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Abstract: Accurately estimating consumptive water use in the Colorado River Basin 

(CRB) is important for assessing and managing limited water resources in the basin. Increasing 

water demand from various sectors may threaten long-term sustainability of the water 

supply in the arid southwestern United States. We have developed a first-ever basin-wide 

actual evapotranspiration (ETa) map of the CRB at the Landsat scale for water use assessment 

at the field level. We used the operational Simplified Surface Energy Balance (SSEBop) 

model for estimating ETa using 328 cloud-free Landsat images acquired during 2010.  

Our results show that cropland had the highest ETa among all land cover classes except for 

water. Validation using eddy covariance measured ETa showed that the SSEBop model 

nicely captured the variability in annual ETa with an overall R2 of 0.78 and a mean bias 

error of about 10%. Comparison with water balance-based ETa showed good agreement  

(R2 = 0.85) at the sub-basin level. Though there was good correlation (R2 = 0.79) between 

Moderate Resolution Imaging Spectroradiometer (MODIS)-based ETa (1 km spatial 

resolution) and Landsat-based ETa (30 m spatial resolution), the spatial distribution of 
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MODIS-based ETa was not suitable for water use assessment at the field level. In contrast, 

Landsat-based ETa has good potential to be used at the field level for water management. 

With further validation using multiple years and sites, our methodology can be applied for 

regular production of ETa maps of larger areas such as the conterminous United States. 

Keywords: evapotranspiration; energy balance; geospatial analysis; hydrologic cycle; 

irrigation; Landsat; remote sensing; water use 

 

1. Introduction 

Water management is becoming more challenging, particularly in the arid western United States 

because of changes in climate, land use, and demography. One climate change study has indicated that 

annual runoff in the Colorado River Basin (CRB) will be reduced by 14%, 18%, and 17% for the 

periods 2010–2039, 2040–2069, and 2070–2098, respectively [1]. The reduced availability of water in 

the basin could also prevent water allocation requirements of the Colorado River Compact from being 

met [2]. Increased demand for water from various sectors has motivated water managers to demand 

more accurate water budgets at higher resolution so that available water resources may be better allocated.  

Remote sensing has great potential but remains underutilized by practicing water resource  

managers [3,4]. Accurately estimating consumptive water use using remotely sensed data helps water 

managers in planning, distribution, and management of water resources. Agro-meteorological models 

based on remote sensing are the most suited for estimating crop water use at the field and regional 

scales [5]. Some of the remote sensing based models for estimating actual evapotranspiration (ETa) 

include the surface energy balance index (SEBI) [6], two source model (TSM) [7], surface energy 

balance algorithm for land (SEBAL) [8], simplified surface energy balance index (S-SEBI) [9], surface 

energy balance system (SEBS) [10], ET mapping algorithm (ETMA) [11], atmosphere-land exchange 

inverse (ALEXI) [12], mapping evapotranspiration at high resolution with internalized calibration 

(METRIC) [13], simplified surface energy balance (SSEB) [14], wet METRIC (wMETRIC) [15], and 

operational simplified surface energy balance (SSEBop) [16]. Various publications have reviewed 

some of these models and other methods for estimating ETa using remotely sensed data [5,17–19]. 

The US Bureau of Reclamation of the Department of the Interior (DOI) is the nodal agency for 

managing water in the Colorado River Basin. As per “the 1964 Decree” of the U.S. Supreme Court in 

Arizona vs. California et al., the Secretary of the DOI must provide complete, detailed, and accurate 

records of consumptive use of water from the Colorado River. Furthermore, one of the six science 

strategic directions of the US Geological Survey (USGS) in the decade 2007–2017 is a Water Census 

(water availability and use assessment) of the United States for quantifying, forecasting, and securing 

freshwater for America’s future [20]. The DOI has launched WaterSMART (Sustain and Manage 

America’s Resources for Tomorrow) to achieve a sustainable water strategy to meet the Nation’s water 

needs [21]. The CRB is one of the focus areas under WaterSMART initiatives for developing and 

testing suitable methods to meet the Water Census objectives [22].  



Remote Sens. 2014, 6 235 

 

Our objective of this study is to produce seamless ETa estimates of the Colorado River Basin at the 

Landsat scale using the SSEBop model and evaluate the model performance using field measurements, 

water balance study, and Moderate Resolution Imaging Spectroradiometer (MODIS)-based ETa estimates.  

2. Methods and Materials 

The operational Simplified Surface Energy Balance (SSEBop) model was used for estimating ETa 

within the CRB. This model uses pre-defined hot and cold boundary conditions unique to each pixel. 

Independent weather datasets from the Global Data Assimilation System (GDAS) are used to compute 

the reference ET (ETo). ETo is constrained by ET fraction (ETf) based on Landsat surface temperature 

and Parameter-Elevation Regressions on Independent Slopes Model (PRISM) air temperature data.  

A brief overview of the SSEBop model is presented here. Readers may refer to Senay et al. (2013) [16] 

for more details on model parameterization, hypothesis, and justification. 

