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Abstract: The objective of this paper was to evaluate the accuracy of two advanced 

blending algorithms, Spatial and Temporal Adaptive Reflectance Fusion Model 

(STARFM) and Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model 

(ESTARFM) to downscale Moderate Resolution Imaging Spectroradiometer (MODIS) 

indices to the spatial resolution of Landsat. We tested two approaches: (i) “Index-then-Blend” 

(IB); and (ii) “Blend-then-Index” (BI) when simulating nine indices, which are widely used 

for vegetation studies, environmental moisture assessment and standing water 

identification. Landsat-like indices, generated using both IB and BI, were simulated on 

45 dates in total from three sites. The outputs were then compared with indices calculated 

from observed Landsat data and pixel-to-pixel accuracy of each simulation was assessed by 

calculating the: (i) bias; (ii) R2; and (iii) Root Mean Square Deviation (RMSD). The IB 

approach produced higher accuracies than the BI approach for both blending algorithms for 
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all nine indices at all three sites. We also found that the relative performance of the 

STARFM and ESTARFM algorithms depended on the spatial and temporal variances of 

the Landsat-MODIS input indices. Our study suggests that the IB approach should be 

implemented for blending of environmental indices, as it was: (i) less computationally 

expensive due to blending single indices rather than multiple bands; (ii) more accurate due 

to less error propagation; and (iii) less sensitive to the choice of algorithm. 

Keywords: data fusion; blending; STARFM; ESTARFM; multispectral indices 

 

1. Introduction 

Trade-offs between acquisition frequency and spatial resolutions of satellite image data are inherent 

in all single-sensor satellites [1]. In the last decade, several advanced blending algorithms have been 

developed to combine data observed from multiple sensors with various spatial resolutions and 

temporal densities (e.g., Landsat, Medium Resolution Imaging Spectrometer (MERIS), Moderate 

Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer 

(AVHRR)). Gao et al. [2] developed the Spatial and Temporal Adaptive Reflectance Fusion Model 

(STARFM) algorithm to blend surface reflectance from two sensors to simulate more frequent higher 

spatial resolution surface reflectance output (e.g., Landsat-like imagery at the frequency of MODIS 

acquisition). Zhu et al. [3] enhanced the STARFM algorithm (denoted ESTARFM) to improve the 

model spatial variability of heterogeneous study sites. Both algorithms are widely used by the remote 

sensing community ([1] their Table 3). 

The objective of much blending research is to simulate reflectance data from which multispectral 

indices can be calculated, such as vegetation and water indices at a high spatial resolution and temporal 

density [4–8]. Vegetation indices are widely used to effectively characterize particular biophysical or 

biochemical properties and processes for vegetated surfaces [9]. The Normalized Difference 

Vegetation Index (NDVI; [10]) and the Enhanced Vegetation Index (EVI; [9]), are the most common 

satellite-derived indices used by the remote sensing community for monitoring vegetation at regional 

to global scale for numerous applications [11–14]. The Simple Ratio (SR) is best used for estimating 

Leaf Area Index (LAI; [15]). There are also several environmental moisture indices that are commonly 

used, including: (i) Global Vegetation Moisture Index (GVMI; [16]); and (ii) Depth of 1650 nm 

relative to a reference continuum line determined at 835 nm and 2208 nm (D1650; [17]). Water indices, 

such as the Normalized Difference Water Index (NDWI) are also widely used to delineate open water 

features and enhance their presence in satellite images. The NDWI [18] has been used by researchers in 

its original and modified forms (Table 1). An example includes the modified version of NDWI (MNDWI 

of [19]), which uses the Shortwave-Infrared (SWIR1) band (i.e., Landsat TM band 5) in place of the 

Near-Infrared (NIR) band (i.e., Landsat TM band 4). The selected nine indices are the most widely 

used subset of remotely sensed indices from the: (i) vegetation domain; (ii) environmental moisture 

domain; and (iii) water domain. 
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Table 1. List of nine indices and their equations used here. NIR, SWIR1 and SWIR2 are 

abbreviations for Near-Infrared, Shortwave-Infrared1 and Shortwave-Infrared2 bands, 

respectively. Except for Enhanced Vegetation Index (EVI), Simple Ratio (SR) and Depth 

of 1650 nm (D1650), all indices use a normalized difference formulation generically given 

as (band x − band y)/(band x + band y), where x and y represent bands. 

Index 

Name 
Bands Used 

# Bands 

Used 

Theoretical 

Range 
Equation 

NDVI Red, NIR 2 [−1.0, +1.0] (NIR – Red)/(NIR + Red) 

EVI Blue, Red, NIR 3 [0.0, +1.0] 2.5 × (NIR – Red)/(NIR	+	6	×	Red	–	7.5	×	Blue + 1) 

SR Red, NIR 2 [0.0,→ ∞] NIR/Red 

GVMI NIR, SWIR1 2 [−0.82, 0.96] ((NIR + 0.1) – (SWIR1 + 0.02))/((NIR	+	0.1)	+	(SWIR1 + 0.02)) 

D1650 
NIR, SWIR1, 

SWIR2 
3 [→ −∞, +1.0] 1 – (

SWIR1

NIR × (1 – 0.59359)	+	0.59359	×	SWIR2
) 

NDWI24 Green, NIR 2 [−1.0, +1.0] (Green – NIR)/(Green	+	NIR) 

NDWI25 Green, SWIR1 2 [−1.0, +1.0] (Green – SWIR1)/(Green	+	SWIR1) 

NDWI27 Green, SWIR2 2 [−1.0, +1.0] (Green – SWIR2)/(Green	+	SWIR2) 

NDWI45 NIR, SWIR1 2 [−1.0, +1.0] (NIR – SWIR1)/(NIR	+	SWIR1) 

Many recent studies using STARFM first blend reflectance from Landsat and MODIS data and then 

use these outputs to calculate vegetation or water indices (e.g., [4,6–8,20,21]). Herein, we refer to this 

process as Blend-then-Index (BI), with the alternative approach being Index-then-Blend (IB). For the 

IB approach, the indices were calculated first and these indices were input into the blending algorithms 

to simulate indices at the date of simulation. For the BI approach, reflectance bands were input into the 

blending algorithms to simulate reflectance, which was used as input to calculate multispectral indices. 

