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Abstract: Land degradation of alpine rangeland in Dachigam National Park, Northern 

India, was evaluated in this study using MODerate resolution Imaging Spectroradiometer 

(MODIS) land products. The park has been used by a variety of livestock holders. With 

increasing numbers of livestock, the managers and users of the park are apprehensive about 

degradation of the grazing land. However, owing to weak infrastructure for scientific and 

statistical data collection and sociopolitical restrictions in the region, a lack of quality 

ground-based weather, vegetation, and livestock statistical data had prevented scientific 

assessment. Under these circumstances, the present study aimed to assess the rangeland 

environment and its degradation using MODIS vegetation, snow, and evapotranspiration 

products as primary input data for assessment. The result of the analysis indicated that soil 

water content and the timing of snowmelt play an important role in grass production in the 

area. Additionally, the possibility of land degradation in heavily-grazed rangeland was 

indicated via a multiple regression analysis at a decadal timescale, whereas weather 

conditions, such as rainfall and snow cover, primarily explained year-by-year differences 

in grass production. Although statistical uncertainties remain in the results derived in this 
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study, the satellite-based data and the analyses will promote understanding of the rangeland 

environment and suggest the potential for unsustainable land management based on 

statistical probability. This study provides an important initial evaluation of alpine 

rangeland, for which ground-based information is limited. 
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1. Introduction 

Alpine rangelands that spread across the highlands of East and Central Asia, which serve as carbon 

sinks [1,2], play an important role in the mitigation of global warming. Degradation of these alpine 

rangelands is advancing in China [3], due mainly to inappropriate land management (e.g., overgrazing) 

and climatic changes. Land degradation reduces soil carbon storage [4,5] and additionally damages the 

natural environment and sustainable activities of local pasturage. As the degradation of alpine rangelands 

has become one of the important environmental issues of recent decades, several studies have been 

conducted on the alpine rangeland environment in China. Harris [6] summarized a number of studies 

about rangeland degradation on the Qinghai-Tibetan plateau after referring to more than 170 research 

papers and reports. In India, where nomadic pastoralism is predominant in the northern alpine regions, 

degradation of alpine rangelands is also a large issue. Owing to overgrazing, coupled with poor land 

management, these grazing lands have deteriorated to a large extent and require amelioration or 

rehabilitation [7]. However, in contrast to rangelands in China, very few scientific studies have been 

conducted on rangelands in India. Future studies in this field are demanded in India to accumulate 

more knowledge and information about Indian rangeland and its conditions. 

Application of remote sensing in conjunction with GIS has been regarded as a promising tool  

for wide and heterogeneous rangeland monitoring, and several pieces of research have applied 

satellite-based vegetation indices to monitor vegetation conditions in alpine rangelands [3]. Although 

more advanced vegetation indices, such as the Soil Adjusted Vegetation Index (SAVI) [8] and the 

Enhanced Vegetation Index (EVI) [9], are available, the Normalized Difference Vegetation Index 

(NDVI) [10] remains the major vegetation index for pasture monitoring because the index can be used 

effectively to estimate grass coverage (e.g., [11]), grass yield [12], pasture productivity (e.g., [13]), and 

soil carbon stocks (e.g., [14]). Li et al. [15] pointed out that the NDVI is a better index than the EVI 

for distinguishing the vegetation condition in arid and semi-arid regions. 

