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Abstract: Remote sensing imagery has been widely used in urban growth and environment 
analysis with many effective and advanced strategies being developed. However, most of 
these approaches are separated from each other. There is an urgent need to combine different 
modules into some practical processing chains. Firstly, we present a comprehensive analysis 
of key processing chains in applying remote sensing images to urban environment analysis 
from such aspects as Land Use/Land Cover (LULC), urban landscape ecology, Urban Heat 
Islands (UHIs), vegetation and water monitoring, change detection, urban ecological 
security assessment and urban environmental mapping. Secondly, an integrated system, 
namely Urban Environment Analysis System (UEAS), is implemented based on the 
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aforementioned processing chains to analyze urban environment using multi-temporal and 
multi-source remotely sensed data. Several case studies are demonstrated to confirm the 
effectiveness of the integrated system and the combined processing chains. The contributions 
of this paper lie in introducing ensemble learning to urban environment remote sensing, 
combining remote sensing derived information with thematic models for urban environment 
assessment, and developing an integrated system for urban environment analysis. 

Keywords: urban remote sensing; Urban Environment Analysis System (UEAS);  
Land Use/Land Cover (LULC) classification; Urban Heat Islands (UHIs); Land Surface 
Temperature (LST); Change Detection (CD) 

 

1. Introduction 

Effective and sustainable urban management increasingly requires advanced techniques to obtain 
various and up-to-date information on the pattern, state, characteristics, and development of an urban 
environment [1]. Remotely sensed imagery is an effective data source for urban environment analysis 
that is inherently suited to provide information on urban land cover characteristics and their changes 
over time at various spatial and temporal scales [2–6]. In the past decades, remote sensing has been 
widely used in various applications, such as urban structure extraction, urbanization monitoring, 
change detection, and so on [5,7–13]. With the development and innovations in data, technologies, and 
theories in the wider arena of earth observation, urban remote sensing has rapidly gained popularity 
among a wide variety of communities from many aspects such as Land Use/Land Cover (LULC) 
mapping, Urban Heat Islands (UHIs) analysis, impervious surface area estimation and urban ecological 
security assessment [12]. 

Many algorithms and models have been developed to analyze urban environment [5–13]. However, 
they are usually implemented with independent functions in separate modules. Since different remotely 
sensed images have various spatial, temporal, spectral, and radiometric characteristics, it is challenging 
to produce accurately thematic information and quantitative indicators using only one model. 
Therefore, it is important to combine some useful but separated modules into efficient processing 
chains, re-organize different image processing tasks from the viewpoint of urban environment analysis, 
and integrate remote sensing derived thematic information with thematic models for practical uses.  
In this paper, we present a comprehensive analysis of key techniques for remote sensing analysis of 
urban environment, such as LULC, urban landscape ecology, UHIs, vegetation and water extraction, 
change detection and urban ecological security assessment. After that, an integrated system, namely 
Urban Environment Analysis System (UEAS), is implemented for the analysis of urban expansion and 
environmental changes using multi-temporal and multi-source remotely sensed data. 

The contributions of this paper are: (1) proposing practical image processing chains for  
urban environment analysis by re-organizing and combining generally different and separate tools;  
(2) applying ensemble learning to an urban area to improve the performance of image classification 
and change detection; (3) combining remote sensing derived information with thematic models for 
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urban environment assessment and (4) developing an integrated system for urban environment analysis 
using multi-source and multi-temporal remotely sensed images. 

The rest of this paper is organized as follows. A systematic review of key techniques for urban 
environment analysis is presented in Section 2. In Section 3, several key processing chains are 
proposed. The implementation of UEAS is briefly introduced in Section 4. In addition, we also provide 
several studies conducted by UEAS. Finally, Section 5 concludes the work with some remarks. 

