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Abstract: This study presents a method for adjusting long-term climate data records 

(CDRs) for the integrated use with near-real-time data using the example of surface 

incoming solar irradiance (SIS). Recently, a 23-year long (1983–2005) continuous SIS 

CDR has been generated based on the visible channel (0.45–1 μm) of the MVIRI 

radiometers onboard the geostationary Meteosat First Generation Platform. The CDR is 

available from the EUMETSAT Satellite Application Facility on Climate Monitoring  

(CM SAF). Here, it is assessed whether a homogeneous extension of the SIS CDR to the 

present is possible with operationally generated surface radiation data provided by CM SAF 

using the SEVIRI and GERB instruments onboard the Meteosat Second Generation 

satellites. Three extended CM SAF SIS CDR versions consisting of MVIRI-derived SIS 

(1983–2005) and three different SIS products derived from the SEVIRI and GERB 

instruments onboard the MSG satellites (2006 onwards) were tested. A procedure to detect 

shift inhomogeneities in the extended data record (1983–present) was applied that 

combines the Standard Normal Homogeneity Test (SNHT) and a penalized maximal T-test 

with visual inspection. Shift detection was done by comparing the SIS time series with the 

OPEN ACCESS



Remote Sens. 2013, 5 4694 
 

ground stations mean, in accordance with statistical significance. Several stations of the 

Baseline Surface Radiation Network (BSRN) and about 50 stations of the Global Energy 

Balance Archive (GEBA) over Europe were used as the ground-based reference. The 

analysis indicates several breaks in the data record between 1987 and 1994 probably due to 

artefacts in the raw data and instrument failures. After 2005 the MVIRI radiometer was 

replaced by the narrow-band SEVIRI and the broadband GERB radiometers and a new 

retrieval algorithm was applied. This induces significant challenges for the homogenisation 

across the satellite generations. Homogenisation is performed by applying a mean-shift 

correction depending on the shift size of any segment between two break points to the last 

segment (2006–present). Corrections are applied to the most significant breaks that can be 

related to satellite changes. This study focuses on the European region, but the methods 

can be generalized to other regions. To account for seasonal dependence of the mean-shifts 

the correction was performed independently for each calendar month. In comparison to the 

ground-based reference the homogenised data record shows an improvement over the 

original data record in terms of anomaly correlation and bias. In general the method can 

also be applied for the adjustment of satellite datasets addressing other variables to bridge 

the gap between CDRs and near-real-time data. 

Keywords: solar surface irradiance; homogeneity; adjustment 

 

1. Introduction 

In light of the growing need for long-term climate data sets to understand climate variability and 

change, substantial international efforts have been made in recent years. In 2008, a network of agencies 

and operators of environmental satellites, called “Sustained, Coordinated Processing of Environmental 

Satellite Data for Climate Monitoring” (SCOPE-CM) [1], was established for the coordination of the 

sustainable generation of long-term Climate Data Records (CDR). These records built upon Essential 

Climate Variables (ECV) as defined by the Global Climate Observing System (GCOS). SCOPE-CM 

interface with the WMO Integrated Global Observing System (WIGOS) and the Global Space-based 

Inter Calibration System (GSICS), building an end-to-end system for climate monitoring [2]. 

CDRs are time series of climate variables accounting for systematic errors and noise in the 

measurements (NRC 2004). They comprise homogeneous long-term data records of radiances or 

brightness temperatures (Fundamental Climate Data Records, FCDR) and their derived geophysical 

variables (Thematic Climate Data Records, TCDR). The mandatory requirements for CDRs are 

accurate calibration and high stability over time [3]. This calls for careful treatment of the data and 

sophisticated methodologies which is, in practice, time-consuming and demands high computational 

capacities. CDRs are generally results of long-lasting reprocessing activities and hence the latency of 

product releases or updates is several years. 

A better timeliness of climate data is enabled by the provision of so called Environmental Data 

Records (EDR), which are constructed as instantaneous estimates of geophysical variables [4]. EDRs 

are generally provided in operational mode in near-real-time and do not meet the strict requirements 
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made for CDRs. They generally lack stability, accuracy and sufficient length for climate studies. 

However, EDRs are built from the newest generation of satellite instruments and are per se capable of 

measuring the respective climate variable with the highest possible precision. 

Climate research and climate monitoring can therefore not exclusively rely on satellite data not 

considering recent years but rather need data on an ongoing basis and hence require the generation of 

CDRs in near real-time. Trenberth et al. [5] point out the discrepancy between the release of IPCC 

assessments (every six or seven years) and the need for short term assessments of the current climate. 

The authors state that “near-real time information and attribution is increasingly in demand, especially 

when major events occur”. 

Recently, some effort has been made to bridge the gap between long-term data sets and near-real 

time data. For instance, AghaKouchak and Nakhjiri [6] use Bayesian correction for the creation of a 

long-term CDR of drought using a method proposed by Tian et al. [7] for the real-time bias reduction 

of precipitation data.  

Generally, the combination of different datasets addressing one single variable is subjected to several 

problems which are related to different instruments, algorithms and data providers. Liu et al. [8] describe 

the combination of various types of satellite instruments ranging from active to passive sensors for the 

retrieval of soil moisture estimates, with emphasis on preserving long term trends. Comiso and Nishio [9] 

describe the generation of a sea ice cover dataset using three different instruments. 

The current paper presents a method for the adjustment of CDRs for the integrated use with near-real 

time data, using datasets for global radiation, provided by the EUMETSAT Satellite Application 

Facility on Climate Monitoring (CM SAF). Global radiation has been chosen due to its role as a crucial 

player in the global climate system and the large efforts that have been made particularly on the 

homogenization of surface radiation datasets in the past. 

Moreover, surface radiation estimates from satellite-based sensors have become indispensible in a 

wide range of applications, such as the planning of photovoltaic systems (e.g., [10]), as an important 

input for climate models in hydrological and climatological applications (e.g., [11]), to derive climate 

variables such as evaporation (e.g., [12]) and to monitor the climate system (e.g., within the WMO 

Regional Climate Centre on Climate Monitoring for Europe and the Middle East [13]). 

Recently, the Satellite Application Facility for Climate Monitoring (CM SAF) created a 23-year 

long CDR of surface solar radiation parameters including solar surface irradiance (SIS) and direct 

irradiance (SID) for the period 1983–2005 [14,15] based on measurements of the Meteosat Visible and 

Infrared Imager (MVIRI) radiometer onboard the geostationary Meteosat First Generation (MFG) 

satellites. This dataset has been created using a self calibration algorithm to automatically compensate 

for the degradation of satellite sensors and discontinuities in the SIS CDR due to changes between 

different satellite instruments. The satellite-derived SIS shows high anomaly correlations (r = 0.89) and a 

small positive bias of +4.4 W·m−2 compared with ground-based measurements by 12 stations of the 

Baseline Surface Radiation Network (BSRN) [14]. In addition, the SIS CDR was found to be 

homogeneous for the time period covered by observations from the BSRN stations (restricted to the 

period after 1990). An intercomparison with similar datasets including the International Satellite Cloud 

Climatology project (ISCCP; [16]), the Global Energy and Water Cycle Experiment (GEWEX; [17]), 

and the European Center for Medium-Range Weather Forecasts reanalysis dataset ERA-Interim [18] 
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indicated lower bias and higher anomaly correlation of the CM SAF dataset with most of the  

BSRN stations. 