The ultimate goals of this research are to evaluate the condition and degradation status of the alpine 

rangeland in Dachigam National Park, Northern India, through the 10 years from 2001 to 2010 using 

MODerate resolution Imaging Spectroradiometer (MODIS) NDVI as a surrogate for vegetation 

amount and to evaluate the applicability of a satellite-based approach for the areas where ground-based 

weather information is difficult to obtain. MODIS is a sensor onboard NASA’s Terra and Aqua 

satellites. The sensor views the entire Earth’s surface with high temporal resolution (every one to two 

days), which is an advantage for application in cloudy regions such as Dachigam. In Dachigam, 

livestock holders have insisted that the park’s grazing conditions have degraded during the period, 

however, the details are unknown because no scientific and objective evidence of the degradation is 
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available. This study aims to scientifically and objectively evaluate the rangeland environment by 

efficiently using MODIS satellite imaging products. The literature indicates that the growth of alpine 

vegetation and/or grassland biomass production is largely impacted by climate elements such as 

precipitation [15,16], solar radiation [17], and air temperature [16]. In this study, we applied MODIS 

evapotranspiration products in a unique way to express the spatial distribution of energy and soil water 

conditions within the study area. Degradation of the alpine rangeland was evaluated via multiple 

regression using satellite-derived climate and soil-water information, with information of year serving 

as independent variables and vegetation information as the dependent variable. 

2. Methodology 

2.1. Study Site 

The study site is Dachigam National Park of Jammu and Kashmir (J&K) Province in Northern India 

(Figure 1). The park is located at 34°N, 75°E and occupies about 140 km2 of mountainous area in the 

western Himalayas. The elevation varies widely, ranging from 1700 to 4300 m (Figure 2). One 

challenge of this study was that ground-based weather data were not available for the region. In 

addition, the resolution of global meteorological datasets, such as JRA-25 reanalysis data (typical 

spatial resolution of about 120 to 200 km) [18], was too coarse to express the spatial variety of mountain 

weather within the study area. According to the Dachigam National Park Management Plan [19], 

which was the only accessible source of park meteorological and geological information, the park has 

a monthly average daily maximum temperature of 27 °C (July), minimum temperature of −5 °C 

(December), and annual rainfall of 2936 mm, with rainy seasons in May and August. However, 

considering the park’s wide range of elevation and mountainous topography, a large spatial and 

temporal variation of weather conditions is expected in the park. The park is divided into three 

subareas: lower, central, and upper. The western region of the park is the lowest region, and the eastern 

region is the highest. Several types of livestock use the national park as grazing land. A  

government-owned sheep breeding and research farm comprises about 800 sheep, which breed in the 

park. Local sheepherders (called Chopan), cowherders (called Gujjar), and nomadic goatherders 

(called Bakkarwal) also use the park to graze their livestock, although statistical data are not available 

for these animals. The primary land cover in the park is grassland and forest. The lower part of the 

park had historically been the Maharaja’s hunting field and had been isolated from the public. 

Continuing this tradition, no livestock grazing is conducted in the lower part of the park, while intense 

grazing is conducted in the upper part of the park. The park has been separated into 42 management 

blocks, and the grazing intensity differs by region [19]; no grazing is conducted in blocks 1–9a and 

36–42; moderate grazing is conducted in blocks 9b, 10, 15, and 35; and heavy grazing is conducted in 

blocks 11–14 and 16–34. The spatial distribution of grazing intensity reported by Naqash et al. [19] is 

shown in Figure 3, along with the locations of sample pixels, which are explained in a later section. 

Jammu and Kashmir is a region of conflict between India and Pakistan. According to an interview 

with local goatherders conducted in 2012, the number of livestock in Dachigam National Park has 

been increasing and the grazing land in the park has been degrading. The number of livestock 

increased rapidly around 1971 and again around 1999 owing to the Indo-Pakistani War and the Kargil 
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War, respectively. During the wars, the government closed some grazing lands near the border by 

allowing an influx of nomads into the park. These closed grazing lands have yet to be opened, thus, the 

immigrated livestock continue to use the park. 

Figure 1. Location of Dachigam National Park. 

 

Figure 2. Elevation in Dachigam National Park. 
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Figure 3. Grazing zones and locations of sample pixels (indicated as red and blue circles) 

overlaid with a Landsat 7, bands 453, false-color image (path 149, row 36; 30 September 2001) 

in Dachigam National Park. 