2. Key Elements and Approaches for Remote Sensing Analysis for Urban Environment 

2.1. LULC Classification and Change Detection over the Urban Area 

Image classification and change detection are two of the most popular techniques for monitoring 
LULC in urban areas. Remote sensing image classification or change detection is a complex process 
which requires consideration of many factors. The major steps include selection of remotely sensed 
data, determination of a proper classification or detection system, image preprocessing, feature 
selection/extraction, selection of suitable classification or detection approaches, post-classification 
processing and accuracy assessment [14]. A suitable classification or detection system and remotely 
sensed imagery should be chosen according to the characteristic of images, land cover types, 
atmospheric condition, the objective of study, and the capacity of hardware and software. Generally 
speaking, classification and change detection techniques can be grouped into two main categories: 
supervised and unsupervised. The former needs a number of samples for training the supervised 
classifier or detector according to prior knowledge of the study area and used dataset. Representative 
methods include Post-Classification Comparison (PCC) [15], Support Vector Machine (SVM) [16] and 
Artificial Neural Network (ANN) [17]. The latter directly derives spectral clusters and extracts ground 
changes without support from ground samples. Typical algorithms consist of Iterative Self Organizing 
Data Analysis (ISODATA), K-means for classification, image differencing [18], Principal Component 
Analysis (PCA) [19], and Change Vector Analysis (CVA) for change detection [20]. 

2.2. Urban Heat Islands 

Land Surface Temperature (LST) is an important parameter and plays a significant role in urban 
environment analysis, climate change, and ecology monitoring [10]. Remote sensing has been viewed 
as one of the most effective tools for LST inversion and urban heat islands analysis. Thermal Infrared 
(TIR) data are used to retrieve LST by measuring Top Of Atmosphere (TOA) radiances [21]. Various 
approaches, including radiative transfer and split-window techniques, etc., have been developed and 
extensively used in the literature [22,23]. In this paper, Mono-Window Algorithm (MWA),  
Single-Channel Algorithm (SCA) and improved Temperature and Emissivity Separation algorithm 
(TES) are used to retrieve LST from Landsat TM and ASTER TIR channels. The details of these 
approaches can be found in [22–24]. 

2.3. Vegetation and Water Body Extraction over the Urban Area 

Vegetation and water extraction are significant activities in determining water balance, estimating 
geomorphological change and are meaningful in many applications such as urban planning, disaster 
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assessment, flood forecasting, and wetland conservation [25–29]. Vegetation extraction approaches 
can be divided into the following groups: vegetation indexes, classification, vegetation abundances, 
and greenness component derived from K-T transform. Among them, Normalized Difference 
Vegetation Index (NDVI) is the most popular one. 

The commonly used algorithms for the extraction of water bodies can be grouped as follows: 
classification algorithms, band thresholds, and indexes based methods [30]. The most widely used one 
is Normalized Difference Water Index (NDWI). Wang et al. utilized MDWI for rapid water 
information extraction in China coastal zones [31]. Ruan et al. applied NDVI, NDWI and single band 
density slicing methods for water extent extracting [32]. Cui et al. used NDWI to remove the humidity 
effect in the LST retrieval process [33]. Water information extracted by NDWI is mixed with other 
non-water information, especially in the case of urban areas. Modified NDWI (MNDWI) is more 
suitable with respect to NDWI when the major part of the image is the built-up area. Ratio index 
models have an advantage for water body extraction for the dense river network, numerous ponds and 
the manmade interference region [32,34]. 

2.4. Evaluation of Urban Landscape and Ecology 

Landscape pattern is the spatial arrangement of landscape elements in different sizes and shapes.  
It affects ecological processes such as transfer of substances, energy, and information, resulting in 
alteration of the landscape function. Analyzing landscape pattern can be used to study landscape 
spatial structure change. Landscape pattern is a measure of an ecosystem’s ability to prove habitat, 
prevent environmental degradation, and support other natural processes. In order to study the pattern 
change, different landscape metrics, including diversity index, shape index, patch density, mean of 
patch area distribution, and the landscape fractal dimension, are often adopted [35]. 

2.5. Urban Ecological Security Assessment 

Ecological security is a recent concept, but because of its short history, it has no universally 
accepted definition, parameters, or appropriate research methods [36–38]. Scientists have adopted both 
broad and narrow concepts. Broad concepts comprise natural, economic, and social ecological security, 
while narrow concepts include ecosystems which are influenced by the natural aspect of human 
activities in specific areas [39]. Ecological security should be assessed on different scales. Global scale 
means processes of global change, regional scale means processes in specific areas and urban scale 
represents urban development. Increasing concerns over “urban ecological security” are now giving 
priority to strategies with regard to reconfiguring cities and their infrastructures to secure their 
ecological and material reproductions [40]. 

