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Abstract: Detailed and accurate land cover and land cover change information is needed 

for South America because the continent is in constant flux, experiencing some of the 

highest rates of land cover change and forest loss in the world. The land cover data 

available for the entire continent are too coarse (250 m to 1 km) for resource managers, 

government and non-government organizations, and Earth scientists to develop 

conservation strategies, formulate resource management options, and monitor land cover 

dynamics. We used Landsat 30 m satellite data of 2010 and prepared the land cover 

database of South America using state-of-the-science remote sensing techniques. 

We produced regionally consistent and locally relevant land cover information by 

processing a large volume of data covering the entire continent. Our analysis revealed that 

in 2010, 50% of South America was covered by forests, 2.5% was covered by water, and 

0.02% was covered by snow and ice. The percent forest area of South America varies from 

9.5% in Uruguay to 96.5% in French Guiana. We used very high resolution (<5 m) satellite 

data to validate the land cover product. The overall accuracy of the 2010 South American 

30-m land cover map is 89% with a Kappa coefficient of 79%. Accuracy of barren areas 

needs to improve possibly using multi-temporal Landsat data. An update of land cover and 
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change database of South America with additional land cover classes is needed. The results 

from this study are useful for developing resource management strategies, formulating 

biodiversity conservation strategies, and regular land cover monitoring and forecasting. 
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1. Introduction 

Anthropogenic land use and land cover change, occurring at unprecedented rates, magnitudes, and 

spatial scales [1,2], is increasingly affecting the biophysics, biogeochemistry, and biogeography of the 

Earth’s surface and atmosphere with far-reaching consequences to human well-being [3]. However, 

our scientific understanding of the distribution and dynamics of land use and land cover change is 

limited [4]. Accurate, reliable, and timely information on historical and contemporary distribution and 

dynamics of land cover is essential for land change research and for biodiversity conservation [5–7]. 

Such information is also needed for monitoring, understanding, and predicting the effects of  

human-nature interactions [8–10]. 

The global change community is placing greater emphasis on developing these datasets at multiple 

spatial, thematic, and temporal scales [11–14]. For example, land cover is one of the 50 Essential 

Climate Variables (ECVs) identified by the Committee on Earth Observation Satellites (CEOS) that 

are “technically and economically feasible for systematic observation”. The Global Terrestrial 

Observing System (GTOS) further identified land cover as one of the five highest priority ECVs along 

with biomass, glacier and ice caps, soil moisture, and permafrost. Similarly, generating land cover 

ECVs is now recognized as an official task of the Group on Earth Observations (GEO). At the same 

time, it is becoming increasingly common and important to produce a better resolution global land 

cover database and integrate product validation into initial research design, perform validation, and 

distribute statistically validated data. 

Timely and accurate land cover information is especially needed in South America because the 

region is in constant flux, experiencing some of the highest rates of land cover change and forest loss 

in the world [15]. South America has the largest area of tropical forests in the world, the greatest 

amount of biodiversity, and a large reservoir of above and below ground carbon stock, but the forest is 

under threat from anthropogenic forces [16]. Specifically, extensive areas of the Amazon rain forest 

and the seasonally dry forests of Brazil, Bolivia, Paraguay, and Argentina are undergoing deforestation 

and conversion to agriculture [17,18]. The forest clearing will likely continue for agriculture and 

harvesting for commercial use, causing further land use and land cover change in the coming decades [19]. 

Such widespread land cover change is causing habitat degradation and releasing vast stores of carbon 

dioxide into the atmosphere, further exacerbating the impacts of global climate change to nature and 

society [20,21]. Quantifying the contribution of terrestrial ecosystems to global and regional carbon flux 

requires timely and accurate land cover products and information [22] at the highest resolution possible. 