 

2.2. Data 

Owing to the weak infrastructure of scientific and statistical data collection and sociopolitical 

restrictions of the region, obtainable ground-based information was limited. Thus, this study relied 

largely on satellite-based information. Figure 4 illustrates an overview of the primary and supplementary 

data and the usage of these data in this study. These data are also described in the following sections. 

Figure 4. Overview of the study. 
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2.2.1. MODIS Image Products for 10 Years (2001–2010) 

A MOD13Q1, 16-day, 250 m, NDVI product [20] from 2001 to 2010 (MODIS tile = h24v05) was 

used as a relative indicator of the amount of vegetation in the rangelands of the park. The NDVI was 

quality controlled using the quality assurance (QA) data provided with the NDVI images. Pixels 

reported by the QA data as “cloud covered” (pixel reliability rank = 3) were treated as missing-data 

pixels because optical land observation would be prevented by cloud cover. In addition, pixels reported 

by the QA data as “marginal data” (pixel reliability rank = 1; explained as useful but with quality that 

is somewhat lower to lowest) were checked manually and categorized as “missing data” if the NDVI 

value showed an obvious, sudden, short-term dip during the plant growing season, because such a dip 

is most likely evidence of cloud contamination. The data-missing pixels were then filled by averaging 

NDVI values of the previous and subsequent sequential images. Because MODIS multiday composite 

products are designed to minimize the impact of clouds, data-missing pixels rarely occur, even in the 

study area, which is located in a cloudy region. Data-missing pixels occurred on average only about 

once per year in the sample area, and typically appeared in winter but not summer. 

Snow information was anticipated to be an important weather parameter of the park, as the timing 

of snow melt is considered to be one of the most important factors for plant development in alpine 

regions [21]. Snow seems to affect the growth of vegetation, especially in the upper regions of the 

park, which are generally covered by snow for several months. The MOD10A2, 8-day, 500 m, 

maximum snow extent product [22–24] was finally selected as being representative of the snow 

conditions of the park. Other snow-cover products were either daily products, which are inconvenient 

to manipulate, or had a spatial resolution (0.05°) that was too coarse. MOD10A2 includes daily snow 

information in addition to 8-day maximum snow extent information. We evaluated the daily snow 

information in MOD10A2 as erroneous because it is frequently categorized as “no-snow” in the areas 

near mountain icecaps during mid-winter. According to Hall and Riggs [23], a similar misclassification 

also occurs in the 8-day maximum snow cover data. Owing to disturbance by clouds in winter, the 

product occasionally erroneously reports “no snow” for snow-covered areas. In this study, a maximum 

of three sequential no-snow periods wedged by snow-cover periods during winter was designated as 

snow-covered period, assuming that misclassification had occurred. This type of quality control was 

necessary in the study area, an alpine snowy (implying cloudy) region. Only three missing data 

occurred in the snow product: two in June and one in March. The missing data were filled by analyzing 

the previous and subsequent snow conditions. 

The MOD16A2 8-day, 1 km, evapotranspiration (ET) product [25,26] over the same 10-year span 

was used in a unique way in this study. The MODIS ET product contains two different types of 

information: actual ET (ETact) and potential ET (ETpot). In the case of MOD16A2, a quality-control 

procedure using the QA information is incorporated into the estimation algorithm. Both ETact and ETpot 

are above-ground land surface processes and can essentially be used as the ET data-source. However, 

in this study, these parameters were used as indicators of general weather conditions and soil water 

content, to reinforce the parameters that might affect the growth of alpine vegetation in places where 

ground-based data are limited. Micrometeorologically, ETpot is a weather parameter determined by 

radiation, temperature, and aerodynamic conditions above the surface. In this study, ETpot was used as 

an indicator of weather conditions, such as radiation and temperature. ETact is determined by the 
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combination of surface conditions, energy, and soil water availability. Tasumi and Kimura [27] 

reported that ETact/ETpot (actual ET divided by potential ET) provided a fair representation of soil 

water content in a rangeland in China. Here, the subjected depth of the volumetric soil water content is 

the depth at which the soil water is transited to ET. The direct source of water for surface evaporation 

is typically soil water available in the top 10 to 15 cm beneath the surface [28], and the direct source of 

water for transpiration is soil water available in the root zone of vegetation. A typical depth of the 

primary root zone of pasture in a moderate to humid area is zero to 25 cm [29]. Thus, in this study, 