In the IB approach we assume that a linear mixture model is applicable to indices (i.e., the mixed index 

for each MODIS pixel is the sum of the index weighted by the class area proportions), as it is for the 

reflectance bands. According to Kerdiles and Grondona [22] this assumption introduces very small 

errors to statistics when using indices directly into a linear mixture model (i.e., IB) instead of using 

individual band reflectance data in the model (i.e., BI). In the only previous study to compare IB with BI, 

Tian et al. [23] evaluated the accuracy of STARFM for simulating a time series of 12 NDVI images 

over a single study site. Our paper extends that study by: (i) using both the STARFM and ESTARFM 

algorithms; (ii) using three sites with contrasting spatial and temporal dynamics; (iii) calculating nine 

commonly used indices in vegetation, environmental moisture and standing water applications; and 

(iv) partitioning the spatial and temporal variances to explain the results. The aims of our paper are to: 

(i) comprehensively examine if one of the approaches (i.e., IB versus BI) consistently outperforms the 

other for a range of vegetation, environmental moisture and standing water indices; (ii) explore 

whether spatial and temporal variances are related to the blending accuracy of indices by the two 

algorithms (i.e., STARFM versus ESTARFM); and (iii) isolate the impact that the approach or 

algorithm has on blending accuracy (i.e., approach versus algorithm). These three aims provide the 

structure of our paper and are used as subheadings in the Methods, Results and Discussion sections. 
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2. Materials 

2.1. Study Site and Data Sets 

Three study sites with different relative spatial and temporal variances and different land cover 

patch sizes were selected in this study (Figure 1); they are introduced in turn. The Thomson River 

floodplain study site (Thomson herein) is an extensive anabranching river system located in central 

Queensland, Australia (143.20°E, 24.50°S, see Figure 1). The Thomson study site covers 3850 km2 

(55 km E–W × 70 km N–S) within a Landsat-5 TM scene (path 96, row 77). The Thomson site is 

located in the Lake Eyre Basin in a region called the “Channel Country”, which is characterized by 

extensive floodplains and a complex anabranching river system with ephemeral flows following 

precipitation [24,25]. It has a low topographic gradient and dynamic land cover in watercourses and 

floodplains [25,26]. Its Köppen-Geiger climate is in the arid (B), steppe (S) and hot (h) zone, with a 

mean annual temperature greater than 18 °C [27]. The land use in the Lake Eyre Basin is dominated by 

grazing. Mitchell Grass plains, sand dunes, spinifex grasslands, gibber deserts, stony plains and acacia 

woodlands are landscapes of the Cooper Creek catchment [28]. The flooding is the only water source 

for flora and fauna of the area, and there is a distinct greening up following the passage of floodwaters. 

The Coleambally Irrigation Area study site (Coleambally from herein) is a rice based irrigation 

system located in southern New South Wales (NSW, Australia; 34.0034°E, 145.0675°S). Standing water 

associated with flood irrigation of summer rice fields is present in October and November [17,29,30]. 

Summer crop development (i.e., rice, soybeans, corn and sorghum—the last three crops being furrow 

irrigated) occurs from December to April, with many crops harvested by May. The surrounding dryland 

agricultural areas mainly have a winter growing season (cereals and pasture), and several small residual 

woodland patches in the northern part of the images are fairly constant throughout the time series. 

The Lower Gwydir Catchment study site (Gwydir from herein) is located in northern NSW 

(149.2815°E, 29.0855°S). The temporal extent of data over the Gwydir was greater than one year, and 

included a winter and a summer crop-growing season. The Gwydir, which covers the typical dual 

growing season crop phenology and surrounding dryland agricultural area, experienced a large flood in 

mid-December 2004. This flooding, and subsequent inundation, occupied a large spatial extent of the 

Gwydir imagery and was temporally very dynamic (Figure 1). The Gwydir site is spatially more 

homogenous than the Coleambally and Thomson sites, because of the larger agricultural fields, 

coupled with the large (and quick) flooding event. The flooding/inundation at Gwydir was a significant 

test of the blending algorithms in conditions with extremely high spatio-temporal variability. 

For Thomson, 20 pairs of cloud-free Landsat-MODIS (L–M) images were used from  

April 2008–October 2011 (Table 2). This period was characterized by an intense La Niña, and major 

flooding occurred over much of eastern and central Australia in 2009 and 2010, during which large 

areas were covered with standing water. The most likely time to observe standing water at this site is 

during the wet season, from November–April. Between 2008 and 2011 most of the Landsat and/or 

MODIS images were cloudy during January and February. After selecting all cloud-free inundated 

images during the wet season, the other images were selected to be as close as possible to when the 

inundated images were acquired (Table 2). The Coleambally site images were Landsat 7. The Thomson 

and Gwydir sites images were Landsat 5 data and were corrected for Bidirectional Reflectance 
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Distribution Function (BRDF) effects. The Gwydir images were corrected using the Li et al. [31] BRDF 

algorithm. The Thomson images were corrected to at-surface reflectance using the Flood et al. [32] 

BRDF algorithm (also taking into account atmospheric conditions, topography, sensor location and sun 

elevation) using the parameterized bi-directional reflectance model for eastern Australia [32]. All 

MODIS data were BRDF corrected Terra MODIS Collection 5, daily reflectance (MOD09GA) images 

with 500 m pixels for all bands [33]. MODIS data, which were originally processed by the Land 

Processes Distributed Active Archive Center (LPDAAC) at the U.S. Geological Survey (USGS) Earth 

Resources Observation and Science Center (EROS), were obtained from The Commonwealth 

Scientific and Industrial Research Organization (CSIRO) Marine and Atmospheric Research Division. 

Figure 1. The study sites: (a) location of three study sites in Australia; (b–d) are Landsat 

images of the study sites with Bands 5, 4 and 3 shown as RGB composite on dates 2 January 

2011, 8 October 2001 and 12 December 2004 for Thomson, Coleambally and Gwydir, 

respectively. A standard deviation of 1.5 was used to stretch the RGB Landsat images. All the 

extreme values of the histograms, falling outside the 1.5 standard deviation, were trimmed out, 

and remaining values were redistributed between 0–255 to enhance the images. 
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Table 2. Dates of cloud-free Landsat-5 and Terra Moderate Resolution Imaging 

Spectroradiometer (MODIS) images from 2008–2011 for Thomson. The bold row 

indicates the image captured during major flood event (Image # 11, see Figure 1b). 

Image # Date Day since Start of Dataset (15 April 2008) MODIS Sensor Zenith (Degree) 

1 15 April 2008 0 13.26 

2 22 September 2008 160 13.29 

3 24 October 2008 192 13.51 

4 17 March 2009 336 13.62 

5 2 April 2009 352 13.42 

6 24 August 2009 496 13.37 

7 9 September 2009 512 13.28 

8 25 September 2009 528 13.39 

9 11 October 2009 544 13.57 

10 12 September 2010 880 13.27 

11 2 January 2011 992 12.85 

12 19 February 2011 1040 12.86 

13 8 April 2011 1088 12.86 

14 10 May 2011 1120 13.43 

15 13 July 2011 1184 13.65 

16 29 July 2011 1200 13.74 

17 14 August 2011 1216 13.86 

18 30 August 2011 1232 13.90 

19 15 September 2011 1248 13.19 

20 1 October 2011 1264 13.25 

For detailed information about the other two study sites, Coleambally and Gwydir, see [1]. Briefly, 

17 L–M image pairs acquired over eight months for Coleambally and 14 L–M image pairs acquired 

over 12 months at Gwydir were used. Partitioning the variance into its spatial and temporal 

components [1] showed that Coleambally reflectance data had higher spatial variance (than temporal 

variance) and more accurate results were obtained with ESTARFM due to its design. In contrast, at 

Gwydir temporal variance dominated spatial variance and due to algorithmic assumptions STARFM 

worked best. Finally, Coleambally has a smaller effective patch size than Gwydir [1]. The three study 

sites have different relative spatial and temporal variances and different patch sizes, governing the 

area-to-perimeter ratio within the different resolution imagery used in the blending algorithms. These 

three sites are purposefully selected to form a continuum between solely man-made standing water and 

entirely natural standing water: (i) at Coleambally all standing water is man-made (due to irrigation); 

(ii) at Gwydir both irrigated fields and standing water associated with flooding are present, and (iii) at 

Thomson standing water is only associated with flooding. The dynamics and area-to-perimeter ratios 

of standing water (and associated responses) varied across the three sites, and these three sites are 

therefore a robust selection from which to evaluate performance within and between both blending 

algorithms across the IB and BI approaches. 
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2.2. Data Pre-Processing 

A Landsat–like image was generated on a given simulation date by using a total of five input 

images, being two L–M pairs (one before and one after the simulation date) and the MODIS image on 

the simulation date as input to either STARFM or ESTARFM [1]. The observed Landsat image on the 

date of simulation was preserved for validation and was not used as input to the blending algorithms. 

