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Abstract: The mixed grassland in Canada is characterized by low to medium green 

vegetation cover, with a large amount of canopy background, such as non-photosynthetic 

vegetation residuals (litter), bare soil, and ground level biological crust. It is a challenge to 

extract the canopy information from satellite images because of the influence of canopy 

background. Therefore, this study aims to extract a soil line, a representation of bare soil 

with litter and soil crust in the surface, from Landsat images to reduce the background 

effect. Field work was conducted in the West Block of Grasslands National Park (GNP) in 

Canada, which represents the northern mixed grassland from late June to early July 2005. 

Six TM images with either no or only a small amount of cloud content were collected in 

2005. In this study, soil lines were extracted directly from images by quantile regression 

and the (R, NIRmin) method. The results show that, (1) both cloud and cloud shadow have 

obvious influence on simulating soil line automatically from images; (2) green up and late 

senescence seasons are relatively better for soil line simulation; (3) the (R, NIRmin) method 

is better for soil line simulation than quantile regression to extract green biomass or green 

cover information.  

Keywords: Remote sensing; mixed grassland; soil line; quantile regression; PVI;  

ground cover 
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1. Introduction  

Grassland ecosystems, characterized by high amounts of carbon stock, are one of the main 

terrestrial ecosystems besides forest, tundra, and cropland ecosystems, which provides multiple 

habitats for wildlife [1]. More importantly, grasslands provide a variety of functions without requiring 

fertilizer input, such as high productivity, site stability, capture and beneficial release of water [2], 

grazing, and recreation. For grassland monitoring, biomass is an indicator of grassland productivity 

and grazing capacity while playing an important role in understanding ecosystem response to disturbances 

such as climate change, grazing intensity, and extreme weather events (flood and drought) [3]. Vegetation 

indices extracted from remotely sensed data have a high correlation with green biomass and green 

cover [4–8], which have the advantages of large scale biomass and cover estimation and long term 

biomass and cover change evaluation. However, soil along with ground level biological crust and 

covered vegetation residuals (litter) presents a problem to the interpretation of vegetation indices [9]. 

Richardson and Wiegand [10] first introduced the concept of soil line and perpendicular vegetation 

index (PVI) to reduce interruption from the soil background when extracting vegetation signals from 

Landsat MSS images. Soil line is a line which shows the linear relationship between near-infrared (NIR) 

reflectance and red (R) reflectance of bare soil [11]. Theoretically, the main factor that characterizes soil 

line is soil type because of variation in organic matter and chemical components. In addition, soil line is 

also influenced by soil surface condition (e.g., roughness and vegetation residuals) [12,13]. However, soil 

line does not vary from soil brightness (causing by soil moisture [14] and roughness [15]) without soil 

type changing. Soil line concept has been widely accepted to interpret remotely sensed imagery [12], 

especially to normalize soil background effect for vegetation discrimination [16]. Some vegetation 

indices are designed based on soil line, such as PVI, Adjusted Transformed Soil-Adjusted Vegetation 

Index (ATSAVI) [17] and Transformed Soil Adjusted Vegetation Index (TSAVI) [18] to minimalize 

the effect of soil background. Studies based on soil line are also in estimation of fraction cover [19], 

vegetation residual cover [20], soil organic matter [21,22] and soil degradation [23]. Besides, because 

soil line is relatively stable for a certain soil type, Jaishanker, Thomaskutty, Senthivel and Sridhar [14] 

applied soil line transformation method to relative atmospheric correction and Stabile and Searcy [24] 

indicated that the crop parameter can be compared directly from multi-temporal images after the 

images are normalized to a reference soil line. 