Although several land cover databases exist for South America, they have limitations. For example, 

previous land cover mapping performed as part of global land cover assessments were derived from 

coarse spatial resolution (250 m–8 km) satellite data [8,9,19,23–31]. Coarse land cover products do not 
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provide sufficient spatial details for land cover change studies for biodiversity conservation and 

resource management at a national or sub-national scale. Additionally, coarse spatial resolution 

mapping frequently represents composite spectral responses from multiple land cover types (i.e., mixed 

pixels), resulting in map inaccuracies [32]. Recently, global land cover [33] and global percent tree 

cover [18] were mapped using Landsat 30 m but these maps do not provide spatial and thematic details 

needed for continental applications. National land cover data are available but they are spatially and 

temporarily inconsistent across the continent. 

The overall goal of this paper is to prepare a validated land cover database of South America for the 

year 2010 using Landsat 30 m imagery. The regionally tuned image classification approach and training 

data were selected based on land cover variability and complexity of South America. The land cover map 

was validated using a very high resolution (<5 m) validation dataset [3]. A confusion matrix was 

constructed and class accuracies were reported. This 30 m spatial resolution South America land cover 

database provides resource managers, government and non-government organizations, and Earth 

scientists with accurate and reliable information for developing conservation strategies, biodiversity 

loss mitigation efforts, and monitoring of land cover dynamics. 

2. Study Area 

The study area includes the entire South American continent. South America extends from 

approximately 12°N to 56°S latitude, occupies 17.8 million km², and has several distinct geologic and 

biogeographic regions with varying land cover types. For example, the Amazon rain forest, the largest 

tropical rain forest and one of the most bio-diverse ecosystems in the world, extends across much of 

the north-central region. The Andes Mountains, the longest continental mountain range in the world, 

extend from north to south along the western coast. The Atacama Desert, one of the driest hot deserts 

in the world, is situated along the west coast between the Andes Mountains and Pacific Ocean. The 

Pantanal, one of the world’s largest tropical wetlands, is located in central South America, mostly in 

Brazil. The Pampas, an extensive and relatively flat grassland area, makes up the central and western 

portions of Argentina. The Patagonian steppe begins to the south of the Pampas and extends west from 

the Andes to the Atlantic coast. 

3. Methods 

Figure 1 illustrates the methodological framework of this research. We classified Landsat 5 

Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satellite data for 

2010 using a decision tree classification approach. Normalized Difference Vegetation Index (NDVI) 

and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model data at 30 m spatial 

resolution were used as independent variables. The SRTM elevation data were obtained on a near-global 

scale in 2000 [34] and acquired from the U.S. Geological Survey Earth Resources Observation and 

Science (EROS) Center. The results were validated using 55, 5 × 5 km2 sample blocks and very high 

resolution classification results. 
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Figure 1. Schematic diagram of the methodology framework used to map land cover for 

South America. 

 

3.1. Land Cover Classification System and Legend 

We mapped five discrete land cover classes: trees, open water, barren, perennial snow/ice, and other 

vegetation. Additionally, clouds and shadows were classified separately. Similar to [19], we used 

radiance calibrated “stable lights” data from the Defense Meteorological Satellite Program (DMSP) to 

delineate urban areas [35]. Land cover classes were defined using the Land Cover Classification 

System (LCCS), which is “a comprehensive methodology for description, characterization, 

classification, and comparison of most land cover features identified anywhere in the world, at any 

scale or level of detail” [36]. Definitions, delineation criteria, and interpretation guidelines used in this 

study are given below. 

Forests are defined as woody perennial plants, 3 m or greater in height. This category includes 

evergreen and/or deciduous, broad-leaved and/or needle-leaved, and mixed forests found in terrestrial, 

aquatic, or regularly flooded locations as well as trees found in both natural and cultivated/managed 

situations. For example, trees located in farms, orchards, and landscaping that satisfied the 3 m 

minimum criteria were classified as trees. Stunted or young trees and shrubbery that are less than 3 m 

tall were classified as other vegetation. Trees were delineated around the edge of the tree crowns. 

If tree crowns coalesce, then trees were collected around the outermost edge of the crowns. 
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Water is defined as flowing or standing water bodies in aquatic or regularly flooded locations. 