ETact/ETpot calculated using MOD16A2 was used as an indicator of soil water content near the surface 

(e.g., zero to 25 cm from the surface). Missing data were not available. The mean absolute error of 

MOD16 ET products, evaluated by 46 AmeriFlux eddy covariance data for several land uses, 

including grassland, has been reported to be 0.33 mm·day−1 or 24.1% [25]. 

2.2.2. Literature Information 

The Dachigam National Park Management Plan [19] contains some map data, such as land-cover 

classification and grazing intensity of the park. Land-cover and grazing-intensity information were 

used as basic information for sample area selection in this study. 

2.2.3. Other Information 

Field trips were conducted twice, in March and in September of 2012. Photographs of the study site 

were obtained using a Global Positioning System (GPS) camera to confirm the surface land coverage 

and vegetation conditions of the park. Interviews with governmental representatives (such as the 

wildlife wardens of the park and those of the Geographic Information System (GIS) section of the 

local government) and with local livestock holders were conducted to understand the historical and 

general conditions of grazing. High-resolution images from Google Earth, Google Inc., were used to 

reconcile GPS camera snapshots, a land-use map, and coarser MODIS imagery. 

2.3. Method of Analysis 

Among the four types of MODIS-based information employed in this study (i.e., NDVI, snow 

cover, ETpot and ETact/ETpot), two ET-related information sources had a spatial resolution of 1 km and 

were the coarsest. Thus, 250 m NDVI and 500 m snow cover pixels were resampled to 1 km by 

weighted averaging of the pixel area inside the 1 km pixel. Then, 1 km by 1 km sample pixels from 

relatively homogeneous grasslands spread over more than 2 km by 2 km (double the size of the pixel 

size considering the pixel georegistration accuracy and the resolution degradation due to the sensor 

angle) were selected. Because the total extent of the national park is relatively small (140 km2) and the 

land cover was fractionated, few suitable locations were available for the sample area. Finally, eight  

1 km by 1 km sample pixels, four from the no-grazing area and four from the heavy-grazing area, were 

selected. The locations of the selected pixels are shown in Figure 3. For all of the selected sample 

pixels, the majority of the land coverage was grass, although every sample pixel contained some 

portions of tree and/or rock surfaces. Using high-resolution images from Google Earth, the average 

percentage of tree/rock contamination was estimated as 20%. The tree, rock, and grassland surfaces 
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were visually detectable on the Google Earth image of the study site, thus, it was a convenient tool for 

analyzing the percentage of contamination within the 1 km by 1 km sample pixels. This contamination 

prevented evaluation of detailed spatial differences in the vegetation condition within the no-grazing or 

heavy-grazing areas. In this research, each of the four sample pixel values within no-grazing and 

heavy-grazing areas were averaged and used as representative values of the two areas. 

The four MODIS-derived values were plotted in time series to understand the general vegetation 

and climatic conditions of the study area. Cross-relationships of parameters, such as NDVI vs. 

ETact/ETpot, were also evaluated. Degradation of alpine rangeland is difficult to evaluate by NDVI, 

unless the impacts of yearly differences in weather and soil-water conditions on vegetation growth are 

eliminated or reduced. Multiple regression is a convenient tool for extracting rangeland degradation 

(if available) by eliminating or reducing these yearly differences. Thus, after each parameter was 

evaluated, a backward multiple linear regression method, focusing on the difference between no-grazing 

and heavy-grazing areas, was conducted on an annual basis using IBM SPSS Statistics software (Ver. 22). 