2.1. The Operational Simplified Surface Energy Balance (SSEBop) Model  

The SSEBop Model uses a pre-defined hot and cold boundary condition for computing daily 

evapotranspiration ETa (mm·d−1) as 

a f oET ET k ET= × ×  (1)

where ETo is short grass reference ET (mm·d−1), ETf is ET fraction (−), and k is a scaling coefficient (−) 

based on calibration. In this study we used k as 1. Senay et al. (2013) [16] suggest a calibration process 

to determine the k value since the calculation of the pre-defined parameters may already incorporate a 

compensating bias. 

ET fraction, ETf (−), is computed as 

ch

sh
f TT

TT
ET

−
−=  (2)

where Th is pre-defined idealized reference hot pixel temperature (K), Ts is land surface temperature 

(K) obtained from Landsat images, and Tc is pre-defined idealized reference cold pixel temperature (K). 

In the SSEBop model, each pixel has a predefined hot and cold boundary values based on maximum 

air temperature and differential temperature (dT). Pre-defined cold pixel temperature is computed as a 

fraction of maximum air temperature. Maximum air temperature is not selected over the Landsat scene 

or the modeling domain but each pixel has its own predefined boundary values. The cold pixel temperature 

is approximated as being close to the corresponding air temperature based on the assumption that for a 

given clear-sky day, the land surface will experience an ETa rate equal to the potential rate for healthy 

and well watered vegetation when its Ts is close to the near-surface air temperature (i.e., little or no 

sensible heat flux). Calibration of the SSEBop Model using MODIS-based images has shown this 

coefficient as 0.993 [16]. However, our calibration using Landsat images has shown a different value; 

hence, we computed Tc as 

max0.985cT T= ×  (3)

where Tmax is the maximum air temperature (K). 

Pre-defined hot pixel temperature is computed as  
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dTTT ch +=  (4)

Differential temperature (dT, K) is computed based on the assumption that latent heat flux and heat 

storage at the daily time scale for a dry, bare soil will be negligible. Thus based on energy balance, 

sensible heat flux (H) will be equal to net radiation (Rn) at the dry, bare soil. So we can replace H with 

Rn in the conventional H formulation and compute dT as  

n ah

a p

R r
dT

cρ
×=
×

 (5)

where rah is the aerodynamic resistance to heat transfer from a hypothetical dry, bare surface  

(110 s·m−1), ρa is the density of air (kg·m−3), and cp is the specific heat of air at constant pressure  

(1,004 J·kg−1·K−1). The calculations of net radiation (Rn) under clear-sky condition and air density (ρa) 

are adaptions of Allen et al. (1998) [23] as described in Senay et al. [16]. It is important to note that dT 

is unique for each period and location, but the value does not vary from year to year since it is 

calculated under a clear-sky condition.  

2.2. Study Area 

The Colorado River originates in the Rocky Mountains of the western United States and flows about 

2,300 km through seven states (Wyoming, Colorado, Utah, New Mexico, Arizona, Nevada, and California) 

before draining into the Gulf of California (Figure 1). The CRB has an area of about 630,000 km2, much of 

it arid. The Colorado River is a major source of water supply to the southwestern United States. The 

Colorado River supplies water to more than 25 million people and irrigates more than 12,000 km2 of 

cropland across the seven basin states [22]. The annual flow of the river has ranged from 6.5 billion cubic 

meters (BCM) to 29.6 BCM during 1906–2000 [1]. The combined reservoir storage capacity (74.0 BCM) 

within the basin is about four times the long-term average annual flow (16.7 BCM). 

Figure 1. Location of the study area showing the Colorado River Basin. 
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Table 1. Land use/land cover distribution within the study area based on National Land 

Cover Database [24]. 

Land Use/Land Cover NLCD Code % 

Water 11 0.40 

Ice/snow 12 0.05 

Open space development 21 0.79 

Low intensity development 22 0.51 

Med. intensity development 23 0.24 

High intensity development 24 0.05 

Barren land 31 3.34 

Deciduous forest 41 3.51 

Evergreen forest 42 19.35 

Mixed forest 43 0.38 

Shrubland 52 60.56 

Grassland 71 7.73 

Pasture/Hay 81 1.44 

Cropland 82 0.83 

Woody Wetland 90 0.58 

Herbaceous Wetland 95 0.22 

Figure 2. Land use/land cover distribution in the Colorado River Basin based on National 

Land Cover Database 2006 [24]. 
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Based on the National Land Cover Database (NLCD, 2006) [24], shrubland (61%) is the most 

dominant land cover in the study area followed by evergreen forest (19%) (Table 1). Most of the 

pastureland is in the upper basin, most of the cropland is in the lower basin, and shrubland is 

distributed throughout the basin (Figure 2). Land use/land cover of the CRB is also used as an input in 

the Lower Colorado River Accounting System (LCRAS), a water accounting system developed by the 

USGS and the Bureau of Reclamation [25]. Congalton et al. (1998) [26] developed a procedure to 

accurately map agricultural crops and other land cover in the lower CRB. For additional detail on  

geo-topographic and climatic conditions of the study area, see Kumar and Duffy (2009) [27].  