Water includes natural water bodies such as streams, rivers, lakes, ponds, oceans, and 

swamps / marshes. Water also includes artificial water bodies such as ditches, canals, impounded 

stream courses, and reservoirs. However, inundated vegetation such as trees, shrubs, or grass growing 

in a water body are classified as trees or other vegetation wherever these features obscure the surface 

of the water body. Water is delineated at the shoreline of the water body. Dynamic water bodies such 

as tidal and flood waters were classified as captured in the source imagery. 

Barren is defined as land surface lacking vegetation or water bodies. This class includes natural 

bare surfaces such as bedrock, bare soil, hard pans, sand/gravel bars, beaches, loose and shifting sand, 

exposed rock, glacial debris, and dry salt flats. Barren areas include artificial impervious surfaces such 

as strip mines, quarries, gravel pits, and other accumulations of earthen materials. Barren includes both 

consolidated and unconsolidated surfaces. Recently tilled agricultural fields, recently burned 

vegetation, recently flood-scoured vegetation, and clear-cut trees are classified as other vegetation 

because other vegetation is expected to grow back in a relatively short time period. 

Urban is defined as artificial impervious surfaces such as paved and unpaved roads and other 

transportation surfaces; commercial, residential, or industrial structures; and roof tops. Urban areas can 

often be visually detected in low-resolution satellite images; however, due to their context and 

location, they are problematic to extract from the digital data because their spectral signature is similar 

to bare soil. Similar to [19], we used radiance calibrated “stable lights” data from the DMSP to locate 

the major urban areas [35]. The DMSP data were resampled to 30 m and overlaid on the 30 m land 

cover mosaic to ensure adequate colocation. No substantial misalignment was apparent. 

Other Vegetation is defined as woody perennial plants less than 3 m in height and all non-woody 

shrubs, forbs, herbaceous vegetation (graminoids or non-graminoids), lichens, and mosses. As 

explained under the barren class, recently flood-scoured vegetation, recently burned vegetation, and 

recently clear-cut trees were classified as other vegetation. Similarly, vine crops such as grapes or hops 

were classified as other vegetation. Other vegetation classes were delineated where vegetation cover is 

apparent and water or trees are absent. 

Perennial Snow and Ice is defined as frozen water that does not melt during any time of the year. 

Perennial snow and ice areas include snow pack, glaciers, frozen lakes, rivers, and ponds. 

Clouds and Shadows were classified as a separate class where they prevented delineation of land 

cover classes. Shadows may have been caused by clouds, trees, infrastructure, or terrain (cliffs, 

mountains, raised buildings, or hills). 

3.2. Data and Pre-Processing 

All the Landsat 7 and Landsat 5 imagery available at USGS EROS for South America was 

downloaded in L1T format. The data were acquired for the growing season for 2010 spanning from 

November 2009 to February 2010. Major pre-processing steps include geometric correction, 

calibration to top-of-atmosphere (TOA) reflectance, cloud removal, MODIS base normalization, and 

per-pixel compositing. Although most of the Landsat L1T products were within ±1 pixel geometric 

accuracy, a few scenes were less accurate. Thus, it was necessary to check the geometric accuracy and 

correct the problem. We used Global Land Survey (GLS) 2000 data to check the accuracy. If the 
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accuracy was more than ±1 pixel, Landsat images were resampled using ground control points (GCPs) 

selected from GLS 2000 data and the nearest neighbor resampling technique. 

Each image was normalized for variation in solar angle and Earth-Sun distance by converting the 

digital number values to TOA reflectance. This is a two-step process: conversion of Digital Numbers 

(DNs) to radiance values using the bias and gain values specific to the individual Landsat scene and 

conversion of radiance values to TOA reflectance. For each scene, information on the distance 

between the Sun and Earth in astronomical units, the day of the year (Julian date), and solar zenith 

angle is needed and can be obtained from the Landsat 7 Science Users Handbook [37]. 

Radiometric normalization of Landsat was performed using dark-object subtraction (DOS) methods 

to remove errors associated with sensor calibration changes, differences in illumination and 

observation angles, variation in atmospheric effects, and phenological variations [38]. Two types of 

intact and uncontaminated forest pixels were used for DOS: pixels selected from forest/non-forest 

maps produced from MODIS satellite data, and pixels with Landsat band 6 thermal brightness 

temperature values greater than or equal to 19 degrees Celsius [38]. 