Brinckmann et al. [19] performed an extensive homogeneity analysis of the SIS CDR for the period 

1983–2005 using five BSRN stations and ECMWF’s ERA-Interim reanalysis as reference. They found 

particular inhomogeneities in comparison to ERA-Interim in a short period between 1988–1990, when 

the problematic Meteosat-3 satellite was in use for two short time intervals. Over Europe, further 

inhomogeneities were mainly found before 1994 and could be attributed to satellite changes.  

Sanchez-Lorenzo et al. [20] performed a comprehensive analysis of the CM SAF SIS CDR over 

Europe for the period 1983–2005 using 47 ground-based observations by the Global Energy Balance 

Archive (GEBA) as the reference and also found the SIS CDR to be inhomogeneous only before 1994.  

The shift inhomogeneities before 1994 may be related to stripes in the raw satellite data, which are 

interpreted as cloudless areas by the retrieval algorithm and hence lead to an increase of SIS. The 

temporal stability of the SIS CDR after 1994, however, indicates that homogeneous data can be 

generated from satellite observations across instrumental changes, and it is a matter of the applied 

retrieval method and data filtering to generate a homogeneous time series.  

The SEVIRI instrument onboard MSG does not provide broadband channel observations for the full 

disk. Hence, the full disk dataset derived from the MVIRI instrument on MFG cannot be directly 

homogeneously extended with SEVIRI observations. In order to examine the effect of using 

narrowband channels instead of broadband Posselt et al. [14] investigated the difference in the derived 

SIS using the overlapping period of Meteosat 7 (MFG) and Meteosat 8 (MSG; 2004–2005).  

Posselt et al. [14] showed that the use of one of the narrowband channels of Meteosat-8 induces 

significant differences in SIS and hence inhomogeneities in specific areas. Particularly over densely 

vegetated areas (South America, tropical Africa and Europe during the summer months) significant 

differences were found.  

The current paper examines, in the first part, the temporal homogeneity of three extended versions 

of the CM SAF SIS CDR based on observations from MVIRI on the MFG platforms (1983–2005) and 

three slightly different SIS datasets derived from MSG measurements by the Geostationary Earth Radiation 

Budget (GERB) and/or the SEVIRI instruments (2006 onwards). Thereby, observations by the BSRN and 

the GEBA network serve as ground-based reference. In the second part, a procedure to detect the 

breakpoints was applied, which combines the Standard Normal Homogeneity Test (SNHT; [21]) and the 

penalized maximal T-test (in the following referred to as RH test; [22,23]) with visual inspection. 

Thereby, the extended SIS CDR was compared with individual stations and the station average of the 

ground-based reference network. Europe constitutes the world’s highest density of surface-based SIS 

observations [24], and was therefore selected to demonstrate the proposed methodology. 

Homogenisation was done by applying a mean-shift correction between any segment (e.g., the time 

series between two breakpoints) and the last segment (2006 onwards), which were determined using 

the difference series between CM SAF and the ground-based reference. The statistical relationship 

between the station-wise determined mean-shifts and the difference between MFG- and MSG-based 

SIS in the overlap period (April–December 2005) was used to correct the satellite estimates at 

locations where a ground-based reference was unavailable. The performance of the applied method is 

demonstrated comparing the adjusted satellite estimates to the ground-based reference and to the 

MSG-based SIS in the overlap period.  
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2. Data 

2.1. The CM SAF datasets 

The satellite-derived datasets used in the present study are based on data obtained from 

EUMETSAT’s geostationary Meteosat satellites of the First and Second Generation (MFG and MSG). 

The CM SAF provides a SIS CDR (1983–2005) based on observations from the Meteosat Visible and 

InfraRed Imager (MVIRI) instruments onboard the MFG satellites. The MVIRI radiometer senses the 

earth’s disc with a frequency of 30 min in three channels covering visible and near infrared radiances. 

The broadband visible channel (0.45–1 μm) used for the retrieval of SIS has a spatial resolution of  

2.5 km at nadir. 

Here, the MVIRI-derived SIS CDR (1983–2005) is temporally extended to the present with three 

different CM SAF MSG products, which are based on the Geostationary Earth Radiation Budget 

(GERB) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the MSG 

satellites. One dataset is the operational CM SAF product, provided in near-real-time on a monthly 

base (MSGG). The other two products are currently in a development stage (MSGGL and MSGS). 

Table 1 provides an overview over the different algorithms and satellite data used for the generation of 

the different SIS data sets. 

Compared to the MVIRI sensor, the SEVIRI instrument has a higher frequency of observations 

(every 15 min) and more spectral channels (12). The narrow-band visible channels are centered at 

0.6 μm and 0.8 μm, and have a slightly lower spatial resolution than the MVIRI instrument of 3 km at 

nadir. In addition, SEVIRI contains a broadband High-Resolution-Visible channel (HRV) that 

corresponds to the MVIRI broadband visible channel, yet with a higher resolution of 1 km at nadir. 

However, the HRV channel does not cover the full disc, and cannot be used to extend the SIS CDR. 

The original Heliosat algorithm [25,26] uses the digital counts observed by the MVIRI sensor to 

determine the effective cloud albedo, which is combined with estimated clear-sky radiances using 

clear-sky model MAGIC (Mesoscale Atmospheric Global Irradiance Code; [27]) to calculate the 

satellite-derived SIS. For the generation of the CM SAF SIS CDR, the Heliosat algorithm was 

modified to include a self-calibration parameter to minimize the impacts of satellite changes and 

artificial trends due to degradation of satellite instruments. The self-calibration uses a cloudy target 

region in the southern part of the South Atlantic, the 95th percentile of the radiances observed in this 

region is used as basis for the self-calibration (see [28] for details). In addition, a seven-day running 

mean is applied to obtain the clear-sky background field instead of monthly mean values [29]. The 

MVIRI-derived SIS dataset is abbreviated as MFG in the following. 

Posselt et al. [30] recently combined the two visible channels of SEVIRI following a linear 

combination proposed by Cros et al. [31] and applied the same Heliosat-approach as for the generation 

of the CM SAF SIS CDR to provide a SIS dataset covering 2004 to 2010.This SEVIRI-based SIS 

dataset is referred to as MSGS in the following. 

The operationally generated MSG-based SIS dataset from CM SAF (MSGG) uses a look-up-table 

approach to relate the observed radiance at TOA with the surface radiation [27] using SEVIRI and 

GERB data. This data is continuously generated and provided on a regular basis. MSGG uses a new 

GADS [32]/OPAC [33] aerosol climatology, which is optically denser than the aerosol climatology 

used for MFG [34] and is a potential source for inhomogeneities across the satellite generations. 
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Table 1. Overview of the different methods and satellite images used to generate the data sets. 