2.3. Processing of Landsat Images 

The CRB is covered by 44 Landsat scenes spread over paths 33–44 and rows 30–38 (Figure 3). 

First, we downloaded all the Landsat images (Thematic mapper and Enhanced thematic mapper plus) 

of the study area for 2010 with less than 10% cloud cover from the Earth Explorer site 

(http://earthexplorer. usgs.gov/). We then selected images that were nearly cloud free or had cloud 

only along the edges (total 328 images). In general, one Landsat image per month is ideal, but two 

images are desired for cropland, particularly during the crop growing season. However, based on our 

Landsat processing experience, reasonable results can be obtained based on 10–12 images per year.  

Figure 3. Coverage of Landsat TM/ETM+ images (path/row) in the Colorado River Basin 

based on the worldwide reference system (WRS-2). 
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Processing of Landsat images for obtaining land surface temperature (Ts) was carried out as 

follows. First, the digital numbers (DN) of downloaded Landsat images were converted to at-sensor 

radiance (L) as  

max min min
min

max min

( ) ( )

( )
cal

cal cal

L L DN Q
L L

Q Q

− × −= +
−

 (6)

where L is spectral radiance (W·m−2·sr−1·μm−1), Lmax is maximum rescaling factor (W·m−2·sr−1·μm−1), 

Lmin is minimum rescaling factor (W·m−2·sr−1·μm−1), DN is quantized calibrated pixel value (−), Qcalmax 

is quantized calibrated pixel value corresponding to the Lmax (−), and Qcalmin is quantized calibrated 

pixel value corresponding to the Lmin (−). The values of Lmax, Lmin, Qcalmax, and Qcalmin for each band are 

provided in the metafile of unzipped downloaded images.  

The at-sensor radiance for the shortwave bands was converted to top of atmosphere reflectance (ρ) as 

r

L

ESUN Cos d

πρ
θ

×=
× ×

 (7)

where ρ is planetary top of atmosphere reflectance (−), dr is earth-sun distance parameter (−), ESUN is 

mean exoatmospheric solar irradiance (W·m−2·μm−1), and θ is solar zenith angle (degree). ESUN 

values are given in Chander et al. (2009) [28]. 

Top of atmosphere albedo and at surface albedo were calculated as  

( )t oa cα ρ= ×  (8)

2
sw

pathtoa

τ
αα

α
−

=  (9)

where αtoa is albedo at the top of the atmosphere (−), α is at surface albedo (−), c is weighting 

coefficient (based on Tasumi et al., 2008) [29], αpath is albedo path radiance ranging from 0.025 to 0.04 (−), 

and τsw is transmittance as computed below. 
50.75 2 10sw Zτ −= + × ×  (10)

where Z is elevation above the mean sea level (m).  

Surface emissivity and land surface temperature were computed as presented in Allen et al. (2007) [13] 

without using any atmospheric radiative transfer simulation model such as MODTRAN. In some 

desert areas where albedo is high (>0.3), the radiometric land surface temperature tends to decrease, 

potentially due to reduced net radiation [16]. We corrected those Ts values to avoid erroneous ET 

fraction as 

_ 50 ( 0.3)s co sT T α= + × −  (11)

where Ts_co is corrected land surface temperature (K). 

The SSEBop model algorithm was implemented with Landsat images using Model Maker in Erdas 

Imagine 2011 (version 11.0.4) (Intergraph Corporation, Huntsville, AL, USA). Each individual scene 

was processed separately for computing ETa on the day of the satellite overpass. All the available  

daily ETa images were used for upscaling to compute annual ETa as discussed in the Computation of 

Annual ET section. 
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2.4. Other Supporting Data 

Monthly minimum and maximum temperature and precipitation (P) gridded 4 km data for 2010 were 

downloaded from the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) website. 

We used these data in their original format without any spatial interpolation to preserve the data integrity. 

PRISM is a knowledge-based system that uses ground-based meteorological station records, a digital 

elevation model (DEM), and many other geographic datasets to generate gridded estimates of monthly 

climatic parameters [30]. Monthly runoff (Q) based on Hydrologic Unit Code (HUC) for 2010 was 

downloaded from the USGS Water Watch website (http://waterwatch.usgs.gov/index.php). The 

estimates of HUC runoff are generated by the USGS by combining historical flow data from stream 

gauges, the drainage basins of the stream gauges, and the HUC boundaries [31]. Annual ETa based on 

spatial water balance at the HUC8 level was carried out by subtracting annual HUC-based runoff from 

the annual PRISM precipitation. Only PRISM-based air temperature (not precipitation) was used in the 

SSEBop model for computing Landsat-based ETa. Thus ETa based on water balance (residual of 

precipitation and runoff, i.e., P–Q) should serve as an independent data source for validation of  

Landsat-based annual ETa. We assume that there is no change in annual storage of water; therefore, P–Q 

is equivalent to ETa.  