The dependent variable was ΔNDVI, defined as the NDVI of the no-grazing area minus the NDVI of 

the heavy-grazing area (May to October average). Independent variables were (1) ΔSnow (days), 

defined as the days of snow cover in the no-grazing area minus those in the heavy-grazing area;  

(2) ΔETpot (mm·year−1), defined as the ETpot in the no-grazing area minus that in the heavy-grazing 

area; (3) ΔETact/ETpot, defined as the ETact/ETpot in the no-grazing area minus that in the heavy-grazing 

area; and (4) Year, a variable that consisted of the series of numbers from 2001 to 2010, expressing the 

change through the years. The model with the maximum number for the adjusted coefficient of 

determination (adjusted R-square) was determined to be the most suitable model. The collinearity 

problem must be considered when independent variables are correlated among themselves. Collinearity 

is evaluated via the variance inflation factor (VIF), and it becomes a serious problem when VIF 

exceeds 10 [30]. In our regression analysis, the maximum VIF was 1.329, indicating that the 

independent variables employed in this study were adequate. 

3. Results and Discussion 

3.1. General Vegetation and Climatic Conditions of the Study Area 

Figure 5 shows the transitions of NDVI, snow cover, ETpot and ETact/ETpot for the 10 years from 

2001 to 2010. The low-value range of NDVI (e.g., 0.2 or below) occurs during winter when the surface 

is covered by snow. During such a winter period, NDVI does not behave as an indicator of vegetation 

amount because NDVI reflects the snow-cover condition (snow or no-snow) rather than vegetation. 

Thus, in the following annual statistical analysis, only NDVI values during the snow-free period  

(May to October) were used as an indicator of vegetation amount. The NDVI graph indicates that 

vegetation growth begins earlier in the no-grazing area than in the heavy-grazing area because the 

heavy-grazing area is located at high altitude where the surface is typically covered by snow until  

mid-April. Visual observation of the NDVI graph shows no evidence of long-term degradation of 

vegetation in the high-grazing area. ETpot is slightly higher in the no-grazing area than in the  

heavy-grazing area during winter and early spring. The primary reason for this difference might be a 

difference in the snow condition, because snow reflects more solar radiation and thus reduces net 
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radiation. ETact/ETpot was used as an indicator of soil water content. Typically, two peaks of ETact/ETpot, 

one in winter and another in summer, are recognized. The peak in summer reflects the rainy season 

during the summer period, and the peak in winter reflects the water supply coming from snow. 

ETact/ETpot might be a strong data source of soil water content where no ground-based precipitation 

and/or soil moisture data are available. 

Figure 5. Transitions of NDVI, snow cover, ETpot and ETact/ETpot for 10 years during 

2001–2010. 

 

Figure 6 shows monthly NDVI (10-year average) in the heavy-grazing and no-grazing areas. During 

the period indicated by yellow in the graph (May to October), the land surface is rarely covered by 

snow and NDVI is expected to function as indicator of vegetation amount. NDVI was higher in the  

no-grazing area than in heavy-grazing area. Within the yellow-indicated period, the difference of 

NDVI between the two areas was largest (about 0.15) in May and smallest (near zero) in September to 

October. The difference of NDVI was most likely caused by the impact of snow. Grass begins to grow 

late in the heavy-grazing area of the park, probably because of late snowmelt in the area. This 
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phenomenon agrees with the description of Shiping et al. [21] for alpine vegetation. The NDVI 

difference shown in Figure 6 is difficult to explain by the difference in grazing intensity. If the NDVI 

difference were due to the difference in grazing intensity, the NDVI difference would either be 

constant over the seasons, or the largest difference in NDVI would be observed during Summer, when 

the grazing in the park is expected to be most active, rather than in Spring. 

Figure 6. Monthly NDVI in the heavy-grazing and no-grazing areas (10-year average). 