SIS 

Dataset 
Cloudy Sky Method 

Clear Sky 

Method 
Satellite Images Aerosols 

MFG 

1983–2005 

Heliosat method [25,26] modified 

with self-calibration [28] and fuzzy 

logic approach for clear sky 

reflection [14,29] 

MAGIC 

[27] 

MFG 

MVIRI HRV 

visible channel 

MPI 

Hamburg/Kinne 

[34] 

MSGS 

2005–2011 
Identical to SIS MFG  

MAGIC 

[27] 

VHRV: Virtual HRV broadband 

channel derived from SEVIRI 

VIS006 and VIS008 channels [31] 

MPI 

Hamburg/Kinne 

[34] 

MSGG 

operational 

2006–

today 

MAGIC [27] 
MAGIC 

[27] 

MSG GERB visible broadband 

measurements, spatial down-

scaling with SEVIRI data 

GADS [30]/OPAC 

[33] aerosols 

MSGGL 

2006–2011 

Identical to SIS MFG but with 

classical minima approach for clear 

sky reflection instead of fuzzy 

logic. 

MAGIC 

[27] 

MSG  

GERB-like data: VIS broadband 

data calculated from SEVIRI and 

adjusted to GERB. 

MPI 

Hamburg/Kinne 

[34] 

The third MSG-based SIS CDR used in this work (MSGGL) also applies a Heliosat approach, 

however, here a classical minima approach for clear sky reflection is used instead of fuzzy logic. 

GERB-like data are used to derive the SIS, which are calculated from SEVIRI and adjusted to GERB.  

2.2. Validation Datasets 

The satellite-derived SIS is evaluated using ground-based stations from the Baseline Surface 

Radiation Network (BSRN) and the Global Energy Balance Archive (GEBA), which are introduced in 

the following. 

2.2.1. BSRN Data 

BSRN is a project of the Global Energy and Water Experiment (GEWEX) and the World Climate 

Research Program (WCRP) [35]. BSRN provides currently data from about 50 globally-distributed  

quality-controlled surface radiation measurements site of high consistency applying a defined set of 

sensors and measurement protocols. The accuracy of the SIS observations is estimated to be about  

5 W·m−2. Here, we used SIS data of four stations with time series covering the period 1995–2010 

(Payerne, Toravere, Carpentras and Sede Boquer; Figure 1). These data served as a reference to 

evaluate the quality of the satellite-derived SIS for the period around the instrumental change from 

MVIRI to GERB and SEVIRI.  

2.2.2. GEBA Data 

In addition to the BSRN stations SIS measurements obtained from the GEBA were used, as they 

provide a larger database often dating back to the 1960s. The GEBA database is maintained at the  

ETH Zurich, which collects worldwide monthly means of several surface energy flux measurements [36] 
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with the highest station density over Europe. Sanchez-Lorenzo et al. [20] compiled a set of 

homogeneous, long-term SIS series over Europe. The final dataset consists of 56 station series, with 

the highest station density over Central Europe. The datasets have been quality checked using a 

method by Aguilar et al. [37] to remove outliers and unrealistic values from the SIS series. In addition 

the SIS series have been tested for temporal homogeneity using the Standard Normal Homogeneity 

Test (SNHT; [21]), with monthly adjustments being applied to the most significant breaks only. As the 

GEBA stations cover a large fraction of the observing period of the diverse Meteosat satellites, they 

are an ideal reference to check the satellite-derived SIS for temporal consistency. 

Following Sanchez-Lorenzo et al. [20], the validation of the CM SAF dataset was based on a subset 

of 47 homogenised and filled GEBA stations over Europe over the period 1983–2007 (Figure 1). In 

addition, the validation was performed for regional mean series and multisite means. The use of the 

mean series improves the detection of weak signals as it enhances the signal-to-noise ratio and reduces 

the impact of possible inhomogeneities in the reference series. The regionalisation of the 47 GEBA 

stations was adopted from Sanchez-Lorenzo et al. [20] and bases on Principle Components Analysis 

that clusters the stations into regions with similar temporal variability. 

Figure 1. Locations of 47 Global Energy Balance Archives (GEBA) and four Baseline 

Surface Radiation Network (BSRN) stations over Europe. The GEBA stations are colored 

according to the region they have been assigned to (see explanation in text). 

 

3. Methods 

A procedure to detect shift inhomogeneities in the extended CM SAF data record (1983–present) 

was applied that combines the Standard Normal Homogeneity Test (SNHT) and a penalized maximal 
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T-test with visual inspection. The calculation of the adjustments is based on the mean-shifts of the 

difference series (CM SAF minus BSRN/GEBA) at a breakpoint to the reference segment (the segment 

after 2006). Correction at every grid point was performed by relating the station-wise determined 

mean-shifts to the difference field (e.g., MSG-minus MFG-based SIS) in the overlap period of both 

datasets (April to December 2005) and the geographical coordinates. Section 3.1 introduces the 

applied homogeneity tests for the detection of breakpoints and Section 3.2 the mean-shift adjustment 

applied to the CM SAF SIS CDR.  

3.1. Homogeneity Tests 

Several studies recently assessed the quality of the CM SAF SIS CDR against ground-based 

reference datasets [19,20,29]. In these studies the CM SAF SIS CDR was found to be homogeneous in 

Europe over the period 1994 to 2005, while some shifts and artificial trends were detected before 1994. 

Here, the extended datasets (see Section 2.1) consisting of both the MFG- and the MSG-based SIS 

was assessed for possible shift inhomogeneities over the European region. For this purpose, the 

Standard Normal Homogeneity Test (SNHT; [21]) and the penalized maximal T-test [22] were applied 

to the difference series between the CM SAF and the GEBA SIS anomalies. The homogeneity analysis 

was performed using monthly SIS anomalies to remove seasonal variability. The tests were applied to 

the difference series of individual stations and of the station average. The use of the mean series 

improves the detection of weak signals as it enhances the signal-to-noise ratio, and it reduces the 

impact of possible inhomogeneities in the reference series. In addition, we assumed that 

inhomogeneities due to changes in satellite instrumentation and in the applied retrieval algorithms 

occur over the whole Meteosat disc. Table 2 provides an overview over major events that may have 

affected the stability of the CM SAF SIS CDR. Switches between satellites for only a few days are not 

listed (see details in [38]). 

Table 2. History of the Meteosat satellites used to derive CM SAF SIS and other major events. 

Event Date 

Meteosat 2 16.8.1981–11.8.1988 

Gain shift May 1987 (Rebekka Posselt, pers.com.) 

Meteosat 3 11.8.1988–19.6.1989 

Meteosat 4 19.6.1989–24.1.1990 

Meteosat 3 24.1.1990–19.4.1990 

Meteosat 4 19.4.1990–4.2.1994 

Meteosat 5 4.2.1994–13.2.1997 

Meteosat 6 13.2.1997–3.6.1998 

Meteosat 7 3.6.1998–31.12.2005 

Meteosat 8 31.12.2005–11.4.2007 

Meteosat 9 11.4.2007–21.1.2013 

3.1.1. Standard Normal Homogeneity Test 

The SNHT test detects shifts and artificial short-term and long-term trends in a time series. The test 

value T(k) is calculated for each time step k of the investigated time series. 
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T ( k )  k z 1
2  ( n  k ) z 2

2 , k  1, ..., n .  (1)

z 1
2 and z 2

2  are determined using the mean Y  and the standard deviation s of the tested time series: 

z 1
2 

1

k

(Yi Y )

si1

k

  and z 2
2 

1

n  k

(Yi Y )

sik1

k

 . (2)

Large dissimilarities of z 1
2 and z 2

2 indicate a mean-shift at k, which leads to high values of T(k). In the 

case T(k) exceeds a certain level Tc, which depends on the chosen significance level and the length of 

the considered time series, a break point is detected at T0 = max(T(k)). Here, the Tc values for the  

95%-significance level are adopted from Brinckmann et al. [19]. 