Topographic elevation data of the study area were derived from the February 2000 National 

Aeronautics and Space Administration (NASA) Shuttle Radar Topography Mission (SRTM), a seamless 

and complete void-filled spatial dataset [32]. Data were downloaded from the SRTM data portal. The 

daily reference evapotranspiration (ETo) (Senay et al., 2008) [33] was computed from climate parameter 

data extracted from global data assimilation system (GDAS) based 6-hourly weather datasets [34]. The 

daily ETo data are available at the Famine Early Warning Systems Network website 

(http://earlywarning.usgs.gov/adds/global/index.php). The global ETo data available at 1° ground 

resolution were downscaled to 10 km resolution [14]. Gridded flux data are a global, spatially and 

temporally explicit estimates of latent flux upscaled from flux measurements based on remote sensing 

indices, climate and meteorological data, and information on land use [35]. These data were obtained 

from the Max Planck Institute for Biogeochemistry server. MODIS-based ETa maps using the SSEBop 

model [16] were also used for result comparison.  

2.5. Computation of Annual Evapotranspiration 

ETa on the day of the satellite overpass was computed using the SSEBop model. Computation of 

seasonal/annual ETa becomes challenging when daily ETa is not available because of Landsat’s 16-day 

repeat cycle and/or a lack of cloud-free images. We have used upscaling of daily ETa to annual ETa 

based on the ratio of actual ET to reference ET (ET coefficient). A study by Singh (2009) [36] with 

multiyear datasets showed that there was no single interpolation method that worked better than other 

methods under all conditions. Suitability of the method depended on the number of images per season, 

number of days between two consecutive images, extreme values on any particular day, and duration 

of the season [37]. The fixed method worked well for longer duration (annual). So we used the fixed 

method for computing annual ET based on ET coefficient: 
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1

n

annual oi fi
i

ET ET ET
=

= ×  (12)

where ETannual is the total annual ET (mm), EToi is the reference ET (mm) for period i (days), and ETfi 

is the representative ET coefficient (−) for period i.  

After computing the annual ETa for each path/row, all annual ETa images were mosaicked. 

Mosaicking of annual ETa for different path/row is done to obtain a nearly seamless ETa map. For this 

we used average values for the overlapped area. Finally, the study area was extracted from the 

mosaicked images using a boundary shape file of the river basin. 

2.6. Field Validation 

Modeled ETa was compared with the eddy covariance measurements carried out at the different eddy 

covariance measurement sites (Table 2). These sires are Flagstaff managed forest [38], Flagstaff 

unmanaged forest [38], Flagstaff wildfire [38], Santa Rita Creosote [39], Santa Rita Mesquite [40], Kendall 

grassland [41], and Charleston Mesquite [42]. For comparison, we used the ETa values of pixels that have a 

flux tower without any knowledge of the spatial extent and relative importance of upwind source areas 

(footprint). Because all of these sites except for the Charleston Mesquite site are part of FLUXNET [43], 

we have included additional details and discussion on the Charleston Mesquite site. The data used from the 

FLUXNET sites are Level 2 data, so they have data gaps ranging from about 7% (Flagstaff wildfire site) to 

22% (Santa Rita Creosote site). The data collection and methodology for FLUXNET sites were according 

to Ameriflux protocol described in the references given in Table 2. The Charleston Mesquite site is located 

at an elevation of 1200 m, about 16 km northeast of Sierra Vista, Arizona, on the east side of the San Pedro 

River. This site is dense riparian woodland dominated by velvet mesquite (Prosopis velutina), while the 

understory is composed of sacaton grass (Sporobolus wrightii), greythorn shrubs (Zizyphus obtusifolia), 

and other summer active annual herbaceous species. The average canopy cover is about 70% with leaf area 

index ranging from about 1.2 prior to leaf-out to about 2 during most of the growing season. A  

three-dimensional sonic anemometer (Model CSAT3, Campbell Scientific Inc., Logan, UT, USA) and an 

open path infrared gas analyzer (IRGA; Model LI-7500, LI-COR Inc., Lincoln, NE, USA) were used at the 

site. The variables were sampled at 10 Hz by a datalogger (CR5000, Campbell Scientific Inc., Logan, UT, 

USA) and averaged over 30-min. The average depth to groundwater was about 10 m. Other details of the 

Charleston Mesquite site and measurement techniques are described elsewhere [42,44].  

Table 2. Details of eddy covariance tower validation sites used in this study. 

Sl. No. Site Name Code 
Latitude 

(Degree) 

Longitude 

(degree) 

Elevation 

(m) 

Tower 

Height (m) 

Land 

Cover 

Landsat 

Path/Row 

No. of 

Cloud-Free 

Images 

Reference 

1 
Flagstaff managed 

forest 
FMF 35.1426 −111.7273 2160 23 

Ponderosa 

pine forest 
37/36 6 

Dore et al. (2012) 

[38] 

2 
Flagstaff unmanaged 

forest 
FUF 35.089 −111.762 2180 23 

Ponderosa 

pine forest 
37/36 6 

Dore et al. (2012) 

[38] 

3 Flagstaff wildfire FWF 35.4454 −111.7718 2270 4 
Ponderosa 

pine forest 
37/35 7 

Dore et al. (2012) 

[38] 
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Table 2. Cont. 