Commonly, researchers conducted indoor experiments [12], simulated models (for example, 

radioactive simulation model) [25], or tested the reflectance of soil samples from field work to obtain 

soil lines. Fox, Sabbagh, Searcy and Yang [11] developed an automated method for extracting soil 

lines from remotely sensed images in cropland that fits a linear regression by deriving a set of 

minimum near-infrared digital numbers across R and NIR bands while removing contradicting soil line 

pixels with an iterative process. Unlike cropland, grassland which is long term conserved has more soil 

crust (moss and lichen) and litter coverage and more heterogeneous vegetation structure. Since 

conserved grassland is more complex than grassland, this study aims to develop a suitable method to 

extract the soil line from Landsat images automatically. The objectives of this study are as follows, (1) 

to examine the ability of quantile regression and (R, NIRmin) method for extracting soil lines from a 

two dimensional scatter plot of NIR and R bands; (2) to test the best time period for extracting soil 

lines linked with vegetation phenological sections; (3) to evaluate the cloud effect on extracting soil 
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lines; (4) to compare soil lines extracted directly from imagery and the soil line obtained from 

reflectance of dug soil samples. 

2. Study Area 

The study area was the West Block of Grasslands National Park (GNP) (49°N, 107°W), located in 

the southern part of Saskatchewan, Canada (Figure 1). The west block has an area of approximately 

521 km2. The annual mean temperature and total precipitation of this area are 3.4 °C and 340 mm, 

respectively [26]. GNP falls within the semi-arid mixed grassland ecosystem [27] which contains 

upland, sloped, and valley grasslands. The uplands are dominated by needle-and-thread grass  

(Stipa comata Trin. & Rupr.), blue grama grass (Bouteloua gracilis (HBK) Lang. ex Steud.), and 

western wheatgrass (Agropyron smithii Rydb.). The valley grasslands are dominated by western 

wheatgrass and northern wheatgrass (Agropyron dasystachym) along with higher densities of shrubs 

and occasional trees [28]. The sloped grasslands consists of vegetation species from both upland and 

valley grasslands. 

Figure 1. Sample sites distribution map in the west block of Grasslands National Park (GNP).  

 

The main soil types in the park region are chernozemic and solonetzic soils [29]. Chernozemic soil 

is the most common soil type in grasslands, characterized by a dark color and high amount of organic 

content. Comparatively, solonetzic soils, with high salinity and lighter color, are formed due to drought 

and high evaporation conditions. The study area has been conserved for over 20 years [30]. As a result, 

grasslands in this region contain large amounts of non-photosynthetic vegetation residuals including 

litter and standing dead materials. In addition, under the low to medium cover of vegetation canopy, 

most of the surface is covered by microphytic communities of small non-vascular plants, mainly 

including mosses and lichens, which form biological crusts. 
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3. Materials 

3.1. Field Data 

Field work was conducted in late June and early July of 2005; the maximum growing season of the 

northern mixed prairie. Twenty-six sites (Figure 1) were selected based on a stratified random design 

and accessibility with 8 sites in upland, 4 sites in sloped land, and 14 sites in valley grassland. Two 

100 m × 100 m plots were set up in each site. Each plot was composed of two 100 m transects 

perpendicularly crossed with each other in their centers. Twenty 50 cm × 50 cm quadrats were set up 

in each plot at 10 m intervals, excluding the center. Ground percentage covers, such as grass, forb, shrub, 

standing dead material, litter, lichen, moss, bare soil, and rock, were estimated by observation in each 

quadrat. Due to restrictions in the park, biomass was collected at 20 m intervals with a 20 cm × 50 cm 

quadrat using the harvesting method. Fresh biomass clipped with scissors was sorted into four groups; 

grass, forb, shrub, and dead materials. Biomass was then measured by weight after they were dried in 

the oven for 48 hours at 60 °C. Soil samples were collected by digging the soil in the quadrats after the 

biomass was removed. The reflectance of soil samples was examined in laboratory conditions. To 

correlate with data from satellite imagery, all the biomass data, ground percentage, and soil reflectance 

was averaged for each individual site. Soil reflectance and dead material reflectance of R and NIR 

bands were averaged by R band location and NIR band location of Landsat images, respectively.  

3.2. Satellite Images  

Table 1 contains the information of all the Landsat images which were downloaded from the United 

States Geological Survey (USGS) website, including six TM images with no or small amounts of 

cloud content. All the images acquired from the USGS website had already been geometrically 

corrected, so image preprocessing only included atmospheric correction. Atmospheric correction was 

conducted in PCI Geomatica using the ATCOR2 algorithm. After atmospheric correction, all the 

images were clipped into the study area. The spatial resolution of all the images was 30m × 30m and 

the projection was WGS_1984_UTM_Zone_13N. 