3.1.2. RH Test 

Besides the SNHT test, also the RH test [22] was applied to the time series for the detection of 

multiple breakpoints, in order to enhance the confidence in the detected breaks. A major shortcoming 

of the SNHT test is its uneven distribution of false alarm and detection power depending on the 

position in the time series, which is alleviated by using an empirical penalty function. In addition, the 

RH test accounts for first order autocorrelation in the tested time series [22], which enables the 

detection of multiple break points in a series. The most probable position of the break point is derived 

by maximizing T(k): 

T ( k ) 
1
?k

k / N  k )

N









1/2

x 1  x 2
 

(3)

with  

?k 
1

N  2
(Xt  X 1)

1tk

 2
 (Xt  X 2 )

(k +1)tN

 2







 (4)

and the possible breakpoint is located at T0 = max(T(k)). This test statistic is equivalent to that of the 

SNHT test. To construct a test with the same level of confidence on the detected break points 

independent on the position in the time series (e.g., with the same false-alarm rate at all points) [23] 

fitted a penalty function P(k) to the following penalty factor: 

R k 
Tmax  k k  
Tmax 0.05 

 (5)

with the critical values Tmax(αk(k)) and Tmax(0.05) that correspond to the false alarm rate determined 

from Monte Carlo simulation and the 5%-significance level, respectively. This yields the following 

penalized maximal t-Test: 

PT(k) = P(k)T(k) and PTmax = max(P(k)T(k)) (6)

3.2. Mean-Shift Adjustment 

After the identification of the significant breakpoints, a mean-shift based adjustment was applied to 

the time series to remove the artificial shifts. The correction was applied to time series between two 

breakpoints (in the following referred to as segments) that were significant on the 95% level for a large 
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fraction of individual difference series and for the mean difference series, and that could be related to 

changes in satellite instrumentation or retrieval algorithm. 

3.2.1. Calculation of the Mean-Shift Adjustments 

A correction was applied to the identified breaks based on the mean-shifts that were calculated from 

the difference series (CM SAF minus GEBA). The mean-shifts correspond to the fitted mean response 

of the difference series (CM SAF minus GEBA) at a breakpoint to the reference segment (the segment 

after 2006). Due to the observed strong seasonal dependency of the difference between MFG- and 

MSG-based SIS [14], the mean-shift adjustment varies for each month. Time series for each calendar 

month (covering the period 1983–2007) were generated, and the shift sizes were determined separately 

for each month. 

3.2.2. Application of the Mean-Shift Adjustments to the European Region 

The overlap period (April to December 2005) of the operationally derived MSGG from Meteosat 8 

and the SIS derived from Meteosat 7 (MVIRI) was used to determine the shifts in the CM SAF dataset 

that result from changes in the satellite instrumentation and the retrieval algorithm. The SIS difference 

between the two datasets (e.g., MSG- minus MFG-based SIS; henceforth referred to as the difference 

field) is characterized by a distinct pattern over Europe (Figure 2), which is mainly governed by the 

seasonal variation of the solar zenith angle and the land-sea distribution. To remove fluctuations in the 

annual cycles of both the station-wise derived mean-shifts and the difference field due to measurement 

uncertainties in both datasets a smoothing spline function with six degrees of freedom was applied. 

We found good correlations between the station-wise determined mean-shifts and the difference 

field at the grid points closest to the ground-based stations in the overlap period. The similarity of the 

station-wise detected mean-shifts and the difference field was used to transfer the mean-shifts derived 

for each station to every grid point within the European region. Thereby, for each calendar month 

separately, the station-wise determined mean-shifts were linearly regressed using the difference field 

(in the overlap period) and the geographical coordinates as predictors. 

Figure 2. Mean monthly differences (W·m−2) between Meteosat 7 (MFG) and Meteosat 8 

(MSGG) derived SIS, for (a) June and (b) December 2005. Green asterisks indicate the 

locations of the GEBA stations. 
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4. Results and Discussion 

This section starts with the validation of the three extended CM SAF SIS CDR versions consisting 

of MVIRI-derived SIS (1983–2005) and three different SIS products derived from the SEVIRI and 

GERB instruments onboard the MSG satellites (2006 onwards) (see Section 2.1). The CM SAF SIS 

dataset that compares best with the ground-based reference measurements was selected for further 

investigations. In a next step, the homogeneity tests described in the previous section were applied to 

47 difference series (CM SAF minus GEBA) to inspect the temporal stability of the extended  

CM SAF SIS CDR from 1983 to 2007. The performance of the applied adjustments was assessed in 

comparison with the 47 GEBA series. Finally, the impact of the proposed correction scheme on every 

grid-point was demonstrated by examining the corrected CM SAF SIS CDR. 

4.1. Validation of the Extended CM SAF SIS CDRs 

The validation was performed using 47 GEBA stations for the period 1983–2007 and four BSRN 

stations for the period 1990–2010 as ground-based reference over Europe. The validation was 

conducted for each time series individually; in addition a multisite mean was calculated by averaging 

the station-wise derived values. Several statistical measures were calculated such as the bias, the mean 

absolute error (MAE), the standard deviation of differences (SDD), and the anomaly correlation (AC). 

The applied quality measures are defined in the Appendix. 

Tables 3 and 4 summarize the validation results for the monthly means of the CM SAF SIS at the 

BSRN and the GEBA station, respectively. The MAE of MFG is well below the targeted accuracy 

threshold of 15 W·m−2. The requested accuracy was exceeded for only 11.4% of the monthly data if 

compared to BSRN (Table 3) and in 15.6% of all cases if compared to GEBA (Table 4). The high 

anomaly correlation of 0.84 with BSRN and 0.87 with GEBA as reference demonstrates the excellent 

agreement at the monthly scale of the CM SAF data and the surface measurements. The slightly 

different results obtained using either BSRN or GEBA as ground-based reference highlight the impact 

of the selected reference stations in terms of station locations and measurement uncertainty. This also 

explains slightly differing validation results found in previous studies (see [20,29]). 

Table 3. Comparison of monthly SIS between CM SAF and BSRN measurements for 

different time periods and three algorithms used for the extension of the CM SAF series 

after 2005. Anomalies refer to the period 2001–2005. 