Sl. No. Site name Code 
Latitude 

(Degree) 

Longitude 

(degree) 

Elevation 

(m) 

Tower 

Height (m) 

Land 

Cover 

Landsat 

Path/Row 

No. of 

Cloud-Free 

Images 

Reference 

4 Santa Rita Creosote SRC 31.9083 −110.8395 991 4.25 
Open shrub 

land 
36/38 9 

Kurc and Benton 

(2010) [39] 

5 Santa Rita Mesquite SRM 31.8214 −110.8661 1120 6.4 
Woody 

Savannas 
36/38 9 

Scott et al. (2009) 

[40] 

6 Kendall Grassland WKG 31.7365 −109.9419 1531 6.4 Grassland 35/38 7 
Scott et al. (2010) 

[41] 

7 Charleston Mesquite CMS 31.6637 −110.1776 1200 14 
Riparian 

woodland 
35/38 7 

Scott et al. (2004) 

[42] 

3. Results and Discussion 

3.1. Annual ETa of Different Land Use/Land Cover 

Spatial distribution of the first ever annual ETa of the CRB at the Landsat scale showed different 

water use patterns within the basin (Figure 4). As expected, open water had the highest mean annual 

water loss (994 mm) followed by cropland (538 mm) as a result of evapotranspiration (Table 3). There 

was a wide spatial variation (high standard deviation) in annual ETa of different land cover classes 

(Table 3). The standard deviation of mean annual ETa ranged from 144 mm (grassland) to 699 mm 

(water). A wide range of mean annual ETa may be attributed to many variables including thematic 

accuracy of the NLCD 2006 map, changes in land use from 2006 to 2010, topography, cropping 

system, cropping intensity, irrigation, local climatic conditions, and Landsat scene availability for ETa 

mapping. In general, thematic accuracy of the Level II NLCD map is less than 80% [45]. This means 

many land cover classes may be misclassified, resulting in a wide range of annual ETa. However, the 

classification errors aggregated over a larger area do not result in significant error [46]. Cultivation of 

different crops will also result in a wide variation of actual ET as different crops have different water 

requirements based on plant physiology and crop duration. Similarly, growing more than one crop per 

year will result in higher ETa than growing only one crop per year. There will also be a difference in 

ETa of the same crop under irrigated and non-irrigated conditions because irrigation leads to increased 

ETa. A study on the effect of irrigation on the water and energy balance of the CRB has shown 

decreased stream flow and surface temperature [47]. The climatic gradient within the basin due to its 

large size and relief will also cause differences in the water use pattern. 

As an example, the histogram of annual ETa for some of the land cover classes for path 37/row 37 

(Figure 3) is presented in Figure 5. A majority (76%) of the barren land pixels had an annual ETa 

within 100–200 mm, and very few pixels (4%) had an annual ETa greater than 500 mm. Similarly, 

about half of the grassland (47%) had an annual ETa between 200 and 300 mm and less than 5% 

exceeded 500 mm. In contrast, annual ETa was greater than 800 mm in the majority of cropland. Some 

of the cropland was fallow based on visual interpretation during 2010 resulting in an annual ETa 

similar to grassland and barren land. In addition, the effect of misclassification in NLCD 2006 and/or 
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change of land cover may be attributed to low annual ETa of cropland and high annual ETa of barren 

land and grassland. 

Westenburg et al. (2006) [48] collected ETa data from three sites in Havasu National Wildlife 

Refuge during 2002–2004 using Bowen ratio stations. These sites included a large area of medium-to-high 

density, homogeneous saltcedar (Tamarix spp.); an area of medium density mixed vegetation; and a 

homogeneous area of low-to-medium density arrowweed. They reported annual ETa for 2003 for 

saltcedar, mixed vegetation, and arrowweed as 1,076 mm, 728 mm, and 716 mm, respectively. Our results 

for these sites showed annual ETa for 2010 as 1,291 mm, 1,089 mm, and 1,333 mm, respectively.  

It appears that ETa increased during these 7 years particularly for mixed vegetation and arrowweed. 

Doody et al. (2011) [49] listed ETa of some of the cover types based on reviewed literatures. They 

reported annual ETa of arrowweed as 1,370–1,590 mm, very close to our result for arrowweed. They 

found a wide range of annual ETa for saltcedar, ranging from 220 to 1,460 mm with a mean value of 

765 ± 413 mm. They reported annual ETa for bare soil as 307 mm and for open water as 1,156 mm. 

Thus, overall our results for these locations and cover types are similar and comparable. 

Figure 4. Spatial distribution of evapotranspiration in the Colorado River Basin for 2010 

using Landsat images. 
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Table 3. Annual evapotranspiration (mm) during 2010 for different National Land Cover 

Database [24] land use/land cover within the study area. 

