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Abstract: Glaciers and icefields are critical components of Earth’s cryosphere to study and 

monitor for understanding the effects of a changing climate. To provide a regional 

perspective of glacier melt dynamics for the past several decades, brightness temperatures 

(Tb) from the passive microwave sensor Special Sensor Microwave Imager (SSM/I) were 

used to characterize melt regime patterns over large glacierized areas in Alaska and 

Patagonia. The distinctness of the melt signal at 37V-GHz and the ability to acquire daily 

data regardless of clouds or darkness make the dataset ideal for studying melt dynamics in 

both hemispheres. A 24-year (1988–2011) time series of annual Tb histograms was 

constructed to (1) characterize and assess temporal and spatial trends in melt patterns,  

(2) determine years of anomalous Tb distribution, and (3) investigate potential contributing 

factors. Distance from coast and temperature were key factors influencing melt. Years of 

high percentage of positive Tb anomalies were associated with relatively higher stream 

discharge (e.g., Copper and Mendenhall Rivers, Alaska, USA and Rio Baker, Chile). The 

characterization of melt over broad spatial domains and a multi-decadal time period offers 

a more comprehensive picture of the changing cryosphere and provides a baseline from 

which to assess future change. 
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1. Introduction 

Melt dynamics of glaciers and icefields respond to weather, and collectively over the long-term can 

be indicators of a changing regional climate. Glacier mass loss through melting contributes to sea level 

rise and affects water resources [1], making understanding changes to melt patterns on large glaciers 

and icefields important. Two areas of rapid change are glaciers and icefields in Alaska [2] and 

Patagonia [3,4]. Glaciers, consisting of coastal, temperate, tidewater, and glacierized mountain ranges, 

cover about 75,000 km2 of Alaska with an elevation range up to 6,000 m [5]. In Alaska, the average air 

temperature increase is on the order of 2 °C since the mid-20th century [6]. The 20th century warming 

coincides with glacier retreat and thinning (for glaciers ending below 1,500 m elevation), and 

stagnation (for higher elevation glaciers) found at all mountain ranges and island groups in Alaska [5]. 

Several studies have found that Alaskan glaciers have substantially thinned in ablation areas since the 

1950s [6–8]. Berthier et al. [8] used a sequential digital elevation model analysis to determine that 

Alaskan glaciers lost 41.9 ± 8.6 km3·yr−1 water equivalent (w.e.) from 1962 to 2006 which they 

estimate contributed 0.12 ± 0.02 mm·yr−1 to sea level rise. Area average mass balance results highlight 

the variability in changes across Alaska with the Western Chugach, St. Elias and Wrangell, and Coast 

ranges having the highest losses [8].  

In addition, Alaskan glacier volume loss has contributed freshwater discharge to the Gulf of  

Alaska with 47% of total freshwater discharge from glacier/icefield discharge and 10% from glacier 

thinning/retreat. This contribution is noteworthy given that glaciers occupy only 18% of the total 

drainage basin area [9]. The central and southeast coastal regions contributed the most to fresh water 

discharge (on the order of 66%) while the Central Coast and Copper River regions had the highest 

percent of runoff attributed to glacier area [9]. Changes to freshwater discharge may affect coastal ocean 

circulation and biogeochemical fluxes especially as a result of rapidly changing glacierized basins [9].  

In the Southern Hemisphere, the Northern Patagonia Icefield (NPI) covers about 4,200 km2 with 

average elevation of 1,100 to 1,500 m, and is characterized by high precipitation with steep gradients 

west to east, high ice velocities, and high ablation rates [10,11]. Most NPI outlet glaciers terminate on 

land or in lakes, with the exception of San Rafael Glacier, the lowest latitude tidewater glacier in the 

world [4,12]. The Southern Patagonia Icefield (SPI) covers about 13,000 km2 with an average 

elevation of about 1,355 m and consists of mainly temperate outlet glaciers discharging to glacial lakes 

on the east and the ocean on the west [4]. In Patagonia, average air temperature warming is between 

1.3 and 2 °C in the last century [13] with a trend of increasing 0 °C isotherm elevation, while the 

Southern Hemisphere has warmed by 0.84 °C over 1901–2010 period [14]. More specifically, over the 

past 40 years there has been a warming of about 0.5 °C at 850 hPa for winter and summer resulting in 

shifts in precipitation from snow to rain and increased annual melt [15].  