Table 1. Acquisition dates and cloud cover of Landsat TM images. 

ID File Name Date Sensors Cloud% 

1 LT50370262005115PAC01 25 April 2005 TM 0 

2 LT50370262005131PAC01 11 May 2005 TM 0 

3 LT50370262005195PAC01 14 July 2005 TM 0 

4 LT50370262005211PAC01 30 July 2005 TM 0 

5 LT50370262005243PAC01 31 August 2005 TM 24.1 

6 LT50370262005291PAC01 18 October 2005 TM 27.5 

Clouds in the two cloudy images were masked manually (Figure 2) in ArcGIS and percentage of 

cloud content in Table 1 was calculated by “(1-area of cloud masked image/area of west block) × 100%”. 

Twenty three MODIS vegetation images with 16 days composites and 250m × 250m resolution 

(MOD13Q1) were also acquired from the USGS website which were used for testing the vegetation 

phenology. Normalized Difference Vegetation Index (NDVI) images, registered to a Universal 
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Transverse Mercator (UTM) projection, were acquired by processing MODIS images using the 

MODIS Reprojection Tool. 

Figure 2. Images before and after cloud mask. 

 

4. Methods  

The two dimensional scatterplot of NIR band and R band is a fan shape scatter plot (Figure 3). The 

bottom line of this fan shape represents the soil line [11]. In this study, two statistical methods, 

discussed in Sections 4.1 and 4.2, were chosen to quantify this line. 

4.1. Linear Regression of a Set of (R, NIRmin) 

The direct way to extract the bottom line of scatter plot is to fit the linear regression of a set of points 

characterized by minimum NIR value within the certain R values, which is named the  

(R, NIRmin) “method” in this paper. Fox, Sabbagh, Searcy and Yang [11] introduced an automated soil line 

identification routine based on the basic idea of the (R, NIRmin) method. The linear regression of a set of 

(R, NIRmin) was conducted in R software. Firstly, the whole dataset was divided into several datasets with 

0.005 intervals of R reflectance (0 < R ≤ 0.005, 0.005 < R ≤ 0.01, 0.01 <R ≤ 0.015…0.630 < R ≤ 0.635). 

Secondly, one point with minimal NIR value (R, NIRmin) was selected in each divided dataset. Finally, 

a general linear model was fitted for those points (R, NIRmin) (Figure 3). The dataset for Figure 2 and 

Figure 3 were the R and NIR reflectance of TM 2005-07-14 within the study area which were rounded 
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off to two decimal places (This transformed reflectance was not used in any analysis of this study and 

it was just used here to show the basic concept of the two methods). 

Figure 3. Linear regression of a set of (R, NIRmin). 

 

4.2. Quantile Regression 

After it was first introduced by [31], quantile regression is gradually becoming a comprehensive 

linear and non-linear regression method [32]. Instead of focusing on the mean, quantile regression fits 

the linear or non-linear regression on the selected quantile (0–1) of the distribution of the response 

variable [33–35]. Because quantile regression fits regression curves to part of the distribution, this 

method has proved its ability to extract boundary lines in two-dimensional scatter plots [36,37]. In this 

study, quantile regression was conducted in R software for extracting the bottom boundary line in NIR 

vs. R scatter plots (Figure 4). Instead of setting the quantile to zero for extracting the bottom line in 

this study, the quantile was set by “the number of points below the bottom line” divided by “total 

number of points”. In most situations, the fan shape scatter plot showed a clear, straight bottom 

boundary line with some points below this bottom boundary. By setting the quantile to zero in those 

situations, all the points would be above the simulated line. Therefore, extracting the bottom line from 

the scatter plots with some outliers with lower NIR reflectance, the quantile of quantile regression was 

set as a number close to zero but not zero, for example, 0.00001. 