Land Use/Land cover Mean Annual ETa (mm) Standard Deviation (mm) 

Water 994 699 

Ice/snow 405 168 

Open space development 323 227 

Low intensity development 374 245 

Med. intensity development 397 213 

High intensity development 386 222 

Barren land 283 198 

Deciduous forest 434 189 

Evergreen forest 447 223 

Mixed forest 515 186 

Shrubland 262 182 

Grassland 224 144 

Pasture/Hay 365 271 

Cropland 538 393 

Woody Wetland 421 301 

Herb. Wetland 337 283 

Figure 5. Histogram of the annual evapotranspiration for selected land cover classes  

(a) Barren land; (b) Grassland; and (c) Cropland within the Landsat path 37/row37. 

 

Nagler et al. (2005) [50] calculated spatial ET for the Lower Colorado River stretch at Havasu 

National Wildlife Refuge based on MODIS-enhanced vegetation index and air temperature. They 
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found that the annual ETa of the area during 2000–2003 ranged from 832 mm (2000) to 881 mm 

(2002) with a mean ETa of 851 mm. Our zonal analysis of the same region showed mean annual ETa of 

865 mm. Though we did not use exactly the same areal extent because our delineation slightly differed 

from theirs, the comparable mean ETa shows that our results are reliable. Even though there is a wide 

range in the standard deviation of different land cover classes, the mean annual ETa values are 

comparable to some of the measured and reported ETa in the CRB. 

3.2. Validation with Eddy Covariance Measurement 

Figure 6 shows the comparison of annual ETa measured by eddy covariance against Landsat annual 

ETa for all seven validation sites within the study area. Overall, the SSEBop-estimated ETa was in 

good agreement (R2 = 0.78) with the measured ETa for a wide range of elevations (991–2,270 m) and 

tower heights (4–23 m) (Table 2). The mean difference between measured and estimated annual ETa 

was about 10%, which is comparable with results from other energy balance based models [5,17]. The 

root mean square error (RMSE) was 106 mm, mainly due to the high discrepancy at the Flagstaff 

unmanaged forest and Flagstaff wildfire sites (Figure 6). If these two sites are removed, then R2 

improves to 0.95 (Y = 0.997 X − 53.767) and RMSE decreases to 68 mm. This is remarkable 

considering we had only 6–9 cloud-free Landsat scenes for 2010 (Table 2) and we had not carried out 

any calibration of our model using eddy covariance measurements. 

Figure 6. Validation of Landsat-based annual evapotranspiration with eddy covariance 

measured evapotranspiration at Flagstaff managed forest (FMF), Flagstaff unmanaged 

forest (FUF), Flagstaff wildfire (FWF), Santa Rita Creosote (SRC), Santa Rita Mesquite 

(SRM), Kendall Grassland (WKG), and Charleston Mesquite (CMS) sites. Removal of 

FUF and FWF sites resulted in y = 0.997x − 53.767 (R2 = 0.95) and RMSE of 68 mm. 
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Figure 7. Annual evapotranspiration values for 5 × 5 Landsat pixels centered over the eddy 

covariance tower at the Flagstaff managed forest (FMF), Flagstaff unmanaged forest 

(FUF), Flagstaff wildfire (FWF), Santa Rita Creosote (SRC), Santa Rita Mesquite (SRM), 

Kendall Grassland (WKG), and Charleston Mesquite (CMS) sites. 

 

It should be noted that we have compared the measured ETa only with the ET of the pixel that has a 

flux tower. However, the point distribution in Figure 6 shows that the SSEBop model captured the ET 

variability well even without footprint analysis. In general, the footprint of a point of observation is 

affected by thermal stability, surface roughness, observation levels, and wind speed and direction [51]. 

Since the wind direction is variable throughout the year, an exact footprint analysis is simply impossible 

to carryout [52]. The advantage of having a remote sensing based ET map is that we get spatial and 
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temporal distribution of ET, thus not requiring any footprint analysis. For example, Figure 7 shows the 

ET values for 5 × 5 Landsat pixels centered over the eddy covariance tower. We can see there is 

variability in ET values even within 150 m × 150 m (5 × 5 pixels), an area smaller than a generally 

used 100-to-1 fetch-to height ratio for sites (considering the tower height given in Table 2). Based on 

measured ET values, we can get a good sense of footprint direction and our results are in reasonable 

agreement. For example, wind direction at the Flagstaff unmanaged forest site was mostly from the 

southwest, where pixels had lower ETa values (Figure 7). 