While the Patagonia Icefields have been losing mass since the 1870s, the more recent warming 

trends are an acceleration of longer term climate change [15] and there is substantial evidence that the 

icefields are shrinking at an increasing rate [3,4,10,11,16]. Specifically, using a time series of digital 

elevation models (from Advanced Spaceborne Thermal Emission and Reflection Radiometer, ASTER 

and Shuttle Radar Topography Mission, SRTM) Willis et al. [4] found that the Northern and Southern 

Patagonia Icefields (NPI and SPI) contributed −24.4 ± 1.4 Gt·a−1 to sea level between 2000 and 2012, a 

faster rate than the previous decades (1968/75 to 2000). These estimates are corroborated by several 
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other studies, including Chen et al.’s [17] study using Gravity Recovery and Climate Experiment 

(GRACE) data to estimate an ice loss rate of −27.9 ± 11 km3·yr−1 for the entire Patagonia Icefield from 

2002 to 2006 and Jacob et al.’s [18] study using GRACE to determine combined NPI and SPI mass 

loss of −23.0 ± 9.0 Gt·a−1 between 2003 and 2011.  

In this study we assess melt patterns (spatial and temporal trends) derived from passive microwave 

satellite Special Sensor Microwave Imager (SSM/I) brightness temperature (Tb) data for large Alaskan 

glaciers and icefields and for the Northern and Southern Patagonian Icefields from 1988 to 2011 

utilizing a new metric to determine anomalous melt. This relatively long remote sensing derived time 

series allows for delineation of characteristic melt patterns and a unique approach to monitoring 

changes in melt on these important cryosphere components. Both areas investigated (Alaska and 

Patagonia) are wet, coastal, mid-latitude, montane environments. Passive microwave melt detection 

has been successfully applied in both regions previously. SSM/I derived melt and refreeze timing 

utilizing Tb diurnal amplitude variations (DAV) was first developed and validated for the Coast and  

St. Elias Ranges of Alaska [19] and was used to characterize melt regimes for southeast Alaska as 

Taku, Saint Elias or intermediate [20]. The Taku regime, typical of most coastal glaciers such as those 

of the Juneau Icefield, had a distinct melt onset followed by continuous melt throughout the melt 

season while the Saint Elias regime, typical of high altitude glaciers, had a melt season of daily melt 

and re-freeze reflected by high DAV [20]. SSM/I was also able to detect glacier snowmelt and  

melt-refreeze timing for predicting spring flood events within ±5 days at the terminus of Matanuska 

Glacier, Alaska [21]. Higher resolution (12.5 km) brightness temperature data from the passive 

microwave Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) were 

used to determine melt timing and characteristic melt patterns from Tb histograms on the Southern 

Patagonia Icefield (SPI), finding that the melt-refreeze period was decreasing across the SPI [22]. 

AMSR-E was also used to determine surface melt percentages for the Northern Patagonia Icefield (NPI), 

with wet conditions detected by satellite corresponding to rapidly thinning areas of the icefield [3]. 

This paper builds upon this previous work (using the same SSM/I 37 GHz vertically polarized 

channel) to provide a comprehensive analysis of both regions (Alaska and Patagonia) for a longer time 

frame (1988–2011), albeit at the coarser resolution (25 km) in order to maintain consistency. We use 

brightness temperature histograms to characterize the full range of melt regime patterns for each area, 

determine years of departure from the average (anomalies), investigate potential contributing factors 

(using reanalysis data), and compare melt dynamics between regions. We address the questions: Do 

melt regime pattern and evolution vary according to climatology, distance from coast and elevation? 

Can the approach of using Tb histogram characterization be useful for assessing and predicting future 

change in melt and discharge in these areas? We hypothesize that by monitoring surface melt regimes 

over time a phase shift would be detectable, and of particular significance if a glacierized area changes 

from a cold/frozen melt regime pattern to a warm/wet one. 

2. Data and Methods 

Brightness temperatures (Tb) from the Special Sensor Microwave Imager (SSM/I) on the Defense 

Meteorological Satellite Program satellites (F8, F11, F13) and Special Sensor Microwave 

Imager/Sounder (SSMIS) on F17 for the period 1988–2011 were used to construct annual and average 
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Tb histograms (frequency of Tb distribution) for 25 km EASE-grid pixels [23] covering large glaciers 

and icefields in Alaska based on the spatial intersection with GLIMS data [24] and the glacier area in 