SIS  

(Monthly Mean) 
nmon 

Bias  

[W·m−2] 

MAE 

[W·m−2] 

SDD 

[W·m−2] 
AC 

Fracmon [%] 

Bias > 15 W·m−2  

1990–2005 (MFG)  377 7.2 8.1 6.0 0.84 11.4 

2001–2005 (MFG)  205 7.0 7.9 5.7 0.83 8.3 

2006–2009 (MSGS) 184 7.9 8.7 7.1 0.87 13.6 

2006–2010 (MSGG) 221 -3.7 7.4 8.0 0.83 12.7 

2006–2010 (MSGGL) 227 5.7 9.2 8.5 0.81 18.1 

Also included in these tables are the corresponding values for sub-periods of the MFG and the three 

MSG datasets. All CM SAF datasets have a high quality as documented in MAE well below 

10 W·m−2. MSGS was most consistent with MFG for most of the applied quality measures, which can 
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be explained by the use of consistent input satellite data and retrieval algorithm. MSGG yielded the 

smallest bias and mean absolute error (−1.28 W·m−2 and 8.68 W·m−2 compared to GEBA, respectively) 

of all datasets. The difference between the MSG data sets are due to differences in the used satellite 

data and applied retrieval methods, see Table 1 for details about the difference. 

Table 4. Comparison of monthly SIS between CM SAF and GEBA measurements for 

different time periods and three algorithms used for the extension of the CM SAF series 

after 2005. Anomalies refer to the period 1983–2005. 

SIS  

(Monthly Mean) 
nmon 

Bias  

[W·m−2] 

MAE 

[W·m−2] 

SDD 

[W·m−2] 
AC 

Fracmon [%] 

Bias > 15 W·m−2  

1983-2005 (MFG)  12,925 5.23 8.86 6.7 0.87 15.6 

2004-2005 (MFG)  1,128 4.4 9.25 8.7 0.84 13.2 

2006-2007 (MSGS) 1,075 5.25 9.88 5.3 0.88 18 

2006-2007 (MSGG) 1,114 −1.28 8.68 11.2 0.87 14.9 

2006-2007 (MSGGL) 1,080 5.06 10.02 8.8 0.83 25 

Figure 3. Comparison of monthly SIS between CM SAF and GEBA measurements for 

MFG and MSG satellites, for five regions (see Figure 1). (a) Mean bias [W·m−2], (b) MAE 

[W·m−2], (c) anomaly standard deviation ration (SDR) [1], and (d) anomaly correlation 

(AC) [1] for the period 1983–2007. The boxes of the box-plots represent the inter quartile 

range (IQR) with the whiskers extending to 1.5 times the IQR, and providing a measure of 

the spread of the corresponding statistics distribution. In addition, the median value over 

the time series in each region is indicated. 

 

Figure 3 provides a detailed illustration of the statistics of the comparison with the GEBA stations 

in five regions (see Figure 1). In general, the spread of the corresponding statistics was low in the five 
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regions for MFG. MSGS showed the highest consistency with MFG in terms of both the mean and the 

spread of the corresponding statistics. MSGG yielded the smallest mean bias, with values close to zero, 

except for region 2. However, MSGG showed considerable spread in the bias and for the remaining 

statistics it was slightly outperformed by MFG. In terms of the mean bias MSGGL performed similarly 

to MFG, except for region 4. Yet, MSGGL was outperformed by MFG and the two other MSG datasets 

in terms of SDR and anomaly correlation. This might be, at least partly, induced by a bug in 

the processing. 

Figure 4 shows the temporal variation of mean annual bias and MAE over the period 1983–2007. 

Both statistics indicate inhomogeneities during the study period, particularly before 1994. The most 

prominent features are the two maxima around 1985 and 1992 and the reduced mean bias and MAE 

during the intermediate period (1987–1991) with values that are close to those obtained after 1994. 

The decrease in the bias and the MAE after 1987 may be related to the gain shift of the maximal 

reflectance in May 1987 [39]. The second maximum (1991–1994) may be related to an aerosol effect 

following the Pinatubo volcanic eruption in 1992. While the additional stratospheric aerosol loading 

reduced the SIS as observed by the surface measurements due to scattering of incident solar radiation, 

this effect is not considered in the satellite-derived SIS CDR (see [20]). In addition, in the period before 

1994 the MVIRI data contained stripes and other artefacts that may also impact the temporal stability 

of the CM SAF SIS CDR before 1994.  

Figure 4. Mean annual bias (dashed line) and MAE (solid line) in absolute values from 

1983 to 2007 obtained between the CM SAF and the GEBA series over Europe. 

 

While both MSGS and MSGG performed comparably to MFG in terms of annual mean bias, MAE, 

MSGG showed considerably lower annual mean bias values (but similar MAE). MSGG uses a new 

GADS [32]/OPAC [33] aerosol climatology, which is optically denser than the aerosol climatology 

used for MFG [34] and is likely to help constrain the mean SIS.  

Section 4.1 and Figure 4 show that MSGS provides consistent SIS values compared to MFG and 

thus represents a homogeneous extension of the CM SAF SIS CDR based on MFG. However, as stated 

in previous works (see [19,20]) and as indicated by Figure 4, the CM SAF SIS CDR is not completely 

homogeneous before 1994. The lack of temporal homogeneity in the satellite-derived SIS CDR might 

result in incorrect conclusions and misleading results, especially if temporal changes and trends are 

assessed that are in the same range as the artificial inhomogeneities in the dataset [20]. Thus, 

correcting the inhomogeneities in the CM SAF SIS CDR will enhance its suitability for climate studies 

over the complete observation period. For near-real time climate monitoring of anomalies and 
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extremes, an operational dataset is required. The latter motivates the use of MSGG to extend the CM 

SAF SIS CDR. Moreover MSGG shows the lowest bias, which is an advantage for the operational 

detection of anomalies. 

In the following we assess in detail the homogeneity of the combined SIS data set based on MFG 

and MSGG, and present and apply a methodology to remove detected inhomogeneities in the CM SAF 

SIS data using surface observations.  

4.2. Homogeneity 

The homogeneity of the extended CM SAF SIS CDR was assessed for the period 1983–2007. 

Special attention was paid to the times when the satellite instruments or the retrieval algorithm 

changed (see Table 2). 

The mean difference series (CM SAF minus GEBA) of the SIS anomalies to the period 1983–2007 

provided in Figure 5a shows a significant decrease of −2.7 W·m−2 per decade over the study period, 

suggesting that there is a lack of temporal stability in the CM SAF data as compared to the surface stations.  

Figure 5. (a) The mean monthly CM SAF minus GEBA series including the trend colored 

in red, (b) the temporal evolution of the SNHT test statistics including the detected breaks 

(black lines) and (c) the mean monthly CM SAF minus GEBA series including the PMT fit 

derived using the RH test in red. The time series are expressed as anomalies from the 1983 

to 2007 mean. 

 

The result of the SNHT test is displayed in Figure 5b. The T-statistic of the SNHT test applied to the 

mean difference series detected major breaks (clearly significant on the 95% confidence level) in the 
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years 1991, 1994 and 2005 (here, indicated by vertical black lines). Further possible breaks indicated by 

sudden changes in the slope of the T-statistic occurred in 1987, 1992, 1997 and 2003 (not shown).  

Figure 5c provides the mean difference series and the PMTred fit (red line) determined using the 

RH test. The RH test identified several major breaks in the in the years 1987, 1990, 1994 and 2005 (the 

vertical offset indicates the mean shift at the breaks). Interestingly, the dates of the detected shifts 

agree well with the variations in the mean annual bias and MAE depicted in Figure 4. 