 

Figure 7 shows the relationship between NDVI and ETact/ETpot. This graph indicates that the 

amount of grass is closely related to soil water content in both the heavy-grazing and no-grazing areas, 

with high R-square (R2) values (0.75 and 0.86, respectively) of the linear regression lines. The highest 

NDVI and ETact/ETpot occur during summer. Summer rainfall in the park might have supported growth 

of pasture in both the heavy-grazing and no-grazing areas. 

Figure 7. Relationship between NDVI and ETact/ETpot for 16-day period during May to 

October (10-year average). 
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3.2. Annual Statistical Analysis 

Table 1 shows a summary of the backward multiple linear regression. Unfortunately, a result with 

high confidence (e.g., p-value < 0.05) was not obtained through the analysis. As shown in the table, 

Model 1 uses all the individual input variables. The structure of Model 1 is described as follows:  Δܰܫܸܦ	 = 	β଴ +	βଵ × Δܵ݊ݓ݋ + βଶ × Δܧ ௣ܶ௢௧ + βଷ × Δܧ ௔ܶ௖௧Δܧ ௣ܶ௢௧ +	βସ × (1) ݎܻܽ݁

where β0 is the y-intercept of the model (shown as “Unstandardized Coefficients” for the “Constant” in 

the table) and β1 to β4 are partial slopes for the corresponding independent variables (shown in the 

table as “Unstandardized Coefficients” for each independent variable). 

Table 1. Key statistical outputs of the backward multiple linear regression for  

estimating ΔNDVI 

Model 
Unstandardized 

Coefficients 

Standardized 

Coefficients 
R2 

Adjusted 

R2 

Probability 

(p-value) 

Variance 

Inflation Factor 

(VIF) 

1 

(Constant) 

ΔSnow 

−6.756 

−5.748 × 10−4 

- 

−0.478 

0.564 0.216 

0.312 - 

0.183 1.097  

ΔETpot −7.171 × 10−4 −0.362 0.326 1.270  

ΔETact/ETpot 3.644 × 10−1 0.251 0.493 1.329  

Year 3.343 × 10−3 0.337 0.316 1.051  

2 

(Constant) −7.386 - 

0.517 0.275 

0.244 - 

ΔSnow −5.185 × 10−4 −0.431 0.189 1.051  

ΔETpot −9.305 × 10−4 −0.470 0.153 1.025  

Year 3.672 × 10−3 0.370 0.246 1.028  

3 

(Constant) −3.291 × 10−2 - 

0.384 0.208 

0.577 - 

ΔSnow −5.898 × 10−4 −0.490 0.147 1.025  

ΔETpot −9.156 × 10−4 −0.462 0.168 1.025  

4 
(Constant) −3.813 × 10−2 - 

0.175 0.072 
0.548 - 

ΔSnow −5.031 × 10−4 −0.418 0.229 1.000  

5 (Constant) 4.007 × 10−2 - 0.000 0.000 0.002 - 

The backward multiple linear regression method analyzes the least important independent variable 

for each model, and the least important variable is omitted in the next model. The least important 

variable is the one having the smallest absolute number in the “Standardized Coefficients” column of 

the table because the standardized coefficient, calculated by multiplying the partial slope (i.e., 

unstandardized coefficient) by the ratio of the standard deviations of the independent variable and 

dependent variable, shows the normalized impact of the independent variable. In the case of Model 1, 

ΔETact/ETpot was evaluated to be the least important variable. Thus, the parameter ΔETact/ETpot was not 

employed in Model 2. Model 3 was constructed by omitting “Year” from Model 2 because “Year” was 

evaluated as the least important independent variable in Model 2. 
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3.2.1. Selected Model 

Model 2 in Table 1 showed the maximum adjusted R2. Thus, Model 2 was selected as the best 

model. In Model 2, the independent variable ΔETact/ETpot, representing the difference in soil water 

content between the two locations, was statistically dropped as compared with Model 1 because the 

parameter was regarded as least significant for explaining the vegetation difference between the two 

locations. This result, however, is apparently inconsistent with the result shown in Figure 7. 