4.3. Vegetation Phenological Stages 

Besides investigating the method for extracting soil lines, examining when the best time period to 

identify soil lines will also be tested. Grassland composition (the percentage of green grass, bare soil 

and dead material) varies from vegetation phenological stages. As a result, the structure of the scatter 

plots change dramatically through different vegetation phenological phases. 

The three main vegetation phenological stages are green-up, maturity, and senescence. The 

vegetation phenology was assessed by the curvature-change rate method which was developed by 
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Zhang et al. [38]. This method has the ability of vegetation phenological stage examination at large 

scales by using MODIS vegetation index products. In this study, the mean NDVI of the whole study 

area was obtained by zonal statistics in ArcGIS software. 

Figure 4. Quantile regression (the blue solid line is 0.1% quantile regression line; the red 

dash line is linear regression for the whole dataset and it is also the 50% quantile regression). 

 

4.4. Validation of Soil Line 

Vegetation indices (Table 2, [10,17,18,39]), based on soil line parameters (ATSAVI, TSAVI and 

PVI), were used to compare soil lines extracted from this study with the soil lines estimated from bare 

soil reflectance. These vegetation indices were also used to evaluate the soil lines extracted from this 

study by comparing their ability to extract green biomass and green cover through NDVI. To correlate 

with the field data collection date, only TM 2005-07-14 was used to calculate the vegetation indices. 

Table 2. Vegetation indices based on soil line parameters and Normalized Difference 

Vegetation Index (NDVI). 

Vegetation Index Algorithm Citation 

ATSAVI 
* *( )

2(1 )

a NIR aR b
ATSAVI

aNIR R ab X a

− −
=

+ − + +
 [17] 

TSAVI 
( )a NIR aR b

TSAVI
aNIR R ab

− −
=

+ −  [18] 

PVI 21

NIR aR b
PVI

a

− −=
+

 [10] 

NDVI 
NIR R

NDVI
NIR R

−=
+  [39] 

a* means the slope of soil line; b means the intercept of soil line; X = 0.08. 
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5. Results and Discussion 

5.1 Cloud Effect on Soil Line Extraction by Two Methods 

In Figure 5, cloud pixels have high R and NIR value and cloud shadow pixels have low R and NIR 

value in the scatterplots of cloudy pixels. The cloud and cloud shadow effect of soil line by both 

methods are really obvious. For both images, cloud and cloud shadow lessen the slope of extracted soil 

lines. Cloud and cloud shadow usually have similar reflectance in both R and NIR bands, which means 

the points representing cloud and cloud shadow are in line “NIR = R” in the scatter plot of two 

dimension with NIR and R bands. In this case, both images actually have soil line slopes over 1 

(Figure 5 without cloud), so the consequence of cloud effects is a lower slope for soil lines. Otherwise, 

if the slope of actual soil line is lower than 1, then the cloud effect would result in a higher slope. In 

addition, cloud and cloud shadow pixels cause more difference of both slope and intercept of soil lines 

with the (R, NIRmin) method than that with quantile regression. 

Figure 5. Extracted soil lines of TM images before and after cloud masked. 
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5.2 Soil Line Extracted by the Two Methods 

From the result of vegetation phenological stage testing for 2005, vegetation started to green up in 

the middle of April, became mature in middle and late June, and senesced through early July to  

middle October.  

The scatter plots images, in the green up section, contain some sparse points in both high and low R 

value parts (Figure 6) which poses challenges for extracting soil lines from those images. In the 

scatterplots, the bottom boundary is clearly a straight line excluding some sparse points. The soil lines 

extracted by the (R, NIRmin) method are closer to the straight bottom line than that by quantile 

regression. It has been exhibited previously that quantile regression is influenced by the outliers in the 

X axis [36]. With the two images about 15 days different (Figure 6), the different slope and intercept 

extracted from quantile regression is much higher than that extracted from the (R, NIRmin) method, 

which also means the sparse points below the bottom line cause some challenge for quantile regression 

to extract soil line. Especially, the scatterplot of TM 2005-04-25 (Figure 6) with more sparse points 

below the bottom line causes more difficulty for quantile regression to capture the bottom line. 