Herein, the date of simulation is denoted t2, the first L–M pair date will be referred to as t1 and the date 

of the second L–M pair is indicated as t3. For example, at Thomson, L–M pairs from 15 April 2008 (t1) 

and 24 October 2008 (t3) and the MODIS image on 22 September 2008 (t2) were used to create a 

Landsat-like image on 22 September 2008 (t2), see Table 2. At Thomson, a total of 18 Landsat-like 

images were simulated in this manner using the nearest temporal neighboring L–M pairs to the central 

dates listed in Table 2 as image #’s 2–19, herein referred to as “3-sequential date images”. Observed 

MODIS images were resampled to Landsat resolution using the nearest neighbor approach and the five 

Landsat or MODIS images involved in any given blending operation were then co-registered based on 

a correlation test [1]. The co-registration results of Terra MODIS images in this study confirm the 

along-track and along-scan band-to-band co-registration error in Terra MODIS bands [34]. The 

optimal spatial offset to maximize the correlation between corresponding bands of L–M images was 

calculated by using the IDL (Exelis Visual Information Solutions, Boulder, Colorado) code developed 

by NASA [35] and applied to MODIS images. 

We used the six reflective Landsat bands and the corresponding MODIS bands for the blending 

algorithms (Table 3). All nine indices (i.e., NDVI, EVI, SR, GVMI, D1650, NDWI24, NDWI25, NDWI27 

and NDWI45, see Table 1) were calculated for all Landsat and MODIS images at each site. All 

simulated indices (from both approaches) were compared with the observed Landsat indices at date t2. 

Then all nine indices were calculated and compared with indices calculated from the observed Landsat 

images at date t2. 

Table 3. Bands and band-widths of Landsat TM and corresponding MODIS bands. 

Landsat TM a Band/Band 

Name 

Landsat TM Band-Width 

(nm) 

MODIS Band/Band 

Name 

MODIS Band-Width 

(nm) 

Band 1/Blue 450–520 Band 3/Blue 459–479 

Band 2/Green 520–600 Band 4/Green 545–565 

Band 3/Red 630–690 Band 1/Red 620–670 

Band 4/NIR 760–900 Band 2/NIR 841–876 

Band 5/SWIR1 1550–1750 Band 6/SWIR1 1628–1652 

Band 7/SWIR2 2080–2350 Band 7/SWIR2 2105–2155 
a The ETM+ band-widths are slightly different from TM band-widths. The ETM+ characteristic are reported 

in Chandler et al. ([36], Table 4). 

2.3. Blending Algorithms 

STARFM and ESTARFM assume that images from different sensors are acquired under similar 

land surface conditions and that surface reflectance is comparable after pre-processing [3]. The 

STARFM algorithm can use either one pair or two pairs of L–M images (i.e., dates t1 and/or t3) and 
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one low resolution image (date t2) to simulate a high resolution image at date t2, while the ESTARFM 

algorithm uses two pairs of L–M images (i.e., dates t1 and t3) and one low resolution image (date t2) to 

simulate date t2. For STARFM we use the two L–M image pair option to have consistent input  

with ESTARFM. 

The algorithms identify spatial changes of reflectance from the high spatial resolution images by 

finding spectrally similar neighbor pixels and temporal changes from the low-resolution images to 

simulate the high spatial resolution and high temporal density images at selected dates. A moving 

search window (w) is used to select similar neighboring pixels, and heterogeneity of the landscape is 

considered by the number of land cover classes in each pixel of the low resolution image [3]. The 

algorithms use weight factors for each spectrally similar pixel to blend temporal and spatial 

information. Proximal to the central pixel and spectrally similar fine resolution pixels have higher 

weights [3]. To make the result comparable with former studies, here the size of w was 50 by 50 

Landsat resolution pixels and the assumed number of spectrally-different classes was four. STARFM 

is able to model non-linear changes between two Landsat images and would be expected to model 

temporal variability better than ESTARFM. In contrast, ESTARFM has been designed to work better 

in more spatially heterogeneous areas [1,2]. 

3. Methods 

3.1. IB versus BI 

The accuracy of the STARFM and ESTARFM algorithms for simulating all nine Landsat-like 

indices was assessed by comparing the bias (calculated as observed minus simulated), correlation 

coefficient of determination (R2) and Root Mean Square Deviation (RMSD) between the simulated and 

observed Landsat indices, using both the IB and BI approaches. Additionally, the results from the IB 

and BI approaches for both blending algorithms were examined by comparing temporally mean bias, 

R2 and RMSD across the entire blended dataset for each site (18 dates for Thomson, 15 dates for 

Coleambally and 12 dates for Gwydir; there are two less instances than the number of images available 

at each site due to using the blending algorithms with L–M pairs before and after each simulation date). 

The paired t-test was used to assess if the difference of the mean error between the IB and BI 

approaches was statistically significant. Mean error between IB and BI for each “3-sequential date 

image” was paired. The assessment was performed for both the STARFM and ESTARFM algorithms, 

for each of the three sites, and for each of the three above-mentioned error statistics at the 90%  

(i.e., p < 0.1) and 95% (i.e., p < 0.05) confidence levels. For example using STARFM at Thomson, the 

mean bias of each of the 18 simulated images generated using IB were paired to the corresponding  

18 mean biases generated using BI to test whether the biases between IB and BI were statistically 

significant. This example was extended to all combinations of error statistics, sites and algorithms. 

3.2. STARFM versus ESTARFM 

Quantification of spatial and temporal variances of image and index time series, given the strengths 

and weaknesses of each algorithm, is an important step toward selecting blending algorithms [1]. Here 

we used the same method ([37], their Equation 10) to partition the grand (or spatio-temporal) variance 
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into the spatial and temporal variance components and assessed the suitability of STARFM and 

ESTARFM. Following [1], we calculated spatial and temporal variances of each possible combination 

of 3-sequential dates of the high and low resolution images. The temporal to spatial variances ratio 

(T/S), as an indicator of algorithm selection, was also calculated for each 3-sequential dates of L–M 

bands and indices. This was performed for all six reflective bands and nine indices of L–M images at 

Thomson. Since the temporal and spatial variances were already reported for Coleambally and Gwydir 

for the bands [1], here we only report the indices’ variances for these two sites. The paired t-test was 

used to assess if the difference of the mean error between the STARFM and ESTARFM algorithms 

was statistically significant, using the general technique as previously explained. 