Landsat ETM+ Pan sharpened mosaics (1999 to 2003) [25] (Both GLIMS and Landsat data were used 

because upon visual inspection glacier areas were missing from the GLIMS dataset, thus the Landsat 

mosaic was used to add glacierized areas based on manual inspection of intersection of pixels with 

glacier area where at least half of the pixel was ice covered), and in Patagonia based on spatial 

intersection with GLIMS data. In Alaska, 260 EASE-grid (Northern Hemisphere projection) pixels were 

processed and analyzed (pixels with less than 50% ice cover from Landsat coverage and no GLIMS data 

were removed from the dataset); in Patagonia, 48 EASE-grid (Southern Hemisphere) pixels were 

processed (16 covering the NPI and 32 covering the SPI). No additional correction was done to adjust 

between the different sensors (F8, F11, F13, F17) in order to avoid introducing unknown bias, and due to 

only minimal differences found for the majority of the pixels (on the order of 0.5 K and 2 K) 

(http://nsidc.org/data/docs/daac/nsidc0032_ssmi_ease_tbs.gd.html)[23]. Coastal and mountainous pixels 

are most likely to have higher differences between sensors (up to ±20 K) which is a source of uncertainty 

in the dataset and a limitation in our study. We characterize coastal pixels as the unimodal/mixed 

category (see Figure 1 below) and focus on the other categories to minimize this limitation. 

Figure 1. Generalization of melt regime pattern determined from the sum of annual 

brightness temperature histograms. Warm/wet pixels exhibit an asymmetric high 

distribution skewed to the right (#6; red curve); in contrast, cold/frozen pixels exhibit the 

asymmetric low distribution skewed left (#2; blue curve). Pixels that are cold/frozen a large 

portion of the year but also have some melt exhibit bimodal low distribution (#3; green 

curve) while ones that have more days of melt have a bimodal high distribution (#5; orange 

curve). Equal time cold/frozen and warm/wet are evenly bimodal (#4; purple curve). Pixels 

with mixed or water signals usually close to the coast are unimodal (#1; yellow curve). The 

thin vertical line is the melt threshold for this sensor and wavelength (246 K) determined 

from previous work [20] and (in conjunction with diurnal amplitude variations, DAV) 

indicates when the surface starts melting.  

 

The 37 GHz vertical polarization channel was used as it is sensitive to surface and near-surface melt 

and to maintain consistency with previous studies in both regions investigated here [19–22]. Daily 

ascending and descending Tbs for each pixel were concatenated, sorted by date and time, and binned 

for histogram analysis, producing annual Tb histograms. The average frequency of each Tb was 

calculated based on the 24 year time series producing an average Tb histogram for each pixel. Then 
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each pixel was characterized by its histogram/distribution pattern (i.e., unimodal, bimodal, asymmetric, 

see Figure 1). These distribution pattern categories are amended from previous work to reflect the full 

range of pixel Tb characteristics in both regions by adding three new categories, mixed/unimodal, 

asymmetric high, and asymmetric low (see [22] and Figure 1 of this paper).  

For each pixel, annual Tb histograms were compared to the 1988–2011 average Tb histogram to 

generate annual Tb anomalies for each Tb above and below the melt threshold (246 K). This is 

illustrated conceptually in Figure 2. Then we calculated the percentage of Tb anomalies that were 

positive for Tbs above the melt threshold (246 K) and the percentage of Tb anomalies that were 

negative for Tbs below the melt threshold for each year. Essentially the percentage is the number of 

brightness temperatures that had positive anomaly (and negative anomaly) divided by the total number 

of brightness temperatures with values. The 246 K melt threshold has been previously determined and 

validated on the Juneau Icefield, Alaska [19,20]. The threshold corresponds to the dip in bimodal Tb 

histograms because it is at this point that air temperatures have reached the melting point and 

emissivity rapidly increases with surface melt, therefore there are a minimum number of days with this 

brief transition Tb. A higher percent of positive Tb anomalies above the melt threshold indicates a year 

of higher than average occurrence of warm/wet brightness temperatures while a higher percentage of 

negative Tb anomalies below the melt threshold indicates a year of lower than average occurrence of 

cold/frozen brightness temperatures. Both positive anomalies above the melt threshold and negative 

anomalies below the melt threshold were considered because the Tb signal is influenced by both 

wetness and temperature. Since the contribution from these factors is not easily separated it is useful to 

show the full range of Tb changes. Both Tb anomalies and percent anomalies were tracked over time 

and compared to air temperatures, reanalysis data, and daily stream discharge.  

Figure 2. Conceptual diagram showing average histogram (thick black line) for all years 

compared to an individual year histogram (thin black line) and the positive (red) and 

negative (blue) anomaly brightness temperature frequencies. 