Though we have not carried out uncertainty analysis in the present study, like any other models, our 

model result may have some uncertainty. There are also systematic and random errors associated with 

the eddy covariance measurements [53–55]. The total annual precipitation and ETa measured at the 

Charleston Mesquite site during 2010 were 266 mm and 673 mm, respectively. Our SSEBop  

model-estimated ETa at the site was 730 mm, which is only about 8% higher than the measured value. At 

this site, there is a lack of energy balance closure by about 11% (on a daily basis) in the eddy covariance 

measurements, and this is generally the case at most eddy covariance sites. Wilson et al. (2002) [54] 

evaluated eddy covariance measurements across 22 FLUXNET sites (50 site-years) and reported that 

the mean imbalance between turbulent energy fluxes (sensible and latent heat fluxes) and available 

energy (net radiation minus soil heat flux) is on the order of 20%. For forced energy balance closure 

we scaled the latent and sensible heat fluxes conserving the measured Bowen ratio. The scaled up ETa 

for energy balance closure at the site was 761 mm. Thus, there was only 4% difference between the 

scaled up measured ETa and the modeled ETa, giving us good confidence in the annual value at the 

pixel level. Our result is within the range of general ETa estimation accuracy reported for seasonal ETa 

using remote sensing models.  

Jung et al. (2009) [35] used eddy covariance data from FLUXNET and developed a global, spatially 

and temporally explicit ETa map (gridded flux data) using model tree ensemble, a machine learning 

technique. We used this gridded flux data (written communication 2013) to compare our result. The 

mean annual ETa of the CRB for 2010 using gridded flux data was 292 mm. Our result showed that the 

mean annual ETa of the CRB is 312 mm. These values are comparable (within 7%) in spite of very 

coarse (50 km) spatial resolution of gridded flux data against this high resolution (30 m) Landsat data.  

3.3. Comparison with Annual ETa Based on Water Balance Analysis  

The Landsat-based mean annual ETa of HUC8 ranged from 144 mm (Upper Green-Slate in Upper 

Colorado basin) to 613 mm (Lower Salt in Lower Colorado basin), while mean annual ETa based on 

water balance ranged from 145 mm (Yuma desert in Lower Colorado basin) to 629 mm (Tonto  

sub-basin in Lower Colorado basin). Comparison of Landsat-based mean annual ETa with that of  

water balance-based mean annual ETa at the HUC8 level has shown that some HUC8 had very good 

correspondence while other HUC8 were scattered (Figure 8). This finding is expected as ETa based on 

water balance assumes mass balance closure at the annual scale. In reality, basin runoff exhibits strong 

memory from year to year and water balance may not close even over a year due to time lag. Overall, 

there was poor correlation (R2 = 0.16) between annual ETa based on Landsat and annual ETa based on 

water balance. Most of the mismatch between Landsat and water balance-based ETa is in sub-basins 

having large irrigated cropland or water bodies or where vegetation has access to groundwater thus 
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invalidating the premise of water balance closure. We used three sub-criteria to remove some HUC8 

sub-basins where water balance may not close because (1) mean runoff is more than mean precipitation, 

i.e., sub-basins where base flow is dominant; (2) mean ETa is more than mean precipitation, i.e.,  

sub-basins where mostly irrigated or open water bodies are dominant; and (3) the runoff ratio (Q/P) is 

greater than 0.55, indicating large seepage loss/base flow/percolation loss. Out of 144 sub-basins 

within the CRB, 28 sub-basins were removed from the analysis based on these three criteria. This 

resulted in significant improvement of R2 from 0.16 to 0.85, and RMSE decreased from 120 mm to  

99 mm. The regression line shows that annual ETa based on water balance was about 12% higher than 

Landsat-based ETa. This is reasonable considering that water balance-based ETa is computed 

neglecting the storage term in the water balance equation thus overestimating annual ETa. In general, 

the accuracy of ETa products at a higher HUC level (HUC8) is lower than the accuracy at a lower 

HUC level (HUC2) [56]. Our results show that even at the HUC8 level, Landsat-based ETa explained 

about 85% variability in ETa based on water balance. Compared to mean annual ETa, there was wide 

range in areal extent of sub-basins within the CRB, ranging from 381 km2 (Cloverdale in Lower 

Colorado basin) to 11,845 km2 (Chaco in Upper Colorado basin). A sub-basin having smaller mean 

ETa but larger area can have larger volume of water lost due to ETa. Thus, spatial distribution of ETa 

based on remotely sensed data at the sub-basin level can help water managers identify the water surplus 

and water deficit sub-basins and quantify the water availability. 

Figure 8. Comparison of mean annual evapotranspiration based on water balance 

(Precipitation–runoff) and Landsat-based mean annual evapotranspiration for (a) all HUC8 

sub-basins; and (b) HUC8 sub-basins meeting three criteria: precipitation > runoff, 

Evapotranspiration < precipitation, and runoff coefficient (Q/P) < 0.55. 

 

3.4. Comparison with MODIS-Based Annual ETa 

We also compared our Landsat-estimated ET with that obtained from MODIS-based annual ET. 

Senay et al. (2013) [16] used the SSEBop model with the MODIS images for 2005, and their monthly 
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ET validation with 45 Ameriflux data sites for the conterminous United States resulted in an R2 of 0.64 

with RMSE of 27 mm. With more years (2000–2007), MODIS-based annual ETa using the SSEBop 

model has resulted in a high skill score across all the climate zones in the western United States [56]. 