Figure 6 shows the frequency distributions of the detected shift inhomogeneities with respect to the 

date of their appearances using both the SNHT test (red) and the RH test (blue). The tests were applied 

to the series of mean monthly differences (CM SAF minus GEBA) of SIS anomalies to the period 

1983–2007, for the 47 station series (panel a), regional means (panel b) and the multisite mean (panel c).  

Figure 6. Frequency distributions of inhomogeneities detected by the SNHT (red) and the 

RH (blue) test in the difference series (CM SAF minus GEBA) of the SIS anomalies to the 

period 1983–2007, for (a) the 47 station series, (b) regional means and (c) the multisite 

mean. Dashed lines indicate changes in instrumentation, retrieval algorithm and gain shift 

(see Table 2). 

 

The histograms for the 47 difference series (panel a) indicate the presence of breaks associated with 

instrument changes (dashed lines) for a large fraction of stations. The largest impact is evidenced for 

the change in 2005/06, and further breaks around 1987, and 1994. Equally, both tests detected a major 

break in 2005/2006 for the regional mean difference series (panel b). A further break around 1984 was 

detected for two regional mean difference series (regions 2 and 5) that, however, could not be related 

to metadata information and may be due to strong anomalies (high signal-to-noise ratio) in the early 

observing period in the respective regions. The tests applied to the difference series of the multisite 
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mean (Figure 6c) identified possible breaks in 1987 (only RH test), 1990 (only SNHT), 1994 and 

2005/06. The four breaks (1987, 1990, 1994 and 2005/06) detected in the multisite mean series also 

stick out in the histograms for the individual difference series, indicating the presence of breaks on a 

European scale. The identified times of the breaks in the multisite mean series (1987, 1990, 1994 and 

2005/06) were in good agreement with the times of change indicated in the related metadata.  

4.3. Adjustment of the 47 CM SAF Series 

After the identification of the significant breakpoints (times of the identified changes were modified 

to match the times of change indicated by metadata information), a mean-shift based adjustment was 

applied to the time series to remove the artificial shifts. To allow the mean-shift adjustment to vary 

with season, the shift sizes were determined for each calendar month separately. The performance 

assessment was based on a comparison with 47 GEBA stations for the period 1983–2007. 

Figure 7 illustrates the shift sizes as estimated by the RH test for the January (panel a) and the July 

(panel b) difference series of Aberporth. Both difference series exhibited rather small shifts before 

2006 and a strong shift in 2005/2006 when the MSGG dataset extends the MFG dataset. The shift sizes 

were stronger in the July series, which was due to the considerably higher solar radiation in summer. 

These results also highlight the importance of consistent satellite input data and retrieval algorithms. 

Figure 7. Monthly CM SAF minus GEBA series for the station Aberporth including the 

PMT fit of the RH test (red line), for: (a) January, and (b) July. Breakpoints are indicated 

by dashed lines. 

 

The impact of the mean-shift correction applied to the extended CM SAF series is shown in  

Figure 8, which depicts the temporal evolution of the mean annual anomalies (panel a), the mean 

annual bias and MAE (panel b), the mean annual AC (panel c) and the mean annual SDR (panel d) 

over the period 1983–2007.  

The mean anomaly series of both the adjusted CM SAF series and the GEBA series showed very 

similar time evolutions and exhibited significant increases (panel a), which was also depicted by the 

high anomaly correlation (~0.85) of both time series (see Table 4). While the original CM SAF series 
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(+1.34 W·m−2 per decade) shows a considerably weaker SIS increase than the mean GEBA series 

(+4.59 W·m−2 per decade), the trend depicted by the corrected CM SAF series is much more consistent 

with the mean GEBA series (+4.47 W·m−2 per decade) over the study period.  

Both the mean annual bias and the MAE of the corrected CM SAF series show a higher temporal 

stability over the study period compared to that of the original series (panel b). In addition, the 

corrected series are substantially improved over the original series in terms of mean bias (reduction 

from 4.65 to −1.28 W·m−2) and MAE (reduction from 8.33 to 8.00 W·m−2). Overall, the bias decreases 

for 79% and the MAE even for 92% of the 47 difference series (not shown).  

The corrected CM SAF series show consistently higher anomaly correlations than the original series 

(panel c), particularly before 1994 and after 2005. The reduction in the anomaly correlation around 

2004 refers to the stronger mean annual bias (see panel b) that may be due to a degradation of the 

MVIRI instrument on the Meteosat 7 satellite. 

Panel d shows the temporal evolution of mean annual SDR of the SIS anomalies between the CM 

SAF series and the GEBA series (anomalies from the 1983–2007 mean). The annual mean SDR of the 

original CM SAF series was temporally relatively stable until 2005, however, it increased significantly 

after 2006. This can be explained by the overall higher SDD of the MSGG dataset (see Tables 3 and 4) 

due to an overall worse anomaly correlation between CM SAF and GEBA during the winter months 

since 2006 (Figure 8c). The mean-shift corrected CM SAF series shows no clear improvement over the 

original series in terms of SDR, except for the time period after 2006 when the ratio dropped from 1.3 

to ~1.  

Figure 8. (a) Mean annual anomaly series including the linear trends, (b) mean annual bias 

(solid lines) and MAE (dashed lines), (c) mean annual AC, and (d) mean annual SDR over 

the period 1983–2007 obtained between the 47 CM SAF and GEBA series. The original 

CM SAF series is in red, the corrected CM SAF series in black, and the GEBA series 

in magenta. 
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4.4. Adjustment of the CM SAF Series over the European Region 

As indicated in Section 3, the grid-point-wise adjustment of the CM SAF SIS data was done  

using linear regression that relates the station-wise derived mean-shifts to the difference field  

(e.g., MSGG minus MFG, see Figure 2) in the overlap period (April to December 2005) and to the 

geographical coordinates.  

Figure 9a shows the smoothed annual cycles of the mean-shifts obtained for the 47 difference series 

between segment four (1994–2005) and the reference segment (2006 onwards). Figure 9b shows for 

each calendar month the correlations between the station-wise obtained mean-shifts at the significant 

breakpoints (e.g., between each segment and the last segment) and the difference field at the station 

locations. The station-wise derived mean-shifts depict a seasonal dependency with smaller shifts 

during winter and considerably larger shifts during summer (panel a). Also the pattern in the difference 

fields (Figure 2) of the two CM SAF datasets shows strong seasonal variations. The seasonality of the 

shift sizes is thereby mainly governed by the seasonally varying solar zenith angle and the land-sea 

distribution. A smoothing spline function with six degrees of freedom was applied to the annual cycles 

of both the station-wise derived mean-shifts and the difference field (not shown), to remove 

fluctuations in the annual cycles due to measuring uncertainties and the rather short last segment 

(2006–2007). The high correlations between the mean-shifts derived for the 47 difference series and 

the difference field shown in panel b highlight the similarity of the obtained shifts.  

Figure 9. (a) Smoothed annual cycles of the mean-shifts for the change from Meteosat 7 to 

Meteosat 8 obtained using the 47 difference series (CM SAF minus GEBA), and  

(b) correlation coefficients between the station-wise derived mean-shifts (each color 

indicates a segment) and the difference in SIS derived from Meteosat 7 and Meteosat 8 at 

the station locations in the overlap period (see Figure 2) for each calendar month. 