Different models are adopted in ecological security evaluation, such as the Pressure-State-Response 
(PSR) model, the Environment-Society-Economy (ESE) model and the Environment-Resource (ER)  
model [41]. In particular, the PSR model has been applied most widely in many fields due to its 
advantages, such as easy-to-use structure, understandable and neutral descriptions of environmental 
systems, flexible adjustment in spatial scales, easy extension, and synthetic considerations. 
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2.6. Urban Environmental Mapping 

Ecological unit mapping has become one of the primary contents of urban and rural ecological 
planning [42]. On the basis of the city information, urban ecological unit mapping is used to divide 
ecological units into different elements (for instance, public land use, buildings, vegetation, roads and 
water bodies) and to record their spatial and attribute data [43]. 

The methodologies for ecological unit mapping can be roughly divided into three categories: 
selective mapping for focus areas, regional mapping based on typical samples, and whole region 
mapping based on remote sensing [44]. On the support by Geographic Information System (GIS)  
and Remote Sensing (RS) technologies, the major steps for urban environmental unit mapping  
include [43]: data collection; the preliminary interpretation of remotely sensed data (tone or color, 
shadow, size, shape, texture, pattern); site information collection, and field investigation; the 
classification of ecological units and validation; and field verification for ecological unit maps. 

In order to address the requirements of urban environment remote sensing, a systematic chart 
summarizing the approaches in different modules used for urban environment analysis is shown in 
Figure 1. These modules are given specialized names of LULC, LST (corresponding to UHIs), 
thematic mapping, change detection and integration. 

Figure 1. A chart of urban environment analysis related remote sensing image  
processing modules. 
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3. Design of Effective Remote Sensing Image Processing Chains for Urban  
Environment Analysis 

As we discussed before, most of the tools and algorithms are separated. In order to process remote 
sensing data more effectively, we managed to combine different modules and re-organize related tasks 
to form some processing chains for urban remote sensing. These processing chains will be 
implemented in our integrated system. 

LULC: LULC maps can be produced by both single classifiers and classifier ensembles. The main 
topologies of classifier ensembles are concatenation, parallel and hierarchical combination. 
Concatenation combination treats the former classification results as an input of the next classifier. 
Parallel combination methods integrate the individual classification results without any mutual 
interaction, to be combined according to certain algorithms. Hierarchical ones combine both 
concatenation and parallel classifier configurations. More details can be seen in [45,46]. The parallel 
and concatenation combination algorithms are realized in the LULC module. 

UHIs: In this processing chain, UHIs maps, UHIs distribution status and relationship between LST 
and different indexes are necessary. NDVI is one of the primary functions during UHI inversion 
routines. It is given by the formula as, NDVI = (NIR – RED)/(NIR + RED), where NIR and RED are 
near infrared and red channel of remotely sensed data, respectively. Emissivity could be calculated by 
the NDVI map or classification map. For UHIs analysis, LST profiles from two directions along north 
to south or east to west can be derived. LST retrieval algorithms include MWA, SCA, the radiative 
transfer equation, and the TES are implemented.  

Vegetation and water extraction: In this processing chain, the methods for vegetation and water 
extraction are realized. These approaches include Modified Soil Adjusted Vegetation Index (MSAVI), 
threshold, NDVI, NDWI, and MNDWI [47,48]. 

Chang detection: There are three processing chains in the change detection module: Coarse To 
Fine Change Detection (CTF_CD), SVM based CD, and Fusion based CD. In the CTF_CD, two 
groups of CD methods can be selected. One is the coarse data change detection suitable for low spatial 
resolution images, including the PCA, CVA and Independent Component Analysis (ICA) techniques. 
The other is the fine data change detection designed for high spatial resolution images, including 
image differencing, ratio and SVM techniques. In the SVM based CD, two-date remote sensing 
imageries are used to automatically generate the difference image. Furthermore, the training set is 
imported to train an SVM detector to generate the final CD map. In the Fusion based CD submenu, 
there are two levels of fusion operations. The former is the pixel/feature level in which the original 
multi-date remote sensing data are directly imported to generate the result. The latter is the decision 
level fusion in which the results should be produced by combing the previous pixel/feature 
fusion results. 