Spatial distribution of annual ETa using 2010 MODIS images has shown consumptive water use 

distribution within the CRB (Figure 9). In general, we can see that the ETa distribution pattern  

using MODIS and Landsat images is similar. Our comparison of Landsat-based annual ETa and 

MODIS-based annual ETa for all 144 HUCs (level 8) showed that there was good agreement  

(Figure 10). The coefficient of determination (R2 = 0.79) indicated that we can obtain a comparable 

ETa estimate even with the coarse resolution (1 km) of MODIS at the sub-basin (HUC8) level. 

However, the advantages of Landsat-based annual ETa become obvious when ETa is required at fine 

resolution (field scale). Figure 11 shows the annual ETa distribution in a small part of Colorado using 

Landsat and MODIS images. The ETa variation within individual center-pivot irrigation fields is 

clearly visible in the Landsat-based ETa estimate, but there is no distinction between fields in the 

MODIS-based ETa estimates. This is of high importance particularly for implementing water 

management decisions at the local level. For example, water conservation measures can be adopted in 

the fields that have higher ETa than surrounding fields. Besides improving efficiency, this can save 

energy and water that can be used elsewhere. As tackling water challenges is one of the highest 

priority initiatives under the DOI WaterSMART Program, ETa estimates at the field scale will help in 

water conservation, availability, and water conflict resolution.  

Figure 9. Spatial distribution of evapotranspiration in the Colorado River Basin for 2010 

using MODIS images. 
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Figure 10. Comparison of mean annual evapotranspiration of sub-basins (HUC8) using 

Landsat and MODIS images. 

 

Figure 11. Example showing the spatial distribution of annual evapotranspiration map of 

the same area within the Colorado River Basin with (a) zoomed in view of the Landsat-based 

evapotranspiration map for the area in the black square; and (b) zoomed in view of the 

MODIS-based evapotranspiration map in the black square area. Legend and scale shown at 

the bottom are for images Figure 11a,b. 
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As modelers, we recognize that model development is a continuous process. As with any other 

models, our model has continued evolving since its first publication [14]. With the availability of 

better data sources, our model output will also improve as a result of using better input data. For 

example, the use of Daymet (Thornton et al., 1997) [57], daily climatological data is expected to give 

better results than monthly PRISM air temperature data. Similarly, North American Land Data 

Assimilation System (NLDAS) (Mitchell et al., 2004) [58], which is a quality-controlled and spatially 

and temporally consistent land surface model dataset (1/8th degree spatial resolution), may improve 

ETo and thus ETa estimates. 

4. Conclusions 

Accurate information on water availability and water use is necessary for planning sustainable use 

of water, particularly in an arid region like the southwestern United States. Though detailed information 

on water availability in the Colorado River Basin is available, there is a need for reliable estimation of 

spatially distributed water use. We have developed a basin-wide ETa map of the Colorado River Basin 

using images from Landsat, the longest existing polar orbiting satellite. The first ever ETa map of the 

Colorado River Basin at Landsat scale has shown the distribution pattern of ETa, which is based on the 

scientifically robust and operationally viable SSEBop model. We have demonstrated that, in spite of 

the complexities of the CRB, seamless ETa based on remote sensing can be estimated at the Landsat 

scale. Though cropland covers less than 1% of the CRB, it has the highest ETa after open water bodies. 

There was a wide variation in ETa within most land use/land cover classes in the basin due to  

hydro-climatic variation within the basin and uncertainty in the land cover classification. Validation of 

Landsat-based estimated ETa with ETa measured using eddy covariance has shown that there was good 

correspondence (R2 = 0.78) and the model captured the variability of ETa over a wide range of 

elevation and tower height. The R2 improved to 0.95 with a slope of 0.997 when two sites (FUF and 

FWF) were removed from validation. The SSEBop model-estimated ETa was within 4% of the measured 

ETa at two sites (SRC and CMS). Comparison with ETa based on water balance at the HUC8 level 

showed good agreement (R2 = 0.85) for sub-basins most likely having water balance closure. ETa maps 

using Landsat and MODIS images showed a similar water use pattern at the regional scale. However, 

the advantages of the Landsat images were clearly observed when the ETa map was zoomed in for 

field-level ETa distribution. In contrast with MODIS-based ETa maps, individual fields are clearly 

distinguishable in Landsat-based ETa maps. Thus, Landsat-based ETa mapping is better suited for 

planning and management of water resources at the field scale. 

ETa based on remote sensing may have biases, but these biases can be easily identified and removed 

based on validation using reliable field data. Once the bias is removed, consistent ETa maps can be 

generated for regular ETa mapping and water resources planning and management. A regular 

production of Landsat-based ETa maps using a uniform method and data source at a seasonal and 

annual scale has the potential for resolving inconsistencies arising from using different methods and 

variable data sources. With further validation using multiple years and sites, our methodology can be 

applied for larger areas such as the conterminous United States.  
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