 

The performance of the correction method was assessed using cross-validation. Here, we estimated 

the mean-shifts using the regression-based approach (Section 3.2.1) by leaving-out each difference 

series once in turn. Subsequently the estimated mean-shifts were applied to correct the 47 CM SAF 

series. Table 5 provides the validation results for the corrected CM SAF SIS CDR (uncorrected in 

brackets) at the 47 GEBA series for the period 1983–2007. The biases in the corrected CM SAF series 

decreased substantially in all months, resulting in negative biases in autumn and winter and biases 

close to zero in spring and summer. The average bias decreased from 4.7 W·m−2 to −1.4 W·m−2, thus 
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the average bias of the corrected CM SAF series corresponds with the mean bias of the operationally 

derived SIS since 2006 (see Table 3) and is more stable in time. The higher stability of the corrected 

CM SAF series was confirmed by the anomaly-based statistics. The mean anomaly correlation 

increased from 0.75 to 0.79, with the strongest improvement in winter. Additionally, the mean-shift 

correction was able to decrease the spread (SDD) and to increase the fraction of monthly data meeting 

the target accuracy. The higher improvement during winter (especially for AC) can be explained by the 

larger relative bias in the uncorrected datasets in that season.  

These findings demonstrate that regression-based interpolation of the mean-shifts using the 

difference field as predictor properly accounts for regional differences in the shift sizes, and thus is 

useful to adjust the extended CM SAF dataset over the European region.  

Table 5. Comparison of monthly SIS between the extended CM SAF series corrected 

using regression-based estimations of the station-wise derived mean-shifts and GEBA for 

the period 1983–2007 (results for the original series in brackets). Anomalies refer to the 

period 1983–2007. 

Mon n BIAS MAE SDD AC Frac [%] > 15 W·m−2 SDR 

Jan 1,175 −2.8 [2.1] 4.6 [4.5] 3.9 [4.3] 0.60 [0.53] 3 [1] 1.08 [1.10] 

Feb 1,175 −4.7 [1.5] 7.4 [6.8] 6.5 [6.8] 0.68 [0.68] 12 [8] 1.08 [1.13] 

Mar 1,175 −2.5 [5.1] 9.0 [10.4] 8.3 [9.3] 0.82 [0.77] 19 [24] 1.05 [1.02] 

Apr 1,175 0.3 [8.2] 10.0 [12.2] 9.3 [10.3] 0.87 [0.83] 22 [33] 1.07 [1.00] 

May 1,175 −0.5 [7.1] 11.8 [11.2] 10.3 [10.8] 0.89 [0.88] 30 [27] 1.06 [1.05] 

Jun 1,175 −0.7 [6.7] 11.5 [11.6] 10.4 [11.0] 0.89 [0.88] 27 [26] 1.04 [1.02] 

Jul 1,175 0.6 [7.7] 10.5 [11.4] 9.9 [10.6] 0.90 [0.88] 25 [27] 0.97 [0.97] 

Aug 1,150 0.6 [6.7] 9.1 [10.0] 8.5 [9.1] 0.89 [0.88] 18 [21] 1.10 [1.13] 

Sep 1,175 −1.5 [3.1] 6.9 [6.7] 7.2 [7.4] 0.88 [0.87] 10 [9] 1.04 [1.02] 

Oct 1,175 −2.7 [1.6] 5.4 [5.5] 5.2 [5.9] 0.84 [0.80] 4 [4] 1.08 [1.10] 

Nov 1,172 −0.4 [3.8] 4.2 [5.8] 4.6 [5.5] 0.64 [0.58] 2 [5] 1.15 [1.27] 

Dec 1,073 −2.2 [2.2] 3.5 [3.9] 3.1 [3.7] 0.58 [0.46] 1 [0] 1.04 [1.16] 

Annual 13,995 −1.4 [4.7] 7.9 [8.3] 7.3 [7.9] 0.79 [0.75] 15 [16] 1.06 [1.08] 

Figure 10 shows the temporal evolution of the monthly mean SIS anomaly series (relative to  

1983–2007) from the original and the corrected CM SAF dataset (panel a), and the mean difference 

series between the original and the corrected CM SAF anomalies (panel b) over the European region 

(e.g., the area evaluated in Figure 10) for the period 1983–2007. Both time series (panel a) showed a 

very similar temporal evolution on monthly time scales with significantly positive trends, particularly from 

1994 to 2005. However, the rate of increase was clearly stronger for the corrected series (+4.3 W·m−2 per 

decade) than for the original series (+1.1 W·m−2 per decade) over the study period. The time series of 

the difference between the corrected and the original CM SAF anomalies exhibited a strong seasonal 

cycle (panel b), due to the seasonal dependency of the mean-shifts (see Figure 9a). In general, the 

mean adjustment over all grid points was negative before 2006, although closer to zero in winter, 

resulting in an intensification of the positive trend of SIS anomalies in the corrected CM SAF series. 

Largest adjustments were applied in the summer months, with mean-shifts of up to 12 W·m−2. In 

winter the adjustments stayed within the range of −6 to −3 W·m−2.  
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Figure 10. (a) Monthly mean SIS anomaly series of the original (black) and the corrected 

(red) CM SAF dataset, and (b) mean monthly difference series between the original and 

the corrected CM SAF anomalies over the European region (the area shown in Figure 2) for 

the period 1983–2007. The time series are expressed as anomalies to the 1983–2007 mean, 

and the linear trends are indicated (thick lines). 

 

4.5. Error Sources 

In comparison to the ground-based reference, the homogenised data record shows an improvement 

over the original data record in terms of anomaly correlation and bias. Some undesirable but 

explainable effects resulted from the applied correction procedure, such as underestimated shift sizes 

during summer. Several reasons have been found that help to understand the draw-backs in the 

corrected data, including the limited number of reference stations available and uncertainties inherent 

in both the reference and the satellite data. 

(a) Limited number of reference stations: Errors are introduced through the assumption that  

station-wise detected mean-shifts for any date are correlated with the differences obtained between 

MVIRI- and GERB-derived SIS. However, currently there are not sufficient ground-based stations 

available for a direct mean-shift calculation from the difference series at every grid point. We expect 

that all the MVIRI instruments before 2005 have similar spectral sensitivities and therefore the pattern 

of differences of the MVIRI instrument to the GERB instrument will be similar for all MVIRI 

instruments. These relationships were used to correct the satellite-based estimates at locations where 

ground-based reference data was unavailable.  

Uncertainties accompanying the mean-shift determination were reduced by applying a smoothing 

spline to the annual cycle of the station-wise derived mean-shifts and the difference field. A 

comprehensive analysis using the mean-shift corrected time series showed a significant reduction in 

the bias and an increase in anomaly correlation in comparison to the GEBA reference observations. 

(b) Uncertainties inherent in the observational datasets: Figure 11 shows the spatial distribution of 

the differences between the monthly SIS data from the original MFG and the MSGG data sets (top row) 
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and the differences between the SIS data from the corrected MFG and the MSGG data sets (bottom 

row), for April, July, September and December 2005. The differences, which were particularly high 

during the vegetation period over North Africa, are mainly attributed to the spectral properties of the 

broadband channel of the MVIRI instrument and the GERB visible channel. However, also different 

aerosol climatologies and retrieval algorithms contribute to the observed differences between MFG 

and MSG based SIS. 