If ETact/ETpot were an important factor of vegetation, as indicated in Figure 7, ΔETact/ETpot should have 

a strong relation with ΔNDVI. The primary difference in the two results is the difference in timescale: 

Figure 7 is a 16-day comparison and Table 1 is based on annual average data. The soil moisture and 

NDVI had a strong relation at the biweekly timescale, but no relation or only a weak relation was 

implied at the annual timescale. 

According to Model 2, ΔNDVI can be explained in the following equation:  Δܰܫܸܦ	 =	– 	7.386	– 0.0005185 × Δܵ݊ݓ݋ – 0.0009305 × Δܧ ௣ܶ௢௧ + 	0.003672 × 	R2)ݎܻܽ݁ = 	0.517) (2)

An estimated ΔNDVI using Equation (2) was plotted against the satellite-observed ΔNDVI (Figure 8). 

The model expressed in Equation (2) tended to represent observed ΔNDVI for the years when both the 

observed and estimated ΔNDVI were large. 

Figure 8. Estimated and observed ΔNDVI for the 10-year span during 2001–2010. 
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Coefficients” in Table 1. Higher absolute values of the standardized coefficients imply a larger 

contribution. The fact that absolute values of the standardized coefficient were the highest in ΔETpot 

indicated that the difference in weather condition, represented as ΔETpot, most affected the difference 
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was the third, but not an ignorable, contributor for explaining the difference in vegetation amount 

between the non-grazing and the heavily grazed pasturelands. 

3.2.3. Reality of the Selected Model 

In Equation (2), the coefficient for ΔSnow has a negative sign, meaning that a relatively longer 

snow cover in the heavy-grazing area derives less vegetation in the area. This seems to be a theoretical 

result because pastures have difficulty growing before the snow melts, and it agrees with the 

discussion made for Figure 6. The coefficient for ΔETpot also has a negative sign, meaning that a 

relatively lower ETpot in the heavy-grazing area (low ETpot indicates lower radiation or colder 

temperature) derives more vegetation in the area. This result is incongruent with the common theory 

that vegetation prefers higher radiation and temperature. An interpretation of the result might be that 

lower radiation and colder temperature were the result of higher rainfall, and more rainfall derived 

more vegetation. Figure 9 shows the relationship between the March-to-October averages of ETpot and 

ETact/ETpot in the heavy-grazing area for the 10 years from 2001 to 2010. The figure clearly indicates 

that a year having high ETpot (i.e., better radiation and/or temperature conditions) has low ETact/ETpot 

(i.e., lower soil moisture condition). This is probably the reason that the coefficient for ΔETpot had a 

negative sign in Equation (2). In this research, soil water content was intended to be represented by 

ETact/ETpot, rather than ETpot. It was successful at the 16-day timescale (shown in Figure 7), but it was 

not successful at the annual timescale because soil water contents in winter did not contribute to 

vegetation growth in summer. At the annual timescale, ETpot apparently acted as an indicator of soil 

water content, contributing to the growth of grass. 

The coefficient for Year has a positive sign, meaning that the vegetation condition in the  

heavy-grazing area is degrading compared with that in the no-grazing area. This agrees with the 

observation by livestock holders who use heavy-grazing pasturelands. Recent degradation was also 

mentioned in the park management plan [19]. Therefore, the composition of Equation (2) seems to be 

consistent and reasonable. 