 

Correlations were analyzed between the percent anomalies for all pixels and years with several 

variables, including latitude, longitude, elevation, melt regime type, distance from coast, year, and 

composite sea level pressure, temperature, and relative humidity anomalies. Elevations were extracted for 

NPI and SPI from a 90 m Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) and 

for Alaska from a 1 km DEM created from GTOPO30 data from USGS EROS Data Center [26]. For 

Patagonia, annual composite sea level pressure, surface air temperature, and relative humidity anomalies 
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were obtained from the National Centers for Environmental Prediction (NCEP) National Center for 

Atmospheric Research (NCAR) Reanalysis 1 project (2.5 degree resolution) [27] from NOAA’s Earth 

System Research Laboratory Physical Sciences Division website. Carrasco et al. [28] and  

Rasmussen et al. [15] provide analyses of the reanalysis data for Patagonia compared to radiosonde data 

and find relatively good agreement starting in the late 1990s. For Alaska, the North American Regional 

Analysis (NARR) was used for its higher resolution (0.3 degrees/32 km). NARR is an extension of the 

NCEP Global Reanalysis run over North America with a high resolution Eta Model [29]. Since NARR has 

observational inputs similar to NCEP/NCAR Reanalysis 1, Reanalysis 1 was used in the Patagonia analysis 

to maintain similarity (resolution difference aside) between regions in our study. 

Additionally, three case studies relating streamflow to Tb anomalies provide an indication of the 

potential effects of trends. First, streamflow was investigated in the Copper River basin. As the sixth 

largest watershed in Alaska, the Copper River basin drains 62,678 km2, 18% of which is glacier 

surface. With headwaters in the Alaska Range, Wrangell-St. Elias Mountains, and Talkeetna 

Mountains, discharge from May to October increases due to glacier runoff, changing from an average 

of 331 m3·s−1 to 3208 m3·s−1 [30]. The Copper River was chosen as a case study due to the length of 

the data record—daily streamflow has been collected by the USGS since 1988. For the analysis, 

discharge from the Copper River at Million Dollar Bridge near Cordova, AK (USGS 15214000) was 

obtained from the USGS National Water Information System (NWIS) and air temperature data at 

Cordova/Mile 13 was obtained from the National Climatic Data Center Global Historical Climatology 

Network (NCDC-GHCN) (station USAF 702960 WBAN 26410). 

Second, streamflow was investigated for the Mendenhall River near Auke Bay, AK (USGS 

15052500 NWIS, data collected since 1965) to show the relationship in a largely glacierized basin. The 

Mendenhall Glacier covers two-thirds of the Mendenhall River basin which has an area of about  

267 km2 so the main source of water is meltwater from the glacier [31]. The analysis also included 

nearby air temperature from Juneau (station USAF 703810 WBAN 25309) from the NCDC-GHCN. 

Third, maximum discharge for the Copper River (1988 to 2011), Mendenhall River (1988 to 2011), and 

Rio Baker (in Chile) (2001 to 2011) for months of typically high melt contribution was compared against 

the percent positive Tb anomaly for the corresponding year. Rio Baker is in the Aisen Region of Chile and 

has a watershed area of 26,736 km2, is 170 km long, and has a mean annual discharge of 870 m3/s. Half of 

its melt comes from glacial meltwater from the NPI and half is from Lake General Careera. It is Chile’s 

largest wild river and has one of the highest flows among Chilean rivers [32]. Daily hydrological flow 

(2001 to 2011) for the Rio Baker en Colonia was obtained from the Direccion General de Aguas of the 

Ministerio de Obras Publicas, Golbierno de Chile (47.333°S, 72.85°W, 105 m elevation) [33]. 

3. Results and Discussion  

3.1. Melt Regimes  

While similar in terms of being wet, coastal, mid-latitude montane environments, the Alaskan and 

Patagonian Icefields have different melt regime characteristics (Figures 3 and 4). Alaska has a wider 

distribution of melt regime types ranging from the warmer/wetter asymmetric high and bimodal high 

distributions to the colder/frozen even and bimodal low distributions farther inland and at higher elevations. 
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Patagonia regimes are characterized by more of the warmer/wetter brightness temperatures than Alaska. 

The Patagonian Icefields tend to have a warm/wet melt regime of asymmetric high distribution for the 

majority of the icefield pixels and an even bimodal distribution farther inland. The Patagonia Icefields are, 

in general, at lower elevations and strongly influenced by the coastal environment [4]. 

