologic Unit Code: HUC 8) level within the Colorado River Basin using 

MODIS-based and linear with zero intercept (LinZI) method downscaled monthly actual 

evapotranspiration (N = 144). 
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Figure 11. Monthly actual evapotranspiration near Marana, Arizona, for May, June, July, and 

August 2010 using MODIS only, Landsat only, and MODIS and Landsat merged images. 

 

6.5. Comparison of the LinZI Method Monthly Evapotranspiration with Monthly MODIS AET Maps 

There was very good agreement between downscaled monthly AET maps using the LinZI method 

and MODIS-based monthly AET maps at the subbasin level (Figure 10). The MAE ranged from 0 mm 

(December) to 10 mm (August), and RMSE varied between 1 mm (December) and 12 mm (August). 

The best agreement was observed in December (R2 = 0.96) while the least agreement was found in 

August (R2 = 0.61). This was due to low AET values for the month of December as a result of low 

atmospheric demand, and low agreement during peak crop growing season because of high water demand. 

Since downscaled monthly AET maps were derived using both Landsat and MODIS-based AET, it is 

expected that there will be good agreement between these maps. However, even independent estimation of 

annual AET using Landsat and MODIS-based images resulted in 1.06 slope with an R2 of 0.79 [41]. This 
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result indicates that AET averaged over larger areas may be comparable when AET is estimated using either 

Landsat or MODIS images. Similar results were reported by other researchers [2,3,41,42]. 

Previous study has also shown that only MODIS-based AET maps cannot distinguish between maize 

and soybean fields [35]. The use of Landsat images for estimating AET has many advantages as most of 

the water management practices related to water application and conservation have to be implemented 

at the field scale. Individual fields can be identified in Landsat-based AET maps but cannot be clearly 

distinguished in MODIS-based AET maps (Figure 11). On the other hand, temporal progression of AET 

can be better captured using MODIS images due to its daily acquisition compared to the 16-day repeat 

cycle of Landsat images. For example, an AET map using only Landsat images for the month of May 

based on images acquired on 10 May and 3 June overestimates AET for the agricultural fields (Figure 11). 

Some of this bias was removed when the AET maps were downscaled by merging Landsat and  

MODIS-based AET maps as shown in Figure 11. Thus, downscaling using LinZI method captured the 

temporal progression of AET as well as maintained the spatial fidelity of monthly AET maps. This 

clearly demonstrates the advantages of downscaling using LinZI method for Landsat and MODIS-based 

AET maps. 

7. Conclusions 

Actual evapotranspiration estimation at finer temporal and spatial resolution can help immensely in 

water resources planning, assessment, development, and management. Limited availability of  

cloud-free Landsat images may be a constraint in estimating monthly AET using only Landsat images. 

If the time interval between two available cloud-free Landsat images is large, an irrigation/precipitation 

event may not be captured by the corresponding AET maps. Similarly, any water stress spell between 

two widely spaced cloud-free Landsat images will be missed in the respective AET maps. The 

combination of the better temporal resolution of MODIS and better spatial resolution of Landsat has 

many advantages. Our application of the output regression (slope-intercept) method (Hong et al. 2011) [36] 

for downscaling has shown that it has limitations when slope and intercept are computed over a large 

area. This method can work if slope and coefficients are based on a small area of interest or if the area 

is homogeneous. 

We have demonstrated that the Linear with Zero Intercept (LinZI) method can be efficiently used for 

downscaling the Landsat-based annual AET to monthly AET using MODIS-based AET maps. 

Validation of LinZI method downscaled monthly AET using eddy covariance measurements at seven 

flux towers showed that the mean bias ranged from −16 mm/month to 22 mm/month while R2 varied 

from 0.52 to 0.88. Thus the LinZI method has great potential and capability for downscaling. The LinZI 

method was evaluated to downscale to a monthly time scale; further testing is needed to examine the 

validity of a finer time scale (such as 8 days). The LinZI method will be further evaluated for its 

performance at other geographical locations under more heterogeneous land cover conditions and 

ecosystems. The modeling framework will be developed to quantify the uncertainty and improvement 

in estimating AET compared to only Landsat or only MODIS-based AET maps. 

This research can be viewed as a continuation of development approach for operationalization of the 

full potential of the energy balance method in water resources management. The successful application 

of the SSEBop model for estimating AET can be further extended to the next level where AET estimated 
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from remotely sensed images at different spatial and temporal resolutions can be merged together using 

the LinZI method. Though we used SSEBop model for computing AET, the LinZI method can be used 

for merging AET maps from different sensors derived using any other AET models. This will be a great 

service to the hydrological community where AET estimates at different spatial and temporal resolutions are 

required. Such information can help water managers devise sustainable water use planning and management. 

This research is also relevant and timely in support of the U.S. Department of the Interior’s WaterSMART 

(Sustain and Manage America’s Resources for Tomorrow) initiative to achieve a sustainable water use 

strategy to meet the water needs of the nation and realize the vision of the National Water Census [65]. 
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