Figure 6. Soil lines by the two methods in the grass green up period. 

 

TM 2005-07-14 is not exactly in the grass mature period, but it is near the mature period (Figure 7). 

Grass mature period has a scatterplot with relatively higher NIR reflectance in low R value region 

because those points represent mature grass. Furthermore, the bottom line of the grass mature period 

scatterplot is a banana shaped curve. This boundary shape is caused by the relatively higher NIR value 

in low R value region during maturity which clearly shows the grass growth when comparing to  

green-up and senescence. In this case, the (R, NIRmin) method fits a soil line with a higher intercept 

than quantile regression. Quantile regression actually fits a tangent line of the bottom curve in the 

position of R value around 0.18. 

On 30 July 2005, grass has already started to senesced. The points with lower R and NIR value 

represent the senesced grass (Figure 8). In this early senescence period, the bottom of the scatterplot 

forms two straight bottom lines. The lower straight line shows the senesced grass. For the (R, NIRmin) 

method, the dataset for the final linear regression of soil lines includes points with much higher NIR 



Remote Sens. 2013, 5 4542 

 

reflectance a in high R value region which causes the regression line upward. In this case, quantile 

regression shows its ability to simulate the lower bottom line. Even in the middle senescence period 

(Figure 5: TM 2005-08-31 without cloud), the scatterplot still has this unique signature with two 

straight bottom lines and quantile regression still shows its ability to capture the lower bottom line. In 

the late senescence period (Figure 5: TM 2005-10-18 without cloud), the scatterplot has a clear straight 

line. In this case, both quantile regression and the (R, NIRmin) method fit the bottom line. 

Figure 7. Soil lines by the two methods near the grass mature period. 

 

Figure 8. Soil lines by the two methods in the early senescence period. 

 

The ability of both statistic methods for bottom line extraction varies from vegetation phenology 

because the bottom lines change through vegetation phenological cycle. For the scatterplots in the late 

senescence stage with clear straight bottom line, both methods simulate the bottom lines quit well. In 

the early green up stage, the soil lines extracted by quantile regression do not precisely fit the bottom 
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line because of the influence of the sparse points in the parts with very low R value and very high R 

value. Quantile regression is based on the quantile distribution of the response variable, NIR 

reflectance in this case. Therefore, the density or the distribution of the scatter plot will influence the 

quantile regression results, which is the reason the sparse points with low R and NIR values and those 

with high R and NIR values affect the quantile regression results in early green-up. In the maturity 

period, it is hard to capture the bottom straight line for both methods because the bottom line of the 

mature stage scatterplot is actually a curve. With unique characteristic of two straight bottom lines for 

the early and middle senescence period, quantile regression captures the lower bottom line, which 

represents the senesced grass rather than the (R, NIRmin) method. In this study, quantile regression is 

more likely to simulate the boundary distribution than the (R, NIRmin) method. However, the two 

methods have different abilities in different circumstances. It is hard to tell if quantile regression is a 

better method for simulating soil lines than the (R, NIRmin) method, but quantile regression is better to 

catch the boundary characteristics of fan shape scatter plots in most situations. Actually, both methods 

have similar results when the bottom boundary of the fan shape scatter plot is clearly a straight line 

(Figure 5: TM 2005-10-18 with cloud) or a straight line with very few outliers (Figure 5:  

TM 2005-10-18 without cloud). 

Theoretically, the quantile should be set to zero, but in reality, it is set to a number close to zero 

because not all the points are above the bottom boundary. Quantile setting certainly contribute to the 

quantile regression the most. For a large dataset in this study, slight change in quantile setting  

(e.g., from 0.00001 to 0.0000099) does not cause obvious difference of the soil line extraction. The 

basic idea of (R, NIRmin) method is selecting the points located in the bottom. There will be some 

omission and commission errors. In the certain range of R value, the point with minimum NIR value 

may locate upward the boundary. On the other hand, the points chosen by this method includes the 

sparse points under the bottom line, which influences the regression results. Fox, Sabbagh, Searcy and 

Yang [11] deleted some points to reduce the omission and commission errors based on the long 

distance between the points and the initial soil line, which statistically slightly improves the R2 of the 

regression model. 