The per-pixel image composite was performed from the pre-processed data. The first step involved 

selection of best pixels out of seasonal stacks considering cloud, cloud shadows, and Scan Line 

Corrector (SLC) off data among others. For example, cloud removal steps include calculation of a 

simple cloud likelihood score for each input pixel. The selection was based on the Landsat band 6 

brightness temperature of the pixel. The minimum value of the cloud likelihood score at each location 

was used to select a cloud likelihood threshold for the pixel. The output is the per-band median of the 

pixels whose cloud likelihood scores fell below that threshold. The next step was to select a median 

TOA reflectance and cloud likelihood threshold for each pixel of the growing season to prepare a 

seasonal mosaic. Impact of SLC off and cloud/shadows effect was not removed completely on the final 

mosaic. Finally, the resulting TOA reflectance estimates were rescaled to the 8-bit integer range. To 

manage the data volume and facilitate image classification, 12 mosaics, or tiles, were prepared 

covering all of South America. 

All the pre-processing steps were performed using an open source MapPy python library that is 

Windows compatible. MapPy depends on various third-party packages and modules including, 

Geospatial Data Abstraction Library (GDAL), and NumPy [39]. We used MapPy, an automated 

approach, to perform image processing (unzip Landsat download, stack/composite, mask, mosaic, 

TOAR calibration, cloud detecting, Cloud Filling, and calibrate Landsat to MODIS Surface 

Reflectance), and generate indices (e.g., NDVI and MSAVI). The package, available freely upon 

request could also perform feature extraction, principal component analysis, and image classification 

using random forests and support vector machine. 

3.3. Image Classification 

A supervised decision-tree classification approach (Random Forest) was used for image 

classification. The random forest classifier uses bagging to form an ensemble of classification. 

It consists of a combination of tree classifiers and each tree casts a vote for the most popular class to 

classify an input vector[40]. A decision-tree classification is a procedure that recursively partitions a 

dataset into smaller subdivisions on the basis of a set of tests defined at each branch or node in the tree. 
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The tree is composed of a root node (formed from training data), a set of internal nodes (splits), and a 

set of terminal nodes (leaves) [41,42]. The quality of the training site database strongly influences the 

quality of classification results [27]. Training classes were generated by selecting a sample of pixels 

for each land cover class (e.g., forest) from several data sources: Landsat imagery, high-resolution 

imagery, and land cover maps. Landsat spectral bands 3, 4, 5, and 7, NDVI, and elevation data and 

derivatives (i.e., Slope, and Aspect) were independent variables for categorical classification. Only the 

composite of growing season Landsat data and NDVI derived from the composite was analyzed. 

Training data collection and classification were performed independently for each tile while paying 

special attention to edge mismatch. Urban areas were not mapped using Landsat but were obtained 

from the DMSP Operational Linescan System (OLS) nighttime stable light (NTL) datasets [43]. This 

freely available dataset consists of average visible and cloud free stable lights. NASA researchers have 

used these nighttime lights images to map urban areas[35,44]. 

In areas where land cover features were misclassified and classification output was considered 

unsatisfactory, we added training data, redeveloped the decision tree models, and reapplied the models 

to the respective predictor variables. Once classification output was considered satisfactory,  

post-classification refinement, where apparent misclassified pixels were manually reclassified by the 

interpreter to the correct class label, was performed to eliminate apparent misclassification errors. 

Finally, all classified imagery was mosaicked to produce a single thematic land cover map for all of 

South America. The benefits of this approach are (i) it is a semi-automated approach with minimal 

input from the interpreter, and (ii) the analysis could be completed in a shorter time frame compared to 

traditional classification approach. 

3.4. Accuracy Assessment 

Olofsson et al. [45] proposed a global sample of 500 validation sites (Figure 2), with each site 5 × 5 km 

in area. These global validation sites were selected using a stratified random sampling approach. 