Figure 3. Digital Elevation Model [26] of southern Alaska with locations of pixels 

analyzed in the study. Dots are the centroid of the 25 km EASE-grid pixels used for the 

SSM/I Tb data analysis. Dot colors depict the characteristic melt regime pattern (Figure 1 

colors are the key) determined from the sum and average Tb frequencies from 1988 to 

2011. Relatively warmer and wetter melt patterns are found closer to the coast. 

 

Figure 4. Digital elevation map (SRTM, 90 m resolution) for the Northern (NPI) and 

Southern (SPI) Patagonian Icefields. Dots are the center of the 25 km EASE-grid pixels 

and colors indicate general melt regime pattern from Figure 1. 
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3.2. Brightness Temperature Anomalies 

For the majority of pixels in both areas, Tb anomalies have been positive in recent years (2007/2008 

to 2011). In the transect highlighted from Alaska (Figure 5; location shown in Figure 3), the departures 

from average are more significant inland compared to those closer to the coast which coincides with 

more temperature moderation typically associated with coastal areas. In Patagonia (Figure 6; location 

shown in Figure 4), the seasonal components of the positive anomalies suggest that spring is the time 

of most departure from the norm (Figure 6 shows spring (orange line) is the most anomalous for 2011). 

Further, years of positive anomalies correspond to years that have a high percentage of melt days as 

determined from the passive microwave melt threshold 246 K [4]. 

Figure 5. Time series of Tb histogram anomalies (difference from the average of  

1988–2011) for a coast to inland transect from Malaspina to Hubbard Glaciers (see the 

dark blue rectangle in Figure 3 for location).  

 
Red is a positive Tb deviation, blue is a negative deviation. Vertical black line in each panel is the 

246 K melt threshold. For scale, the y-axis distance between each year line is 100 (this scale 

measures the number of occurrences of the Tb above or below the average frequency). 

Figure 6. Time series of Tb anomalies for a coast/west to inland/east transect from the SPI 

(first four panels) and for the pixel over San Rafael Glacier to the north in NPI (right-hand 

panel red outline; see Figure 4 for location).  

 
The black oval above the last panel is shows seasonal components (spring is orange; fall is black; 

winter is blue; summer is red). Vertical black line in each panel is the 246 K melt threshold. For 

scale, the y-axis distance between each year line is 100. 
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3.3. Percent Positive and Negative Anomalies 

In Figure 7, transects investigated in Alaska and Patagonia show similar trends in the percentage of 

positive Tb anomalies above the melt threshold (246 K) occurring higher than the average frequency 

(meaning more days of warm/wet Tb) and in the percentage of negative Tb anomalies below the melt 

threshold occurring more than the average frequency (meaning less days of cold/dry Tb). Higher values 

of either of these measures (percent positive or negative anomalies) would suggest a change to 

warmer/wetter conditions with either more warm/wet brightness temperatures occurring or less 

cold/frozen brightness temperatures occurring. The majority of pixels behave similarly within each 

region. There are two distinct times of low positive anomalies—one from 1991–1993 and one from 

2007–2008. For both regions, an increase in the percent of negative Tb anomalies below the melt 

threshold occurs with, or immediately preceding, the increase in positive Tb anomalies above the melt 

threshold. This could be due to the cold/frozen brightness temperature reflecting the change in climate 

and temperature first which then propagates to the warm/wet brightness temperature signal. Both 

positive anomalies for warm/wet Tbs and negative anomalies for cold/frozen Tbs increase in recent 

years in both regions and the more cold/frozen melt regime pattern (green) have slightly different 

trends than the more warm/wet melt regimes (red and orange) (Figure 7). 

Figure 7. Time series (1988–2011) of the percentage of positive (and negative) Tb 

anomalies above (and below) the melt threshold (246 K) for each year for the Alaska 

transect pixels (stars and solid lines) and for the Patagonia Icefield transect (circles and 

dashed lines) (see Figures 3 and 4 for locations). Line colors correspond to the pixel’s 

characteristic melt regime (see key Figure 1).  