Model integration: In this advanced module, LULC processing chain, LST retrieval processing 
chain and UHIs analysis functions are integrated as automatic/semi-automatic workflow processing 
with few manual interventions. Two processing chains, including NDVI based and classification based 
techniques for LST retrieval, are integrated to predict and simulate urban thermal environment. A PSR 
model and a weighted summation model are integrated with remote sensing derived information to 
conduct some thematic assessment to urban environment. 
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4. Software System and Case Applications 

Based on the aforementioned analysis, we developed a software system, namely the Urban 
Environment Analysis System (UEAS), including basic modules and advanced modules for urban 
environment analysis. These software routines were developed mainly by Interactive Data Language 
(IDL) (http://www. exelisvis.com/language/en-US/Company/CompanyHome.asp IDL introduction link).  
A part of them is combined with ENVI functions. The main functional modules embodied as menu 
items include (1) LULC: MLC, SVM, BPNN, parallel and concatenation classifier ensemble strategy; 
(2) UHIs: NDVI, Emissivity, SCA algorithm for Landsat TM data (SCATM), WMA algorithm for 
Landsat TM data (WMATM), NDBI_LST (relationship between Normalized Difference Built-up 
Index and Land Surface Temperature analysis); (3) water body and vegetation extraction: threshold, 
NDVI, NDWI, MNDWI; (4) change detection: PCA_CD, SVM_CD, CTF_CD; (5) model integration: 
TES (Thermal environmental simulation). A screenshot of user interface is shown as Figure 2. 

The UEAS is realized with a collection of IDL source files. In order to run these scripts, installation 
of a virtual machine of IDL 8.x or later is required. The freely distributed virtual machine can be 
downloaded from the homepage of EXELISVIS (http://www.exelisvis.com). Output binary data are 
saved as Tagged Image File Format (TIFF) images, which are easy to open using professional remote 
sensing software or universal image processing software. 

Figure 2. Graphic user interface. 

  

In the following subsections, several applications on two typical study areas are applied to 
demonstrate the effectiveness of the developed system. Multi-source remote sensing images with 
different spatial and spectral resolutions are used. 
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4.1. Land Cover Classification Using the Ensemble Learning Method 

Ensemble learning aims at combining the outputs of individual learners to improve the performance 
of pattern recognition. Since it is difficult to select a best classifier for urban land cover classification, it 
is advantageous to employ ensemble learning to remote sensing image classification. Different classifiers 
are viewed as individual learners and their outputs are combined by some specific combination  
rules [14,46]. QuickBird multi-spectral image (four spectral bands, spatial resolution: 2.44 m) is used as 
experimental data. There are five classes of interest: water, built-up area, green area, vegetation, and 
barren soil. A study area is located in the northern suburb of Xuzhou city along the urban and rural 
connecting areas with an image size of 500 × 500. In addition to the original multi-spectral bands, 
textural features (mean and variance) extracted by Gray Level Co-occurrence Matrix (GLCM) are 
treated as the classification input. 

In our first experiment, the classification performances of Bagging and AdaBoost with three 
unstable classifiers, including J48 decision tree (J48DT), RBF neural network (RBFNN) and MLP 
neural network (MLPNN), were investigated. Bagging applies sampling with replacement to obtain 
independent training samples for individual classifiers. Boosting changed the weights of training 
samples according to the results of the previous trained classifiers, focusing on the wrong classified 
samples, making the final result by a weight vote rule. Overall accuracies of single and ensemble 
classifiers are summarized in Table 1. It can be seen from Table 1 that AdaBoost is superior to 
Bagging. In comparisons of the three base classifiers, the accuracies of AdaBoost are increased by 3.25, 
1.94 and 2.25 percentage points. Furthermore, we studied the influence of bootstrapped sample size of 
Bagging to classification performance. Here, we chose four sample sizes: 25%, 50%, 75% and 100%. 
The general trend is that the overall accuracies increase slightly (less than 1%) when the sampling rate 
rises. The accuracy of RBFNN is a bit unsteady under different sampling rates. This may be due to the 
fact that the number iterations of RBFNN are not enough (only 10 in the experiment). 

Table 1. Accuracy of Bagging and AdaBoost using different base classifiers. 

Base Classifier J48 DT MLPNN RBFNN 
Base classifier 92.42% 93.49% 92.83% 

Bagging(25% samples) 94.22% 94.20% 93.76% 
Bagging(50% samples) 94.55% 95.27% 93.39% 
Bagging(75% samples) 94.30% 94.91% 93.40% 