A total of 21 strata were used based on modified Köppen Climate/Vegetation classification and 

population density. The ultimate goal is to develop these validation sites as permanent plots that will 

be periodically/iteratively updated and used for validating a variety of land cover products. 

Furthermore, these global samples may be augmented to address specific accuracy objectives based on 

a target land cover map or geographic region [46]. 

For this study, we used all 55 global sampling blocks that are located in South America to validate 

its land cover (Figure 2). These 55 sites statistically represent the diverse land cover types of South 

America including undisturbed rain forest, mix of rain forest and cleared forest for pasture, gallery 

forests, savannas, woodlands, grasslands, exposed rocks, roads, sands, urban areas, croplands, and 

water bodies. However, these sampling blocks were not designed specifically to validate land cover of 

South America. 
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Figure 2. Global 5 × 5 km very high resolution reference sites and their location in  

South America. 

 

Very high resolution multispectral and panchromatic satellite data obtained from the National 

Geospatial Agency (NGA) Web-based Access and Retrieval Portal (WARP) were used as a reference 

data source to validate the Landsat 30 m land cover product. Data types included WorldView-1, 

WorldView-2, IKONOS, QuickBird, OrbView-3, and GeoEye-1. These data were acquired at the 

growing season (November 2009–February 2010), same season as Landsat satellite data acquisition. 

However, target imagery acquisition was not always possible due to the unavailability of data or cloud 

and shadow. Because of this, a small fraction (less than 5%) of the data was collected from outside the 

growing season or from non-target years. Resolution of multispectral data at optimal nadir imaging 

geometry ranges from 1.65 m for the GeoEye sensor to 4 m for OrbView-3, and resolution of the 

panchromatic data ranges from 0.41 m for GeoEye to 1 m for OrbView-3. These various resolution 

data were resampled to 2 m and classified using a decision tree classifier. Consistent with our land 

cover classes, the reference data land cover classes are defined using LCCS. 

Pre-processing steps involved orthorectification and sub-setting of imagery prior to image 

classification. Orthorectification was performed using Rational Polynomial Coefficient (RPC) modeled 

sensor orientation data supplied with the image data and Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) Global Digital Elevation Model 2 (GDEM v2). We used a similar 

classification approach as Landsat classification (Figure 1) to produce four discrete land cover classes: 

trees, open water, barren, and other vegetation (Figure 3). Training data were collected visually using 

ERDAS Imagine software. Ideally, it is suggested to check the accuracy of reference datasets from 

field visits and in-situ measurements. However, it was not practical to conduct a field survey of all 

55 sites for this study. To minimize these errors, we organized a week-long peer review workshop 

involving three interpreters to check the quality of classification results in each 1 km × 1 km regularly 

spaced blocks. Based on consensus agreement, errors were identified and removed through iterative 

classification and editing. 
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All very high resolution reference images in the 55 sample blocks were resampled from 2 m to 

30 m using the class majority rule. In total, approximately 1.4 million reference points were used for 

the South America land cover accuracy assessment. Finally, a confusion matrix was constructed to 

cross tabulate the observed data with the reference data [47]. 

Figure 3. An example of a validation site located within the Northern Pará region of Brazil 

with very high resolution multispectral image and classified image. 

 

3.5. Areal Statistics 

Land cover areas were calculated for all countries in South America. First, the land cover mosaic 

was transformed to Albers Equal Area projection. A geospatial vector dataset containing South 

America’s administrative country boundaries was used to tabulate land cover areas per country. 

The analysis took six months for one expert to acquire the data, perform pre-processing, and perform 

image classification. Preparation of the validation database took approximately six months for two image 

analysts. Deskstop computers and a server with 30 TB of diskspace were used for the analysis. 

4. Results and Discussion 

We prepared an accurate and contemporary wall-to-wall map depicting South America’s land cover 

(Figure 4) at 30 m spatial resolution [48]. The database reveals the status of land cover in South 

America for 2010 at a resolution finer than previous mapping efforts. Previous land cover datasets 

were prepared using coarser spatial resolution satellite data ranging from 250 m to 1 km. According to 

our estimate, 50% of South America is covered by forests, approximately 2.5% is covered by water, 

and only 0.02% is covered by snow and ice. 
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Figure 4. 2010 South America 30 m land cover map prepared using Landsat 30 m  

satellite data. 