3.3. Approach versus Algorithm 

To compare and quantify the impact of the IB versus BI approaches on the accuracy of STARFM 

versus ESTARFM, R2 and RMSD statistics were calculated for four parameters (i.e.,  

(STARFM-ESTARFM)IB, (STARFM-ESTARFM)BI, (IB-BI)STARFM and (IB-BI)ESTARFM). To quantify 

STARFM versus ESTARFM for the IB approach, differences between STARFM and ESTARFM 

statistics; (STARFM–ESTARFM)IB; were calculated and averaged for all 405 simulations (nine  

indices by 45 dates—the total from the three sites). For the BI approach, a similar parameter;  

(STARFM-ESTARFM)BI; was also calculated. To quantify IB versus BI, averaged difference R2 and 

RMSD statistics were calculated across all 405 simulations (as above) using the STARFM algorithm;  

(IB-BI)STARFM; and ESTARFM algorithm; (IB-BI)ESTARFM. 

4. Results 

4.1. IB versus BI 

The statistics (Table 4) showed that for all nine indices examined, the IB approach outperformed the 

BI approach at all three sites. The paired t-test analysis showed that the means of the three 

abovementioned error statistics produced for the three sites of “3-sequential date images” for the two 

approaches were statistically different at the 95% confidence interval in 65% of the STARFM and 53% 

of the ESTARFM cases (Table 5). The higher accuracy of the IB approach is most likely explained by 

error propagation, as the IB approach only incurs one instance of blending so there is only one process 

where blending-induced error can be introduced. In contrast, the BI approach incurs multiple blending 

instances and therefore multiple instances of error that subsequently propagates to the resultant indices. 

Moreover, for those indices having a normalized difference formulation (i.e., NDVI, GVMI, NDWI24, 

NDWI25, NDWI27 and NDWI45, see Table 1) their algebra reduces error. 

At the Thomson site, comparing the R2 of the blended indices with those calculated from observed 

Landsat data revealed that the IB approach resulted in higher accuracy than the BI approach in 89% of 

162 (9 indices by 18 dates) STARFM simulations and 75% of ESTARFM simulations (Figure 2). The 

three averaged error statistics for the 18 STARFM and ESTARFM indices were statistically different 

at the 90% confidence level (bias; 11% of the cases, R2; 61% of the cases and RMSD; 61% of the 

cases, Table 5). The sign of the average bias produced by STARFM overestimated (negatively-biased) 

32% of 162 simulations and ESTARFM overestimated 51% of all simulations by the IB approach. 
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Comparing the nine indices showed that site-averaged simulated NDVI and EVI produced lowest bias 

in all four options compared with other indices due to use of red and infrared bands. ESTARFM results 

overestimated NDVI, EVI and GVMI and underestimated SR, D1650, NDWI24, NDWI25, NDWI27 and 

NDWI45 (Table 4). Statistics derived using the BI approach have higher spatial variances during the 

wet season (December–March) of each year; especially during the major flood event on date 2 January 

2011 (date 992). As was found for the IB approach, most of the 162 BI simulations were 

underestimated by STARFM (62%) and ESTARFM (53%). The NDVI and EVI values were 

overestimated by STARFM for the BI approach, while the NDVI, EVI and GVMI indices were 

overestimated by ESTARFM at Thomson (Table 4). 

At Coleambally, from all 135 (nine indices by 15 dates) simulations, 90% produced higher accuracy 

by the IB approach when using STARFM and 98% when using ESTARFM (Figure 2). Using the 

paired t-test the IB and BI approaches were statistically different when comparing means of statistics 

(bias; for 56% of the cases, R2; for 83% of the cases and RMSD for 78% of the cases) at the 90% 

confidence level (Table 5). When using IB the site-averaged bias in ESTARFM was lower compared 

with STARFM as shown for BI approach (Figure 2). The STARFM algorithm overestimated NDWI24 

and underestimated all other indices when using IB, while NDVI and EVI indices were overestimated 

by both STARFM and ESTARFM algorithms approach and other seven indices were underestimated 

by using BI. From all 135 simulations, 27% and 50% are overestimated when using STARFM and 

ESTARFM, respectively, using the IB approach. By using BI, STARFM overestimated 36% and 

ESTARFM overestimated 48% of the simulations in Coleambally. 

At Gwydir, the IB approach outperformed the BI by producing higher R2 in 90% of all 108 (nine 

indices by 12 dates) simulations when using STARFM, and 100% of all simulations when using 

ESTARFM (Figure 2). The IB and BI approaches were statistically different at the 90% confidence 

level when comparing means of statistics (bias; 18%, R2; 89%, RMSD; 78%; see Table 5). STARFM 

underestimated 71% of 108 simulations and ESTARFM underestimated 57% of all 108 simulations 

when using the IB approach. When using the BI approach 41% were overestimated by STARFM and 

40% were overestimated by ESTARFM. Site-averaged NDVI was overestimated and the other eight 

indices were underestimated by using either STARFM or ESTARFM when using IB and BI approach 

(Table 4). STARFM produced higher mean bias compared with ESTARFM for all nine indices when 

using IB and BI approach at Gwydir. 

The IB approach also produced a lower RMSD (higher accuracy) at all three sites for both 

STARFM (Thomson; 89%, Coleambally; 81% and Gwydir; 82%) and ESTARFM (Thomson; 70%, 

Coleambally; 94% and Gwydir; 98%). The mean bias, R2 and RMSD statistics for each site are 

presented in Figure 2. As shown in Figure 2a,c, Thomson had lower mean bias and RMSD statistics 

for all nine indices compared with Coleambally and Gwydir, because of its lower spatio-temporal 

variances (Section 4.2). The results for each index at each site presented in Figure 2 and Table 4 are 

the site-averaged statistics from all 3-sequential date simulations. The performance of STARFM and 

ESTARFM in each individual simulation is likely to be different from these averaged results. 
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Table 4. Mean bias, R2 and root mean square deviation (RMSD) statistics between the observed and simulated index values from Spatial and 

Temporal Adaptive Reflectance Fusion Model (STARFM) and Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model 

(ESTARFM) for the both the Index-then-Blend (IB) and Blend-then-Index (BI) approaches for Thomson, Coleambally and Gwydir, which are 

abbreviated as T, C and G respectively in the column headings. Bias and RMSD are presented in index units. 