Bagging(100% samples) 94.93% 95.09% 93.36% 
AdaBoost 95.67% 95.43% 95.35% 

In the second experiment, eight parallel combination algorithms including majority vote, Bayesian 
average, logarithmic consensus, linear consensus, evidence theory, improved evidence theory, fuzzy 
integral and distance weighted dynamic classifier selection (DWDCS), were used to assess the 
performance. Different member classifiers were applied to different parallel combination methods.  
For Bayesian average, logarithmic consensus and linear consensus, the member classifiers are MLC, 
SVM, MLPNN, RBFNN and SFH-ARTMAP. The member classifiers for others are SVM, MLPNN, 
RBFNN, MEDC and J48DT. Figure 3 presents the classification results of MCS on parallel combination. 
Their accuracy statistics are shown in Table 2. Among the individual classifiers, SVM classifier 
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achieves the highest accuracy of 93.49%. Compared to SVM classifier, the Bayesian average achieves 
an accuracy of 94.99%, with improvement of 1.5%; Majority vote and fuzzy integral improve the 
accuracy from 93.49%–94.74% and 93.49%–94.37%, respectively. Other parallel combination 
approaches improve the accuracy slightly with an improvement of 0.28%–1%. The “local” ensemble 
method (DWDCS) results in 93.98% accuracy with an improvement of 0.49%. In conclusion, 
accuracies of the parallel combination approaches all yield higher classification accuracies than 
individual classifiers under different theoretical backgrounds. 

Figure 3. Classification results obtained by parallel combination approaches. (a) Bayesian 
average method; (b) Linear consensus method; (c) Logarithmic consensus method;  
(d) Majority vote method; (e) DS evidence theory method; (f) Improved DS evidence 
theory method; (g) Fuzzy integral method; (h) DWDCS method. 

 

Table 2. Classification accuracy of parallel classifier combination. 

Combination Strategy OA Kappa Combination Strategy OA Kappa
Bayesian average 94.99% 0.94 Evidence theory 93.76% 0.92 

Logarithmic consensus 93.77% 0.92 Improved evidence theory 94.18% 0.93 
Linear consensus 94.37% 0.93 Fuzzy integral 94.37% 0.90 

Majority vote 94.74% 0.93 DWDCS 93.98% 0.92 

4.2. Modeling and Analysis of the Urban Thermal Environment 

LST is retrieved from Landsat TM image using the developed MWA and SCA algorithms.  
The result is shown as Figure 4. In order to illustrate the change distribution of UHIs, eight transects 
are presented in the image (Figure 4). Temperature profiles with different directions from the city 
center are calculated for analysis (Figure 5). 
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Figure 4. Land surface temperature (LST). (a) LST inversed using SCA method; (b) UHIs 
distribution in eight transects.  

(a) (b) 

Figure 5. Transactions derived from LST data at 60 m and 900 m scales. (a) Temperature 
profile at 60m scale; (b) Temperature profile at 90m scale. 

(a) (b) 

NDVI, NDBI maps and the relationship between average LST values and land cover types could be 
analyzed with the routine NDVI, NDBI, NDVI_LST and NDBI_LST. The results derived by these 
routines are shown as Figure 6. Both NDVI and NDBI maps are reduced to 60 m/pixel in order to 
match the spatial resolution of LST map. Figure 6a,c shows the spatial distribution of NDVI and NDBI, 
respectively. Bright areas express high NDVI (NDBI) values while low dark areas mean  
low NDBI (NDVI) values. Figure 6b indicates that there is a strong negative linear relationship 
between LST and NDVI. Figure 6d shows that there is a strong positive linear relationship between 
LST and NDBI. 

4.3. Ecological Security Assessment 

Ecological security assessment is implemented by an integration of remote sensing derived 
indicators, a PSR model and a weighted summation model. The PSR model is based on the concept of 
causality and includes three different types of indicators: pressure indicators, state indicators and 
response indicators [49]. The technical flow is demonstrated in Figure 7. A case study of urban 
security assessment on Xuzhou City has been published in [50]. Another case study of coastal wetland 
in Yancheng City, Jiangsu Province, P. R. China, is used to demonstrate the PSR model. Landsat 
TM/ETM+ data captured on 7 June 1992, 26 May 2002, 11 September 2000 and 13 May 2009 are 
selected as data sources for ecological security evaluation. 
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Figure 6. NDVI, NDBI and their relationships between LST. (a) NDVI map;  
(b) Relationship between LST and NDVI; (c) NDBI map; (d) Relationship between LST 
and NDBI. 