 

3.4. Statistical Analysis  

To explore potential causative or correlative factors, a multiple regression and correlative analysis 

was conducted on each region’s annual percentage of positive Tb anomalies above the melt threshold 

(246 K) as well as on the annual percent of negative Tb anomalies below the melt threshold. Positive 

anomalies above the melt threshold mean that there are more occurrences of warm/wet brightness 

temperatures while negative anomalies below the melt threshold mean there are fewer cold/frozen 
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brightness temperatures that year suggesting a change to a more melt dominated regime pattern. Time 

series of all pixels’ percent anomalies (24 data points (a percent anomaly value for each year) per 

pixel) in each region were assessed using multiple linear regression and latitude, longitude, elevation, 

distance from coast, melt regime type, composite mean sea level pressure anomalies, composite 

surface air temperature anomalies, composite relative humidity anomalies, and year variables  

(Table 1). This combination of spatial and climatological variables was investigated due to potential 

influence on melt characteristics. Distance to coast serves as a proxy for maritime versus continental 

climatology, and sea level pressure, air temperature and relative humidity are indicative of weather 

patterns that would result in higher melt. Higher relative humidity suggests warmer temperatures and 

more energy for melt. Considering relative humidity was found to improve accuracy (reducing errors 

and improving correlation by 10%) in modeling melting rates of Andean glaciers [34] and therefore 

was considered as a variable here in addition to temperature. 

Table 1. Correlation between the annual percentage of positive Tb anomalies above the 

melt threshold (246 K) and of negative Tb anomalies below the melt threshold with 

latitude, longitude, elevation, melt regime type, composite sea level pressure (SLP) 

anomaly, composite air temperature (Tair) anomaly, composite relative humidity (RH) 

anomaly, year, and distance to coast (Dist2Coast).  

Alaska Patagonia 

 

% Positive Tb 

Anomaly 

% Negative Tb 

Anomaly 

% Positive Tb 

Anomaly 

% Negative Tb 

Anomaly 

Latitude 0.061 0.178 0.045 −0.096 

Longitude −0.034 −0.060 0.009 0.091 

Elevation 0.025 0.131 −0.027 0.163 

Melt Regime −0.116 0.041 −0.036 0.173 

SLP anomaly −0.077 −0.016 −0.111 0.096 

Tair anomaly 0.054 0.095 0.187 0.141 

RH anomaly −0.028 0.192 −0.096 0.060 

Year 0.310 −0.175 0.348 −0.143 

Dist2Coast 0.145 0.193 0.003 0.143 

Multiple 0.424 0.384 0.389 0.374 

All correlations noted in bold text are significant at 0.05 significance level with the exception of the non-bold 

italic numbers, which are not significant. 

For Alaska, all variables together accounted for a little less than half of the variability with a 

multiple correlation of 0.4242 for the percent positive Tb anomalies and 0.384 for the percent negative 

Tb anomalies. Distance to coast was the variable having the highest correlation for both anomaly 

indices (0.145 for positive anomaly and 0.193 for negative anomaly). Year and regime type had 

significant correlations for the positive anomalies, meaning positive anomalies increased over time and 

there were more positive anomalies for warmer/wetter melt regimes. Relative humidity, latitude, and 

elevation had significant correlations for the negative anomalies. All correlations were significant at 

alpha 0.05 with the exception of sea level pressure and the negative anomalies.  
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For Patagonia, all variables together accounted for more than a third of the variability with a 

multiple correlation of 0.389 for the percent positive Tb anomalies and 0.374 for the percent negative 

Tb anomalies. Only sea level pressure, temperature, year, and relative humidity were significantly 

correlated with the positive Tb anomalies, while all variables were significantly correlated (at alpha 

0.05) with negative Tb anomalies. Melt regime, elevation, temperature, and distance to coast had the 

highest correlations with the negative anomalies.  

From these results it is clear that distance to coast has one of the largest relative influences on the 

percent positive or negative Tb anomaly among the variables considered. Distance to coast is a proxy 

for maritime versus continental environments and includes influences from factors such as elevation 

and climatology, making it a suitable proxy and metric for analysis. These results are in line with 

previous findings that proximity to coast and elevation are related to the duration of the melt season in 

Alaska [20]. For Alaska, percent anomaly was more strongly associated with regime type for the 

positive Tb anomalies compared to the negative, while relative humidity was more strongly associated 

with the negative anomalies compared to the positive. This suggests that relative humidity has more 

effect on the cold/frozen Tb frequency. For Patagonia, surface air temperature was significant for both 

the positive and negative anomalies, while regime type, elevation, and distance to coast were more 

strongly associated with the negative Tb anomalies compared to the positive. This suggests that the 

gradient from coast to inland dominates the melt dynamics of these icefields but that overall increasing 

temperatures are affecting melt patterns leading to increasing occurrences of warm Tb and wet glacier 

surfaces in recent years. Further, the results highlight the variable, multiple factors affecting melt 

dynamics in both regions. 