Indices 

Bias  R2  RMSD 

STARFM  ESTARFM  STARFM  ESTARFM  STARFM  ESTARFM 

T C G  T C G  T C G  T C G  T C G  T C G 

IB-NDVI −0.0003 0.0057 −0.0013  −0.0008 0.0005 −0.0008  0.92 0.90 0.91  0.91 0.94 0.93  0.0278 0.0709 0.0747  0.0284 0.0576 0.0667 

BI-NDVI −0.0006 −0.0065 −0.0076  −0.0005 −0.0021 −0.0012  0.89 0.88 0.88  0.90 0.91 0.87  0.0321 0.0778 0.0835  0.0310 0.0691 0.0862 

IB–EVI 0.0000 0.0071 0.0104  0.0000 0.0011 0.0018  0.89 0.89 0.90  0.89 0.94 0.93  0.0160 0.0531 0.0602  0.0160 0.0418 0.0475 

BI-EVI −0.0001 −0.0024 0.0028  −0.0001 −0.0007 0.0032  0.84 0.88 0.88  0.86 0.92 0.86  0.0193 0.0562 0.0605  0.0185 0.0475 0.0671 

IB-SR 0.0086 0.1838 0.2658  0.0024 0.0250 0.0943  0.90 0.87 0.88  0.91 0.90 0.90  0.1245 1.3270 1.4802  0.1179 1.2051 1.6800 

BI-SR 0.0028 0.1781 0.1392  0.0011 0.0796 0.0813  0.88 0.85 0.87  0.90 0.87 0.80  0.1346 1.3799 1.4005  0.1291 1.2874 1.6800 

IB-GVMI 0.0048 0.0081 0.0023  −0.0013 0.0003 0.0038  0.93 0.93 0.90  0.94 0.94 0.90  0.0311 0.0749 0.0797  0.0299 0.0682 0.0764 

BI-GVMI 0.0030 0.0044 0.0009  −0.0005 0.0001 0.0091  0.92 0.93 0.88  0.94 0.94 0.86  0.0333 0.0769 0.0833  0.0305 0.0734 0.0913 

IB-D1650 0.0114 0.0050 0.0018  0.0034 −0.0003 0.0027  0.87 0.91 0.88  0.88 0.93 0.89  0.0507 0.0303 0.0272  0.0492 0.0269 0.0271 

BI-D1650 0.0092 0.0043 0.0013  0.0074 0.0001 0.0041  0.81 0.90 0.85  0.85 0.92 0.82  0.0626 0.0315 0.0301  0.0559 0.0284 0.0339 

IB-NDWI24 0.0048 −0.0034 0.0035  0.0010 0.0004 0.0020  0.90 0.88 0.90  0.90 0.91 0.92  0.0281 0.0569 0.0666  0.0283 0.0485 0.0630 

BI-NDWI24 0.0044 0.0027 0.0069  0.0011 0.0025 0.0018  0.87 0.86 0.87  0.89 0.88 0.85  0.0317 0.0625 0.0763  0.0305 0.0584 0.0826 

IB-NDWI25 0.0076 0.0161 0.0144  0.0023 0.0018 0.0097  0.92 0.78 0.88  0.91 0.83 0.89  0.0339 0.0936 0.0879  0.0347 0.0773 0.0902 

BI-NDWI25 0.0082 0.0095 0.0119  0.0029 0.0042 0.0135  0.90 0.76 0.85  0.91 0.80 0.84  0.0377 0.0925 0.0927  0.0348 0.0864 0.1049 

IB-NDWI27 0.0088 0.0148 0.0099  0.0007 0.0018 0.0075  0.92 0.85 0.86  0.91 0.89 0.87  0.0407 0.1032 0.1008  0.0414 0.0891 0.1034 

BI-NDWI27 0.0075 0.0086 0.0094  0.0007 0.0045 0.0158  0.90 0.83 0.82  0.91 0.85 0.79  0.0445 0.1057 0.1103  0.0411 0.1026 0.1270 

IB-NDWI45 0.0072 0.0147 0.0141  0.0003 0.0003 0.0083  0.92 0.92 0.89  0.92 0.94 0.89  0.0314 0.0869 0.0906  0.0306 0.0770 0.0845 

BI-NDWI45 0.0053 0.0102 0.0094  0.0025 0.0015 0.0136  0.90 0.91 0.86  0.91 0.92 0.83  0.0347 0.0922 0.0979  0.0322 0.0861 0.1069 
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Table 5. t-test results to assess approaches and algorithms are statistically different. Probability of <0.05 is shown in the italic and bold font, 

and probability <0.1 are provided as italic, >0.1 is normal font. Last two rows show number of cases with <0.05 and <0.1 probabilities and 

their percentage (count/18 × 100) in brackets. Under the ‘Approach’ headings, testing differences due to IB or BI, statistics for the first 

grouping of the nine indices use STARFM and the second grouping of nine use ESTARFM. Under the ‘Algorithm’ headings, testing 

differences due to blending algorithms, statistics for the first grouping use the IB approach and the second grouping use the BI approach. 

Thomson, Coleambally and Gwydir are abbreviated as T, C and G, respectively. 

Indices 

Bias  R2  RMSD 

Approach  Algorithm  Approach  Algorithm  Approach  Algorithm 

T C G  T C G  T C G  T C G  T C G  T C G 

NDVI 0.835 0.000 0.000 

 

0.882 0.000 0.001 

 

0.001 0.251 0.204 

 

0.835 0.003 0.011 

 

0.000 0.353 0.935 

 

0.987 0.003 0.026 
EVI 0.773 0.000 0.009 0.714 0.001 0.710 0.002 0.044 0.037 0.669 0.001 0.006 0.000 0.050 0.015 0.736 0.000 0.020 
SR 0.130 0.860 0.337 0.015 0.001 0.280 0.024 0.000 0.000 0.172 0.000 0.000 0.042 0.378 0.293 0.195 0.077 0.603 

GVMI 0.120 0.001 0.208 0.002 0.000 0.744 0.030 0.003 0.101 0.033 0.000 0.829 0.043 0.015 0.104 0.511 0.000 0.501 
D1650 0.239 0.842 0.743 0.000 0.000 0.003 0.000 0.000 0.000 0.327 0.010 0.265 0.000 0.000 0.000 0.166 0.002 0.155 

NDWI24 0.561 0.002 0.086 0.000 0.018 0.552 0.000 0.008 0.009 0.649 0.002 0.037 0.000 0.011 0.001 0.916 0.001 0.069 
NDWI25 0.450 0.002 0.620 0.000 0.001 0.279 0.002 0.193 0.000 0.308 0.008 0.181 0.002 0.772 0.020 0.675 0.035 0.375 
NDWI27 0.413 0.010 0.887 0.000 0.000 0.742 0.005 0.105 0.000 0.428 0.013 0.283 0.016 0.532 0.000 0.666 0.029 0.522 
NDWI45 0.076 0.003 0.113 0.000 0.000 0.040 0.010 0.004 0.004 0.494 0.005 0.489 0.006 0.010 0.003 0.539 0.002 0.224 
NDVI 0.939 0.188 0.579 

 

0.975 0.056 0.873

 

0.093 0.004 0.004

 

0.116 0.001 0.211

 

0.069 0.000 0.009

 

0.354 0.000 0.161 
EVI 0.821 0.057 0.849 0.837 0.000 0.104 0.357 0.000 0.000 0.253 0.001 0.352 0.248 0.000 0.000 0.453 0.001 0.495 