(a) (b) 

(c) (d) 

Figure 7. Technical Flow of the ecological security evaluation. 
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Several indicators such as land cover, landscape structure, vegetation coverage, land surface 
temperature, and distribution of pollution sources can be derived from remotely sensed images.  
Other indicators such as groundwater, population density and statistical data are also used in the 
evaluation process. All data are normalized and organized in GIS. The indicators in the PSR model are 
overlapped with corresponding weights to obtain evaluation results of urban ecological security.  
Table 3 illustrates different types of indicators and their corresponding weights. Different analytical 
methods have been developed to investigate the dynamic change and spatial pattern of urban 
ecological security. The assessment results are reported in Figure 8 and Table 4. Based on the results, 
it is concluded that the ecological security situation of cost wetland in Yancheng city is mainly in a 
critical security state and the regions identified as “unsecure” present an increasing tendency due to 
rapid urbanization and coastal development. It is important for local government agencies or municipal 
bureaus to take ecological security information into account in their decision-making as reasonably 
as possible. 

Table 3. Ecological security evaluation indicators and their weights. 

Target Criteria Indicators Weights 

Ecological 
Security 

Assessment 

Pressure 
(0.2024) 

Population density 0.1212 
Human disturbance 0.0812 

State 
(0.5503) 

Vegetation index 0.1361 
Degree of dominance 0.0767 

Degree of fragmentation 0.1088 
Fractal dimensionality 0.0660 

Vulnerability 0.0514 
Ecological elasticity 0.1114 

Response 
(0.2473) 

Vegetation coverage 0.1114 
Soil moisture 0.0747 

Land surface temperature 0.0612 

Figure 8. Results of ecological security evaluation over the wetland of Yancheng for three 
dates. (a) 1992; (b) 2002; (c) 2009. 

 
(a) (b) (c) 
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Table 4. Average score of costal wetland ecological security of Yancheng city. 

 Average Score  
of Pressure 

Average  
Score of State 

Average Score of  
Response 

Average Score of  
Ecological Security Score 

1992 8.68 7.05 5.42 6.97 
2002 8.21 6.42 5.32 6.51 
2009 8.04 6.69 5.57 6.68 

4.4. Simulation and Prediction of Urban Thermal Environment 

Landsat TM/ ETM+ images obtained from 26 March 1995, 3 April 2001 and 14 May 2007 were 
chosen to test the system for simulation and prediction. Firstly, the SCA method was selected to 
retrieve UHIs distribution maps from thermal infrared bands. The result is shown in Figure 9a. Circles 
in Figure 9a represent UHIs in the test area. In order to simulate the trend of UHIs, the quantitative 
UHIs distribution map should be transformed into a qualitative one. In this case, it is transformed to a 
temperature anomaly map. Anomaly values are average values of temperature. The anomaly value Jt,i 
on the position of “i” at time “t” is given by Jt,I = Tt,I − Ti, Tt,i is the temperature value on the position 
of “i” at time “t” and Ti is an average value of the temperature on the position of “i” [51]. Then thermal 
environmental trends were simulated by the Cellular Automata (CA)_Markov model. Processing 
chains for trend simulation using the CA_Markov model include initial data acquisition and 
preprocessing, determining the rules of cellular transformation and simulation. The UHIs map of 2007, 
which is shown in Figure 9b, is simulated on the basis of UHIs distribution maps obtained from 1995 
and 2001. Accuracies of simulation maps could be assessed based on the contrast of the true UHIs map 
and the simulated map. 

Figure 9. UHIs map obtained by SCA retrieval and simulation method in 2007 (a) SCA 
method; (b) Simulation result. 

(a) (b) 

5. Conclusions 

In order to promote the applications of remote sensing for urban environment analysis, it is 
important to bridge the requirements of urban environment and the capabilities of image processing, 
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making the advanced remote sensing image processing tools and algorithms applicable to practical 
urban environment analysis. In this paper, different approaches of remotely sensed data processing for 
urban environment analysis are integrated into some practical processing chains. The advanced UEAS 
are successfully implemented with the motivation of automatically/semi-automatically environment 
monitoring and analysis for LULC, UHIs, water body, change detection, landscape ecology, and 
ecological security aspects, which meet requirements of urban environment analysis. The preliminary 
results conducted by several case studies are encouraging. The developed system is a reasonable 
supplement to existing commercial tools. This system is very useful and convenient for urban environment 
analysis, decision-making support using multi-temporal and multi-source remotely sensed data. 

Despite the advantages of the processing chains and the developed system, the ecological security 
evaluation and landscape analysis modules still depend on extra open source/free software, and other 
missing points need to be further investigated in the near future. 
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