 

The 30 m resolution is suitable for national and sub-national applications. The 30 m land cover 

product can be used for local-scale resource management (Figure 5). For example, several national and 

sub-national land cover initiatives have been using 30 m or similar resolution satellite data for land 

cover mapping and monitoring [49,50]. The global change science community benefits from these 

datasets because 30 m resolution data (i) permits detection of land change at the scale of most human 

activity; (ii) offers increased flexibility for environmental model parameterization; (iii) provides spatial 

information content that is better than existing global land cover datasets; (iv) supports many GEO 

tasks and activities, including GEO Agriculture, Forest Carbon Tracking, the Biodiversity Observation 

Network, and the Land Cover Task; and (v) provides globally consistent and locally relevant 

information. The database fulfills the requirement of resource managers as well as that of the global 

change research community. 
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Figure 5. Zoomed in area in Bolivia showing deforestation patterns. Forest (green) is 

overlaid with the Landsat mosaic. The inset map shows the approximate location of Bolivia. 

 

With this new database, we calculated the areal extent of five land cover classes for each country of 

South America for 2010 (Table 1). These data can serve resource managers and scientists with 

information for developing conservation strategies, biodiversity loss mitigation efforts, and monitoring 

land cover and climate dynamics. 

Table 1. Land cover extent of South American countries prepared using Landsat 30 m data 

of 2010 (in ha). 

Country/Class Forest Water Barren Other Snow/Ice Cloud Shadow Total Area

Argentina 36,628,196 4,378,441 21,614,340 216,178,437 583,050 - 177,806 279,560,271 

Bolivia 64,254,426 913,451 9,277,702 33,736,031 45,478 32,486 - 108,259,574 

Brazil 491,419,051 17,440,482 581,954 344,861,799 - 1488 19,621 854,324,395 

Chile 20,670,135 10,648,720 22,260,191 27,303,798 2,679,831 442,972 - 84,005,648 

Colombia 76,455,280 1,750,672 44,035 36,108,273 8376 44,960 66,578 114,478,175 

Ecuador* 18,089,506 627,295 1007 6,450,526 8680 19,388 7721 25,204,124 

French Guiana 8,135,616 191,927 - 101,600 - - - 8,429,142 

Guyana 18,839,459 349,586 7224 2,037,063 - 178 959 21,234,469 

Paraguay 21,504,882 317,204 7034 18,000,231 - - - 39,829,351 
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Table 1. Cont. 

Country/Class Forest Water Barren Other Snow/Ice Cloud Shadow Total Area

Peru 77,705,314 2,252,083 12,560,426 37,262,479 152,276 11,047 70,216 130,013,842 

Suriname 13,975,183 325,795 2489 395,732 - - - 14,699,199 

Uruguay 1,703,068 482,842 20,217 15,708,332 - - - 17,914,459 

Venezuela 53,869,109 3,781,202 12,302 35,829,688 198 14,260 25,597 93,532,356 

* Continental Ecuador only. 

Percentage forest area of South American countries varies from 9.5% in Uruguay to 96.5% in 

French Guiana (Figure 6). South American forests form an important part of the world’s forests, 

particularly tropical rain forest. The tropical rain forest in South America is mainly concentrated in the 

Amazon River Basin. Outside the Amazon, tropical rain forests are found in coastal Brazil and in 

northern and western South America extending from Peru to Venezuela. 

Figure. 6. Percentage distribution of forest areas by country in South America. 

 

An accuracy assessment performed on the 2010 South America 30 m land cover map indicated high 

classification accuracy, with an overall accuracy of 89% and Kappa of 79% (Table 2). Forest, water, 

and other vegetation were classified with high accuracies. However, barren class had the lowest 

producer’s and user’s accuracies. The timing of the data acquisition may have caused the low accuracy 

for the barren class. The Landsat data used for land cover mapping and very high resolution satellite 

data used for reference data were not consistently acquired at the same time of the growing year. Land 

cover conversion and phenological changes that might have occurred during these time differences 

complicate interpretation and comparison. For example, cleared forest in tropical areas may change to 

shrubs and grasses within a few weeks or months. To improve classification accuracy of barren areas,  

multi-temporal data are needed. The accuracy of the snow and ice class was not assessed because of a 

lack of reference data. 