SR 0.784 0.032 0.798 0.571 0.001 0.311 0.169 0.000 0.002 0.099 0.092 0.016 0.140 0.047 1.000 0.296 0.050 0.067 

GVMI 0.585 0.832 0.347 0.001 0.000 0.411 0.226 0.000 0.010 0.000 0.004 0.285 0.673 0.000 0.005 0.003 0.006 0.354 

D1650 0.076 0.321 0.454 0.019 0.000 0.238 0.012 0.000 0.000 0.000 0.000 0.177 0.004 0.000 0.000 0.001 0.000 0.825 

NDWI24 0.935 0.057 0.936 0.000 0.787 0.187 0.521 0.000 0.002 0.098 0.001 0.249 0.393 0.000 0.000 0.381 0.009 0.135 

NDWI25 0.610 0.244 0.236 0.000 0.001 0.881 0.818 0.000 0.000 0.000 0.002 0.753 0.981 0.003 0.000 0.000 0.011 0.049 
NDWI27 0.981 0.181 0.242 0.000 0.025 0.676 0.951 0.000 0.000 0.000 0.018 0.202 0.892 0.000 0.000 0.000 0.096 0.071 

NDWI45 0.180 0.536 0.216 0.000 0.000 0.611 0.279 0.001 0.004 0.016 0.004 0.216 0.347 0.000 0.003 0.002 0.006 0.358 

Count<0.05 0(0) 8(44) 2(11)  13(72) 16(89) 3(17)  10(56) 15(83) 16(89)  6(33) 17(94) 5(28)  10(56) 13(72) 14(78)  5(28) 15(83) 3(17) 

Count<0.1 2(11) 10(56) 3(17)  13(72) 17(94) 3(17)  11(61) 15(83) 16(89)  8(44) 18(100) 5(28)  11(61) 14(78) 14(78)  5(28) 18(100) 6(33) 
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Figure 2. Mean bias, R2 and RMSD statistics for eight simulated indices by IB and BI approaches and STARFM and ESTARFM for 

Thomson, Coleambally and Gwydir. SR results are not shown here as their extreme magnitude, especially in bias and RMSD, dampens the 

information content from other indices. 
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Results (Table 4) showed that both STARFM and ESTARFM algorithms simulated indices with 

higher bias and RMSD and lower R2 for dates with higher spatial and temporal variances (Section 4.2). 

For example, high temporal and spatial variances at date 992 for Thomson, due to inundation of the 

river channel, and at date 192, most likely due to changes in soil surface moisture and seasonal 

vegetation changes, resulted in lower accuracies when simulating all nine indices. 

As an example, Figure 3 compares bias and R2 statistics for NDWI24 of Gwydir simulated by the IB 

and BI approaches by STARFM and ESTARFM at the flood date on 12 December 2004. As shown in 

Figure 3, IB outperformed BI when using either STARFM or ESTARFM. On this date STARFM 

produced higher accuracy (higher R2 and lower RMSD and bias) compared with ESTARFM due to 

higher T/S variances ratio by a flood event, which is in agreement with the algorithm selection criteria 

proposed by [1]. Higher biases were shown in highly variable inundated areas of Gwydir by both 

STARFM and ESTARFM (Figure 3a,b,c,d). 

Figure 3. Bias, R2 and RMSD statistics between Landsat-observed Normalized Difference 

Water Index (NDWI24) and simulated NDWI24 by IB and BI approaches and STARFM and 

ESTARFM at the flood date 12 December 2004 at Gwydir. Parts (a,b,c,d) show the spatial 

bias produced by IB-ESTARFM, IB-STARFM, BI-ESTARFM and BI-STARFM, 

respectively. Parts (e,f,g,h) show the corresponding crossplots (and the associated bias, RMSD 

and R2 statistics) between the observed and simulated values by IB-ESTARFM, IB-STARFM, 

BI-ESTARFM and BI-STARFM, respectively. In all cases there are 8,544,889 pixels. 

   

  
  

(b)(a) 

(c) (d)
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Figure 3. Cont. 

  

  

4.2. STARFM versus ESTARFM 

Performance of STARFM and ESTARFM algorithms in simulating IB and BI indices was related to 

the T/S variances ratio. STARFM showed higher accuracy in simulating all nine indices at dates with 

higher T/S ratio of Thomson, Coleambally and Gwydir. In contrast, ESTARFM produced better 

simulations at dates with lower T/S ratio (Table 4). Comparing the statistics also showed that all nine 

indices produced different T/S ratio by using similar inputs, therefore, even on a certain date, there is 

no single optimum algorithm (STARFM or ESTARFM) for all nine indices. For example, on date 880 

at Thomson, the T/S ratio of NDVI and EVI were higher than the other indices (Figure 4), which resulted 

in higher R2 and lower RMSD in simulating these indices by STARFM. Alternately, the other indices, 

which had lower T/S ratios, produced higher accuracies by ESTARFM. Higher temporal variance 

resulted when any 3-sequential date image set contained highly dynamic land-cover change 

(e.g., associated with flood events). For example the Thomson flood event (date 992) resulted in higher 

T/S variances ratio at dates 880, 992 and 1040 (Figure 4). The site-averaged spatio-temporal variance 

results were smaller for Thomson (0.015) than Coleambally (0.784) and Gwydir (1.610). The highly 

variable (river channel and floodplain) portion of Thomson imagery is relatively small compared to the 

surrounding low variance portion of that imagery (Figure 1), whereas in both Coleambally and Gwydir 

the highly variable portions of the imagery were relatively larger, being relatively largest for  

Gwydir (Figure 1). 

At Thomson, ESTARFM produced slightly higher accuracies than those yielded from STARFM for 

both IB and BI approaches. Using the paired t-test the ESTARFM and STARFM approaches were 

statistically different when comparing means of statistics (bias; for 72% of the cases, R2; for 44% of 
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the cases and RMSD for 28% of the cases) at the 90% confidence level (Table 5). Similar to findings 

for Coleambally and Gwydir reported by [1], at Thomson the T/S variances ratio of Bands 7 and 5 

were the dominant variances in both Landsat and MODIS resolutions followed by Band 4, Band 3, 

Band 2 and Band 1 (Figure 4a,b). This is due to selecting hydrologically active sites (in all cases). For 

all six bands through the entire time series results showed that spatial variance was greater than 

temporal variances (T/S < 1, Figure 4a,b), which means the area is more variable in space than in time. 

Temporal variances of all six Landsat bands were lower than corresponding MODIS bands. In 

contrast, spatial variances of Landsat bands were higher than spatial variances of the corresponding 

MODIS bands; most likely because of the lower spatial resolution. Landsat bands showed higher 

spatio-temporal variances compared with MODIS bands. Comparison of the spatial and temporal 

variances of indices through the dataset showed that the magnitude of spatial and temporal variances 

depends on the magnitude of the indices (Figure 4). For example, SR had highest averaged  

spatio-temporal variance followed by NDWI27, D1650, GVMI, NDWI25, NDWI45, NDVI, NDWI24 and 

EVI (Figure 4c,d). Distinct changes in the spatial and temporal variances occurred during the flood 

(date 992) and at the point of transition between the dry and wet seasons (dates 1088 and 1120) due to 

increased precipitation and water flow in the multi-channel river system and consequent vegetation 

growth. Normalized indices calculated from bands with diverse spectral regions showed higher spatial 

and temporal variances compared with other indices calculated from bands with similar spectral 

regions. For example, NDWI27 and NDWI25 water indices, which use SWIR1 and NIR bands, had 

higher spatio-temporal variances when compared with other water indices, i.e., NDWI24 and NDWI45 

(Figure 4). EVI showed the highest T/S ratio followed by SR, NDVI, NDWI24, NDWI45, GVMI, D1650, 

NDWI25 and NDWI27 (Figure 4c,d). Vegetation indices showed a higher T/S ratio due to higher 

changes in greenness of the study site after precipitation and corresponding rapid vegetation growth. 