The correction method worked particularly well over Europe in autumn and winter, reducing the 

overestimates in MFG from up to 40 W·m−2 in some regions to below 15 W·m−2 (Figure 11, bottom 

row). Also the large differences in the regions north of 60°N (Figure 10, top row) are reduced. Yet, the 

very strong differences between MFG and MSGG in April do not completely disappear. This can be 

explained by uncertainties inherent in the station-wise determined mean-shifts, due to limitations in the 

accuracy of the satellite and the ground-based observations and due to the short last segment  

(2006–2007). While the SIS observations by the ground-based GEBA stations have an estimated 

accuracy of about 5 W·m−2 [20], the requirement for solar surface irradiance retrieved from satellites is 

10 W·m−2 [29]. As indicated in Section 3, a smoothing spline with six degrees of freedom has been 

applied to remove outliers in the annual cycles of the mean-shifts. As a consequence the applied  

mean-shifts are reduced compared to the true shift sizes (not shown). While this smoothing might be 

non-ideal, the application of unsmoothed mean-shifts may introduce additional uncertainties in the 

corrected dataset. It should be noted that this method is designed only to reduce the systematic errors, 

not the random errors. The latter are difficult to quantify or correct, especially when the ground 

reference data themselves are not error-free (e.g., [28,29]). 

Figure 11. (Top row) Monthly differences (W·m−2) between Meteosat 7 (MFG) and 

Meteosat 8 (MSGG) derived SIS, and (bottom row) between the corrected SIS derived from 

Meteosat 7 and Meteosat 8 derived SIS. 

 

(c) Additional error sources: While the above mentioned limited station coverage and the 

uncertainties inherent in both datasets are mainly responsible for the draw-backs in the corrected data, 

another factor might also contribute to this. In the period before 1994 the MVIRI data contained stripes 

and other artefacts that may also impact the temporal stability of the CM SAF SIS CDR before 1994. 

5. Summary and Conclusions 

Large efforts have been made in recent years for the generation of homogeneous and consistent 

long-term climate data records (CDRs). While their high quality generally enables the assessment of 

climate variability and climate change they suffer, however, from a reduced timeliness. CDRs are 
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generally not sustained in near-real-time but rather reprocessed with delays of several years. This 

reduces their usefulness in particular for near real-time climate monitoring and for the assessments of 

current trends or recent climate extremes. While environmental data records (EDRs) provided in near 

real-time compensate for this shortcoming, they suffer from reduced record length. We follow the 

argumentation by other authors (e.g., AghaKouchak and Nakhjiri, 2012) that practices for monitoring 

and analysis of essential climate variables (ECVs) should combine the advantages of CDRs  

(i.e., length, homogeneity) with those of EDRs (i.e., timeliness). 

In this study, we propose a method to bridge the gap between long-term climate data records and 

near real-time data. We test this new approach for the homogenisation of satellite-based monthly mean 

surface incoming solar radiation (SIS) estimates provided by the EUMETSAT Satellite Application 

Facility on Climate Monitoring (CM SAF). A preliminary inter-comparison of three extended CM 

SAF SIS climate data record (CDR) versions identified the operationally generated SIS dataset 

(MSGG) as the most suitable to extend the CM SAF SIS CDR, due to its low bias. 

The method consists of break detection using ground-based reference station observations, break 

visualization and finally break adjustment. Adjustments were based on the mean-shift in the difference 

series between the satellite dataset and the surface reference observation between any segment and the 

reference segment. To allow for seasonal variations in the adjustment, the mean-shifts were calculated 

for each calendar month separately.  

There were spatially and temporally varying statistical relationships between the station-wise 

determined mean-shifts and the difference between Meteosat First Generation (MFG) and MSGG SIS. 

These relationships were used to correct the satellite-based estimates at locations where ground-based 

reference data was unavailable. Uncertainties accompanying the mean-shift determination were 

reduced by applying a smoothing spline to the annual cycle of the station-wise derived mean-shifts and 

the difference field. The method has been tested for the CM SAF datasets over the European region for 

the overlap-period when both MFG and MSGG data were available. The method worked particularly 

well over Europe in autumn and winter, reducing the overestimates in MFG from up to 40 W·m−2 in 

some regions to below 15 W·m−2. The application of the method to other regions than Europe will 

generally depend on the density of surface-based SIS observations. 

The performance of the proposed method is encouraging for the feasibility of extending CDRs into 

near real-time and future research is warranted. The mean-shift corrected time series of combined 

CDR and EDR showed a significant reduction in the bias and an increase in anomaly correlation, 

providing a more homogeneous near-real-time climate data record.  

We argue that the generation of climate data records in near real-time would offer unique 

opportunities for climate monitoring and research. Multiple applications would benefit from a near 

real-time SIS dataset, e.g., studies of global dimming and brightening, analysis of climate extremes 

(e.g., heat waves) or solar energy applications. Thus, we would be motivated for the application of the 

proposed method for the operational generation of near-real-time climate data records in order to 

facilitate a better analysis of the current state of the climate and to provide better climate services. 

Although our proposed method has been developed for SIS datasets it is applicable for the adjustment 

of CDRs addressing other ECVs as well, provided that appropriate ground-based measurements and a 

priori knowledge about changes of algorithm, instrumentation or satellites are available. Nevertheless, 

the applicability of the method for the adjustment of satellite datasets addressing other variables needs to 
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be assessed in future studies. Moreover, additional work is required when the method is used with other 

geostationary satellites to build a homogeneous global SIS climate data record. 
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Appendix: Statistics Used to Evaluate the CM SIS CDR 

The bias is the average difference between two datasets over n time steps. It depicts whether the 

considered dataset, on average, over- or under-estimates the reference dataset: 

BIAS 
1

n
y t  o t 

t 1

n


 

(A1)

where yt is the dataset to be evaluated (CM SAF) and ot is the reference dataset (e.g., GEBA or BSRN) 

time step t. 

The mean absolute error (MAE) measures the deviation from the reference dataset, and is based on 

absolute values.  
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MAE 
1

n
y t  ot

t 1

n


 

(A2)

The standard deviation of the differences (SDD) measures the spread around the mean value of the 

distribution formed by the differences between two time series.  
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The anomaly correlation (AC) depicts the correlation between the anomalies of two time series 

without consideration of the influence of the bias.  

2

1

2

1

1

)()(

))((
AC













n

t t

n

t t

t

n

t t

ooyy

ooyy  
(A4)

The standard deviation ratio (SDR) describes to which extent the standard deviations of the 

anomalies of the two considered time series correspond to each other ignoring the influence of a 

possibly existing bias. 

SDR 

1

n  1
(ok  o ) 2

k  1

n
1

n  1
( y k  y ) 2

k  1

n
 (A5)

The annual cycle y  and o  were determined separately for each station of the satellite and the 

reference dataset. The monthly anomalies were then calculated by subtracting the corresponding 

annual cycle.  

The fraction of values above the accuracy threshold (Frac) is calculated as following 

Frac 100
fkk1

n
n

 with 
fk 1 if yk  threshold

fk  0 otherwise


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

 (A6)
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