Input Landsat data limitations impacted the land cover classifications output for South America. 

Cloud cover, although minimal in area (5668 km2), was persistent in some areas throughout the study 

area and prevented land cover mapping of target classes. Additionally, an anomaly of the Landsat 7 
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ETM+ Scan Line Corrector (SLC) in 2003 resulted in 22% data loss per scene. This data loss appears 

in the form of wedge-shaped gaps widening from the scene center toward the scene edge. These data 

gaps were “filled” with supplementary imagery; however, issues with differing capture dates of the 

Landsat 7 ETM+ SLC-off imagery and the supplementary data caused problems with land cover 

characterization is some areas. 

Table 2. Confusion matrix showing producer’s, user’s, and overall accuracies. 

Predicted 

Observed 

Forest Water Barren 
Other 

Vegetation 
Total 

User’s 

Accuracy % 

Forest 673,994 2,742 1,080 96,562 772,378 87 

Water 888 12,892 224 809 14,813 93 

Barren 56 19 634 3,201 3,910 18 

Other Vegetation 42,734 4,025 8,120 610,928 665,807 91 

Total 717,672 19,678 10,058 710,500 1,457,908  

Producer’s 

Accuracy % 
94 79 19 86   

Overall  89 

5. Conclusions 

We produced a land cover database of South America for the year 2010 using Landsat 30 m spatial 

resolution satellite data. Though several land cover databases for South America existed prior to our 

study, they were derived from coarse resolution imagery ranging from 250 m to 1 km. Our database 

provides information with details relevant at local and national applications. Mapping at 30 m spatial 

resolution was made possible due to availability of free Landsat satellite data, and advancement in 

image processing and computing resources. For example, we used all growing season data of 2010, 

automated image pre-processing techniques, semi-automated image classification approach, and 

servers and workstations to analyze the data. Until recently, mapping of the entire South American 

continent at this resolution was impractical mainly due to data costs, data volume, small image extent, 

haze and cloudiness, and sporadic acquisitions [51]. 

Based on the analysis of remotely sensed satellite observations and digital image classification 

techniques, our investigation provides contemporary and accurate data regarding South America’s land 

cover extent and spatial distribution for 2010. Our analysis revealed that in 2010, 50% of South 

America is covered by forests, 2.5% is covered by water, and 0.02% is covered by snow and ice. The 

percent forest area of South America varies from 9.5% in Uruguay to 96.5% in French Guiana. We 

used very high resolution (<5 m) satellite data to validate the land cover product. The overall accuracy 

of the 2010 South America 30 m land cover map is 89% with a Kappa coefficient of 79%. The results 

from this study are useful for developing biodiversity conservation strategies and future land cover 

monitoring and prediction. 

The pre-processed Landsat data and land cover product generated from this research is freely 

available from the USGS. The national mapping agencies, regional/international organizations, and 

researchers can benefit from our analysis in two distinct ways: further analysis could be performed 
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using this baseline land cover data and pre-processed satellite data. The pre-processed data could be 

used to perform detailed land cover analysis at national or local scales. Similarly, our land cover data 

could be used to produce additional land cover classes utilizing pre-processed Landsat data and a 

hierarchical classification approach. For example, the forest class could be sub-divided into evergreen 

and deciduous forests. Methods developed and used in this study have two major advantages: the 

method is a semi-automated approach with minimal input from the interpreter, and the analysis can be 

completed in a shorter time frame compared to a traditional classification approach. 

In the future, additional land cover classes such as cropland, grassland, and wetlands need to be included 

in the classification. Accuracy of barren areas needs to be improved, possibly using multi-temporal Landsat 

data. A periodic update (e.g., every 3–5 years) of land cover and validation data is also needed. 
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