Comparing Landsat and MODIS variances revealed that all nine Landsat indices had higher temporal, 

spatial and spatio-temporal variances than the MODIS indices in Thomson. 

At Coleambally, with moderate spatio-temporal changes and lower T/S ratio for all dates (Figure 5), 

ESTARFM produced better results than STARFM by using both IB and BI approaches.  

IB-ESTARFM produced the most accurate results (0.82 < R2 < 0.95) followed by BI-ESTARFM 

(0.80 < R2 < 0.94), IB-STARFM (0.78 < R2 < 0.93) and BI-STARFM (0.76 < R2 < 0.93). The three 

averaged error statistics for the 18 STARFM and ESTARFM indices were statistically different at the 

90% confidence level (bias; 94% of the cases, R2; 100% of the cases and RMSD; 100% of the cases, 

Table 5). All nine indices showed lower temporal variances compared with spatial variances in both 

Landsat and MODIS resolutions (Figure 5). Date 97 was a transition date at Coleambally: for all dates 

before date 97, higher temporal and lower spatial variances of NDWI24, NDVI and EVI resulted in a 

higher T/S ratio compared with the other indices. In contrast for dates after 97, these indices showed 

lower T/S ratios (Figure 5). Rice was the dominant crop at Coleambally. Dates 0 through 97 were 

when rice fields were flooded, rice was planted and the crop grew to full canopy closure. During this 

time of active plant growth, the T/S ratio was higher for the three indices that make use of the visible 

and NIR bands when compared to the indices that make use of the longer wave bands. SR had the 

highest averaged spatio-temporal variance followed by D1650, NDWI45, GVMI, NDWI27, NDVI, 

NDWI25, EVI and NDWI24 (Figure 5). SR showed the highest T/S ratio followed by EVI, NDWI24, 

NDVI, NDWI45, NDWI27, D1650, NDWI25 and GVMI (Figure 5). Comparing Landsat and MODIS 
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variances revealed that, all nine Landsat indices had temporal, spatial and spatio-temporal variances 

that were higher than the MODIS indices in Coleambally. 

Figure 4. Thomson temporal to spatial variance ratio time series plots for bands and indices 

from Landsat and MODIS. Parts (a,b) are temporal variance to spatial variance ratio of all 

Landsat reflective bands and their corresponding MODIS bands; the legend in (a) applies to 

(b). Parts (c,d) are temporal variance to spatial variance ratio of the nine indices from 

Landsat and MODIS; the legend in (c) applies to (d). The spatial and temporal variances 

are calculated using all possible (18) 3-sequential date images and the results are plotted at 

the date of the central image. Vertical grid lines indicate dates of the central images. The 

horizontal dashed line in (c,d) is where T/S = 1.0. 
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Figure 4. Cont. 

 

Figure 5. Coleambally temporal to spatial variance ratio time series plots for the nine 

indices from Landsat and MODIS; the legend in (a) applies to (b). The spatial and 

temporal variances are calculated using all possible (15) 3-sequential date indices and the 

results plotted at the date of the central image. Vertical grid lines indicate dates of the 

central images. The horizontal dashed line is where T/S =1.0. 
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Gwydir had higher temporal variances overall than the other two sites while non-normalized SR 

and normalized NDWI25 and NDWI27 produced higher temporal variances than the other six indices. At 

dates 208, 240 and 256, temporal variance was higher than spatial variance resulting in higher T/S 

ratios at these dates compared with other dates (Figure 6). The T/S ratios of dates 128, 288, 304, 320 

and 336 were lower than the other dates due to lower temporal variances and higher spatial variances 

(Figure 6). SR had the highest averaged spatio-temporal variance followed by D1650. SR and D1650 are 

not normalized difference indices (Table 1), so they do not benefit from error reduction due to their 

formulation like the normalized difference indices do (as discussed in Section 4.1). SR produced the 

least accurate results as it is unbounded, so when the dominator → 0 then SR →∞, hence possibly 

producing large relative errors. Furthermore, D1650 uses three bands (NIR, SWIR1 and SWIR2), while 

other moisture indices (i.e., GVMI and NDWI45) only use two of these three bands. This increases the 

likelihood of higher error propagation in D1650. For these reasons, the R2 statistic for both SR and D1650 

improved most when using IB compared to BI at Gwydir where the variance was highest due to 

extreme flood-related moisture dynamics. This suggests that using the IB approach might be even 

more important when the index is not a normalized difference index. The EVI is also not a normalized 

difference index using three bands (like D1650) but two of these are visible bands which have much 

lower variances than the NIR and SWIR bands [1], so the EVI produces lower errors. 

SR showed the highest T/S ratio followed by EVI, D1650, NDWI45, NDVI, GVMI, NDWI24, 

NDWI27, and NDWI25 (Figure 6). Comparing Landsat and MODIS variances revealed that all nine 

Landsat indices had higher temporal, spatial and spatio-temporal variances than the MODIS indices 

due to lower spatial resolution of MODIS compared with Landsat. 

Figure 6. Gwydir temporal to spatial variance time series plots for the nine indices from 

Landsat and MODIS; the legend in (a) applies to (b). The spatial and temporal variances 

are calculated using all possible (12) 3-sequential date indices and the results plotted at the 

date of the central image. Vertical grid lines indicate dates of the central images. The 

horizontal dashed line is where T/S = 1.0. 
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All presented results in Figure 2 and Table 4 are site-averaged and do not show results of individual 

simulations. As an example here in Figure 7, we presented individual statistics for all 12 simulations of 

NDWI25 of Gwydir by using STARFM and ESTARFM and two IB and BI approaches. As shown on 

Figure 7, on dates with a higher T/S ratio (i.e., date 256), STARFM outperformed ESTARFM by 

producing higher R2 and lower RMSD and bias compared with other dates. 

Figure 7. Bias, R2 and RMSD of all 12 simulations of NDWI25 at Gwydir using STARFM 

and ESTARFM for the two approaches IB and BI. Part (a), represents bias statistics and 

T/S ratio, parts (b,c) represent R2 and RMSD statistics, respectively. Vertical grid lines 

indicate dates of the central images, and the color components of the legend in  

(a) apply to parts (b,c). The horizontal dashed line in (a) is where T/S = 1.0. 
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4.3. Approach versus Algorithm 

Comparing the R2 and RMSD of four parameters, that is (STARFM-ESTARFM)IB,  

(STARFM-ESTARFM)BI, (IB-BI)STARFM and (IB-BI)ESTARFM, revealed that the differences between 

statistics of the IB and BI approaches in both algorithms were greater than STARFM and ESTARFM 

statistics by using both approaches. This means improvement in accuracy of simulations by selecting 

the right approach (IB) is more important and produces higher simulation accuracies than selecting the 

right algorithm. It was shown that using the IB approach improved the average R2 by 0.4% when using 

STARFM and 3.7% when using ESTARFM. ESTARFM improved the average R2 by 4.6% when using 

the IB approach and 1.2% when using the BI approach. Using the IB approach lowered the RMSD by 

12.8% when using STARFM and by 16% when using ESTARFM compared to using the BI approach. 