3.5. Discharge Case Studies  

To explore the possible effects of a year with anomalous high or low Tb frequency above the melt 

threshold, discharge from the Copper River (near Cordova, AK) was compared to years of below 

average warm/wet Tbs (1991 and 1992 are shown for illustration, Figure 8) and to years of above 

average warm/wet Tbs (2005 and 2009 are shown for illustration, Figure 8). Figure 8 illustrates the 

relationship: above average warm/wet Tb years have earlier and higher discharge compared to below 

average warm/wet Tb years. A time series of the brightness temperature and diurnal amplitude 

variation (DAV) (difference between the daily ascending and descending Tbs) shows that discharge 

increases dramatically after the end of the high DAV or melt-refreeze period (Figure 8 inset). After this 

period the snowpack/glacier surface is not refreezing at night and meltwater rapidly flows downstream.  

Similarly, discharge recorded at the gauge at Mendenhall River near Auke Bay, AK, shows that 

years of above average warm/wet Tbs (2002 and 2003 are shown for illustration, Figure 9) have higher 

peak flows throughout the year compared to years that have below average warm/wet Tbs (Figure 9). 

The peak flows are later in the summer and flashier compared to the Copper River streamflow because 

the majority of the water comes from meltwater from the Mendenhall Glacier. The effect of the 

positive anomaly Tb year is consistent for both types of hydrological systems (a glacierized basin and a 

mixed source basin with some glaciers), a finding that instills confidence in the results and in the 

significance of the Tb anomaly methodology. As with the Copper River (Figure 8), the time series of 

Tb and DAV for Mendhenhall River (Figure 9) illustrates the importance of the high DAV period and 
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its relation to the increase in discharge in the spring. Also interesting to note is the brief melt event in 

late winter (late February/early March) that resulted in a small spike in flow.  

Figure 8. Discharge for Copper River at Million Dollar Bridge near Cordova, AK (USGS 

15214000, see Figure 3 for location) for two negative Tb anomaly years in blue (1991 and 

1992) and two positive Tb anomaly years in red (2005 and 2009) compared to the mean 

1988 to 2011 (thick black line).  

 
The inset at right shows the Tb anomalies for the nearest pixel (average elevation 841 m) and the average air 

temperature from Cordova (USAF 702960 WBAN 26410, 60.489°N, 145.451°W, 14.6 m elevation). The 

inset at left shows the relationship of Tb (black), diurnal amplitude variation (DAV) (gray), air temperature 

(red), and discharge (blue). Melt thresholds are dashed horizontal lines, and the period of melt-refreeze or 

high DAV is denoted. The spring freshet follows the end of the high DAV period. Positive anomaly years 

tend to have earlier freshet and earlier and higher peak flows compared to negative anomaly years. 

Figure 10 shows the relationship between discharge and years of high Tb positive anomalies. The 

maximum discharge (cubic meters per second) for months that typically have highest contribution of melt 

runoff is plotted against the percent positive anomaly for that year. For the Copper River the maximum 

discharge is plotted for May, for Mendenhall August is plotted, and for the Rio Baker en Colonia February 

(the austral summer) is plotted. While the best linear relationship is found with the Copper River dataset (r-

squared of 0.69), all sites show a positive linear relationship with higher percentage of positive anomalies 

corresponding to higher maximum discharge in melt dominated months. 

The results from these case studies highlight the tight coupling of Tb, air temperature, and discharge, and 

underscore the utility of monitoring melt with satellite-derived Tb. Tracking the spatial and temporal 

occurrence of high or low Tb anomalies may be useful for discharge, freshet, and flood monitoring. 
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Figure 9. Discharge for the Mendenhall River near Auke Bay, AK (USGS 15052500, see 

Figure 3 for location) for two negative Tb anomaly years in blue (1991 and 1992) and two 

positive Tb anomaly years in red (2002 and 2003) compared to the mean 1988 to 2011 

(thick black line).  

 
The inset at right shows the Tb anomalies for a nearby glacier pixel (average elevation 1,358 m) and the 

average air temperature from Juneau (USAF 703810 WBAN 25309, 58.357°N, 134.564°W, 7.3 m elevation). 

The inset at left shows the relationship of Tb (black), diurnal amplitude variation (DAV) (gray bottom), air 

temperature (red), and discharge (blue) for 1992. Melt thresholds are dashed horizontal lines, and the period 

of melt-refreeze or high DAV is denoted. 