Figure 9. Relationship between ETpot and ETact/ETpot in the heavy-grazing area  

(March–October average) for the 10-year span of 2001–2010. 
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3.3. Accuracies, Errors, and Uncertainties 

Within the key input data applied in this study, MODIS MOD16 ET product is a new product 

compared with other primary MODIS products, and the accuracy of MOD16 has not been examined 

well in cloudy, mountainous regions of Asia, which provide difficult conditions for general satellite-based 

observations and estimations. Absolute accuracy might be lower than that reported in Mu et al. [25], 

even though MOD16 uses daily global reanalysis weather data, which might mitigate the impact of the 

lack of satellite-based land observation due to cloudiness, as part of its inputs. To avoid potential 

uncertainty of accuracy as much as possible, this study used MODIS ET only as a relative indicator 

(spatially and temporally) and not as absolute values. 

In the multiple regression analysis conducted in this study, the probability (p-value) of the factors 

selected via regression analysis (i.e., ΔSnow, ΔETpot and Year) ranged from 0.153 to 0.246, values too 

large to present the result with confidence as p-values of 0.05, or smaller, are generally regarded as 

indicating a statistical result with confidence. The large p-values indicate that some uncertainties 

remain in the analysis. A portion of the uncertainties might be due to noise in the input data. 

Additional input data, including ground-based scientific and statistical data, which are not available for 

the region at this time, would be necessary to better explain the vegetation condition. However, 

the multiple-regression result obtained in this research at least indicated the possibility that land 

degradation in heavy-grazing area had progressed during the evaluated 10-year period, with a p-value 

of 0.246. 

4. Conclusions 

In this study, the 10-year degradation condition of alpine rangeland in Dachigam National Park of 

Northern India was evaluated. Ground-based weather, vegetation, and grazing data were not obtainable 

in the area; thus, the evaluation relied primarily on satellite-based data products. MODIS NDVI, snow, 

and ET products over the area from 2001 to 2010 were used in the analysis. For ET products, ETpot 

was used as an indicator of the weather condition, and ETact/ETpot was used as an indicator of soil 

water content. 

The result of the analysis for general vegetation and climatic conditions of the study area indicated 

that snow cover delays the growth of grass in heavy-grazing areas, which are located at higher 

altitudes. At the heavy-grazing areas, snow is generally available until around mid-April, and the late 

snowmelt most likely appeared as a 0.15 reduction of NDVI in May. Additionally, a strong short-term 

relation was found between vegetation amount and soil moisture. NDVI and ETact/ETpot for the 16-day 

period during May to October (10-year average) showed a strong linear relationship in both the  

heavy-grazing and no-grazing areas (R2 of 0.75 and 0.86, respectively). Summer rainfall in the park 

might have supported growth of pasture in both the heavy-grazing and no-grazing areas. An annual 

multiple regression analysis indicated that the relative amount of grass in the heavy-grazing area, if 

compared to the no-grazing area, was affected primarily by soil water content, which appeared not as 

ETact/ETpot but as ETpot, and the temporal extent of snow cover. The statistical analysis also indicated 

the possibility of degradation of the heavy-grazing rangeland at a decadal timescale. Some uncertainties 

exist in the input data and the results, as discussed in Section 3.3. However, the multiple-regression 
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result obtained in this research at least indicated the possibility that land degradation in heavy-grazing 

area had progressed during the evaluated 10-year period. The indication agreed with the observations 

of livestock holders and the report of the park’s management plan. 

All of the above-mentioned findings (i.e., the impacts of snow cover and soil moisture on 

vegetation growth and the indication of the possibility of year-by-year vegetation degradation with a  

p-value of 0.246) were able to be made only because of the usage of satellite observation. As indicated 

in this study, growth of alpine vegetation is affected by local weather and soil moisture conditions. 

This study applied MODIS ET products in a unique way to express the spatial distribution of energy 

and soil water conditions within the study area, in order to account the meteorological and soil physical 

conditions on land degradation analysis. Environmental evaluation of the remote site would not have 

otherwise been possible. Therefore, we conclude that satellite observation promoted understanding of 

the rangeland conditions, which is useful for initial evaluations of the natural environment in the 

remote area. A sustainable form of land and livestock management should be considered in the future 

after more detailed investigations including ground-based data collections have been conducted. 
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