STARFM versus ESTARFM lowered the RMSD by 6.1% using the IB approach and by 3.95% for the 

BI approach. This reduction in RMSD also emphasizes that the selection of the right approach (IB) is 

more important than choosing either the STARFM or ESTARFM algorithms. According to the t-test, 

the difference between the means of error statistic values (average of three sites) were also more 

significant when comparing the IB and BI approaches (bias; 28%, R2; 78% and RMSD; 72%) than 

comparing STARFM and ESTARFM algorithms (bias; 61%, R2; 57% and RMSD; 54%). 

5. Discussion 

5.1. IB versus BI 

This study found that the IB approach consistently outperformed the BI approach for all indices at 

all three study sites. The IB approach was less computationally expensive than the BI approach due to 

blending single indices rather than blending multiple bands. For example, the computational time of 

EVI using the IB approach is one-third the time required when using the BI approach due to blending 

three single bands (Blue, Red and NIR) rather than blending the single EVI when using IB. 

Brown et al. [38] showed that the long-term NVDI time series derived from multiple sensors, are 

comparable because of the similarity between them, (i.e., Landsat-and MODIS-derived NDVI are 

comparable with ±1 standard error, and R2 = 0.7). Tian et al. [23] compared the IB and BI approaches 

in simulating an NDVI time series by only using STARFM and found that the IB approach 

consistently generated better results (0.70 < R2 < 0.76) than the BI approach (0.56 < R2 < 0.70) in their 

study area. In this study we demonstrated how blending algorithms can be used for simulating nine 

multispectral indices directly at higher spatial resolution and temporal frequency. This paper 

introduced new insights into the downscaling approaches by blending indices directly from surface 

reflectance data. This approach (IB) demonstrated two major advantages over the three sites studied: 

(i) higher accuracy; and (ii) less computational time. 

5.2. STARFM versus ESTARFM 

This study confirms that performance of STARFM and ESTARFM in simulating Landsat-like 

indices from Landsat and MODIS indices depends on temporal and spatial variances of the input L–M 

indices into the algorithm; which is in agreement with [1,3]. Emelyanova et al. [1] proposed a 
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conceptual model (Figure 9g of their paper) for advanced algorithm selection by using spatio-temporal 

variances of the study site. In this study we used a similar method to assess the blending algorithms 

performance by calculating the T/S variance ratio of input indices (3-sequential dates of MODIS with 

two Landsat indices). Results of this study confirmed their advanced algorithm selection conceptual 

model, which suggested using STARFM in sites with higher temporal and lower spatial (higher T/S 

ratio) variance and using ESTARFM for sites with lower T/S ratio (Figure 2c,d, and Figures 3,4a,b in 

each). Our study also found that the T/S variances ratio of each index was not similar to the T/S values 

of individual reflectance bands, which were used to calculate that index. This meant that the 

performance of STARFM and ESTARFM in IB and BI approaches was different. For example, for 

NDVI calculated with the IB approach, the performance depended on the T/S ratio of NDVI, whereas 

for the BI approach, where we blended individual reflectance data, performance depended on the T/S 

ratio of the individual reflectance Bands 3 and 4. At all three sites, temporal, spatial and spatio-temporal 

variances of MODIS were lower than Landsat variances due to the lower spatial resolution of MODIS 

(i.e., each 500 m MODIS pixel covers approximately 277 Landsat 30 m pixels). Rapid changes in land 

surface conditions (i.e., flood events) resulted in higher changes in temporal variances compared with 

spatial variance and produced higher T/S ratios. 

When comparing STARFM and ESTARFM and using three study sites with different spatial and 

temporal variances, we showed that no blending algorithm was optimal in all conditions.  

Emelyanova et al. [1] showed that the performance of these algorithms depended on the spatial and 

temporal characteristics of the study site. Their analysis was performed using reflectance data, and 

here we show that the framework for algorithm selection can be extended to indices. We extended their 

framework by using the T/S ratio of 3-sequential indices, as opposed to using reflectance data over the 

entire dataset as the algorithm selection criteria. As ESTARFM was developed to blend Landsat and 

MODIS data in spatially complex heterogeneous regions [3], it outperformed STARFM when the  

3-sequential date spatial variance dominated 3-sequential date temporal variance (i.e., a low T/S ratio). 

In contrast, STARFM outperformed ESTARFM, when the 3-sequential date temporal variance 

dominated the 3-sequential date spatial variance (i.e., a high T/S ratio). 

5.3. Approach versus Algorithm 

In this study, it was shown that the choice of the IB or BI approaches had a greater impact on the 

accuracy of simulations compared with choice of algorithm (STARFM or ESTARFM). It means 

choice of approach is more important than choice of algorithm in blending L–M indices. Comparing 

STARFM and ESTARFM in both IB and BI approaches showed that improvement in the accuracy of 

simulations by ESTARFM was higher than accuracy of simulations by STARFM. 

6. Conclusion 

The six main conclusions of this research were: 

(i) the IB approach consistently outperformed the BI approach for all nine indices at all three  

study sites; 
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(ii) the choice of approach (IB versus BI) had a larger impact on accuracy of blending indices than 

did the choice of algorithm (STARFM versus ESTARFM); 

(iii) the IB approach was less sensitive than the BI approach to choice of algorithm; 

(iv) STARFM was less sensitive to the choice of approach (IB versus BI) than was ESTARFM 

(which does not mean that STARFM was always the most accurate); 

(v) using the IB approach was even more important for non-normalized difference indices because 

they did not benefit from the inherent cancelling of blending-induced errors in their algebraic 

implementation; and 

(vi) we confirmed previous findings [1] that STARFM had higher accuracy than ESTARFM when 

temporal variance was higher than spatial variance (T/S > 1) and ESTARFM had higher accuracy than 

STARFM when spatial variance was higher than temporal variance (T/S < 1). 

To simulate Landsat-like indices from Landsat-MODIS images, the Index-then-Blend approach 

(IB) consistently produced better results in our study than when blending individual image bands, then 

calculating indices: the blend-then-index (BI) approach. We conclude the reason for this is that the IB 

approach only incurs one instance of blending and therefore only one instance of error due to blending, 

whereas the BI approach incurs multiple blending instances and therefore multiple instances of error. 

While [1] showed that algorithm selection between STARFM and ESTARFM was important to 

achieve a more accurately blended output of reflectance bands, we showed here that for blending 

indices, the choice of approach (IB versus BI) was more important than blending algorithm selection 

(STARFM versus ESTARFM). Our results have direct impact on operational considerations when 

blending Landsat and MODIS data for the purposes of generating multispectral indices for vegetation, 

environmental moisture and/or water applications. For this purpose, our study suggests that the IB 

approach should be implemented as it is: (i) less computationally expensive due to blending single 

indices rather than multiple bands; (ii) more accurate due to less error propagation; and (iii) less 

sensitive to choice of blending algorithm. 
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