Figure 10. Maximum discharge (cubic meters per second) for months of typical high melt 

runoff (May for Copper River in Alaska, August for glacial Mendenhall River in Alaska, 

and February for Rio Baker in Chile) plotted against the percentage of positive anomalies 

above the melt threshold for that year. Linear trend lines and r-squared are shown.  

The high and low anomaly years illustrated in Figures 8 and 9 are labeled and colored red and blue, 

respectively, for Copper River and Mendenhall River. 
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3.6. Discussion  

Since brightness temperatures are a function of physical temperature and emissivity they are a good 

indication of surface and near-surface melt dynamics on glaciers and icefields. Melt regimes 

determined from Tb histograms correspond to the general climatology of the regions investigated with 

more coastal, lower elevation areas exhibiting warmer/wetter environments. The coast to inland 

gradient of melt regime type from asymmetric high to bimodal for the SPI was also found by Monahan 

and Ramage [22] using higher resolution (12.5 km) AMSR-E data. 

Tb anomalies can indicate years of higher or lower temperatures and melt. For instance, two years 

having cold seasons of anomalous temperatures in Alaska were the winters of 2002 (warm) and 2007 

(cold) [35] which were found to be positive and negative Tb anomaly years, respectively, reflecting 

warmer and colder climate patterns in general for those years. Further, the largest temperature 

departures during these years were recorded in the continental interior Alaska with the smallest for the 

coastal, maritime areas. This continentality, where wider temperature ranges occur inland compared to 

coastal areas, is also seen in the Tb anomaly transect results shown in Figure 5.  

At high latitudes, surface temperatures (and thus melt) are influenced by atmospheric circulation 

patterns. This is illustrated by the 2002 warm anomaly caused by more advection of warm air due to 

negative sea level pressure anomalies more than 12 hPa in the Aleutian low [35]. Further, the transition 

to the Pacific Decadal Oscillation’s cool phase in March 2007 corresponds with cold temperature  

(and Tb) anomalies in the Gulf of Alaska.  

For Patagonia, recent years (2007/2008 to 2011) of positive Tb anomalies (and higher percent of 

melt days) coincide with icefield thinning and acceleration reported by Willis et al. [3,4]. Most of the 

NPI is near the freezing point making it sensitive to any air temperature change [3]. Both NPI and SPI 

have high mass turnover, low equilibrium line altitudes, and calving glaciers, making them vulnerable 

to climate change [10]. The icefields are also strongly influenced by the persistent midlatitude 

westerlies bringing heavy precipitation on the west side of the southern Andes [15,28]. 

4. Conclusions  

Frequency distributions of passive microwave brightness temperatures from SSM/I and SSMIS 

were analyzed to determine characteristic melt patterns for large glaciers and icefields in Alaska and 

Patagonia. Melt regimes ranged from warm and wet to cold and frozen with bimodal distributions in 

between. Alaska had a range of melt regimes, with coastal and low elevation glacier pixels exhibiting 

asymmetric high distribution of warmer/wetter Tbs and inland, higher elevation glacier pixels 

exhibiting a bimodal low distribution. In contrast, the Patagonian Icefield was predominately warm 

and wet exhibiting the asymmetric high distribution. High bimodal/high asymmetric Tb distributions 

are more vulnerable to regional climate change as melt is enhanced by the rising 0 °C isotherm, a 

finding supported by recent trends in the Patagonian Icefield.  

In both areas Tb anomalies indicated years of above or below average Tb frequency with above 

average Tb anomalies corresponding to average air temperature. Recent years showed positive Tb 

anomalies, possibly associated with increasing temperatures and melt. The Tb anomalies also 

corresponded to percent melt days in Patagonia and to discharge in Alaska with higher and earlier 
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discharge associated with years having above average warm/wet brightness temperatures. Correlations 

suggest that distance to coast and temperature were the variables of most influence on the percent 

positive and negative Tb anomalies.  

The Tb melt regime and anomaly approach show promise for monitoring future change in melt on 

large glaciers and icefields, and possibly for monitoring changes to discharge and peak flows in 

glacierized basins. Especially important would be a shift in regime from cold/frozen to warm/wet melt 

regime pattern. For now, the dataset provides a baseline from which to assess future change. Given the 

large spatial area, lack of ground data, and remote environment, using remote sensed data to detect 

melt on these dynamic glaciers and icefields is advantageous for understanding the cryosphere and the 

effects of a changing climate.  
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