5.3 Relatively Better Time Period for Extracting Soil Line 

The slope and intercept of the extracted soil lines from the six images are in Table 3. In Table 3, 

“slope_min” and “intercept_min” mean the slope and intercept of soil lines extracted by (R, NIRmin) 

method; “slope_qr” and “intercept_qr” mean the slope and intercept of soil lines simulated by quantile 

regression; data is named by sensors name, date, and presence or absence of cloud. For example, 

“tm050425” means a TM image on 25 April 2005 and “tm051018_cf” means a cloud masked imagery 

of TM image on 18 October 2005. 

Table 4 shows the correlation coefficients of green biomass and cover with the indices based on the 

extracted soil lines from this study. The coefficients of the biomass and cover with indices based on 

soil line of lab reflectance and NDVI were also presented in Table 4 as reference. All the coefficients 

are in significant level of P value less than 0.001. The “soil line names” in the table are named by 

extracted method and image acquired data. For example, “min_051018” means the soil line was 
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extracted from the TM image acquired in 18 October 2005 by the (R, NIRmin) method, while 

“qr_051018” means the soil line was extracted from the same image by quantile regression.  

Table 3. Slope and intercept of extracted soil lines by the two methods. 

Date Data Slope_Min Intercep_min Slope_qr Intercept_qr 

25-Apr-05 tm050425 1.133* −0.015* 1.061* −0.012 

11-May-05 tm050511 1.252* −0.012* 1.146* 0.005 

14-Jul-05 tm050714 1.166* 0.017* 1.134* 0.003 

30-Jul-05 tm050730 1.042* 0.043* 1.032* 0.020 

31-Aug-05 tm050831_cf 1.273* −0.003 1.145 0.012 

18-Oct-05 tm051018_cf 1.131* −0.009* 1.077 0.017 

* means P value < 0.05 

Table 4. Correlation coefficients of the indices based on the extracted soil lines with green 

biomass and cover. 

Soil Line Names Indices 

r 

Green  

Biomass 

r 

Green 

Cover 

Soil Line Names Indices 

r 

Green  

Biomass 

r 

Green 

Cover 

min_051018 ATSAVI 0.600 0.741 min_050714 ATSAVI 0.589 0.707 

 TSAVI 0.629 0.786  TSAVI 0.626 0.760 

 PVI 0.406 0.403  PVI 0.437 0.458 

qr_051018 ATSAVI 0.584 0.692 qr_050714 ATSAVI 0.596 0.725 

 TSAVI 0.627 0.760  TSAVI 0.629 0.776 

 PVI 0.346 0.302  PVI 0.409 0.408 

min_050831 ATSAVI 0.601 0.746 min_050511 ATSAVI 0.602 0.753 

 TSAVI 0.629 0.783  TSAVI 0.628 0.789 

 PVI 0.501 0.583  PVI 0.492 0.563 

qr_050831 ATSAVI 0.591 0.712 qr_050511 ATSAVI 0.595 0.724 

 TSAVI 0.628 0.767  TSAVI 0.629 0.775 

 PVI 0.419 0.426  PVI 0.420 0.427 

min_050730 ATSAVI 0.539 0.601 min_050425 ATSAVI 0.602 0.747 

 TSAVI 0.603 0.695  TSAVI 0.629 0.790 

 PVI 0.301 0.230  PVI 0.408 0.406 

qr_050730 ATSAVI 0.577 0.677 qr_050425 ATSAVI 0.600 0.737 

 TSAVI 0.626 0.755  TSAVI 0.629 0.788 

 PVI 0.287 0.208  PVI 0.325 0.268 

lab soil line ATSAVI 0.599 0.739     

 TSAVI 0.629 0.777     

 PVI 0.503 0.587     

 NDVI 0.630 0.778     

ATSAVI, based on the soil line simulated from 25 April image by both quantile regression and the 

(R, NIRmin) methods, slightly improved the correlation coefficient with green biomass than that based 

on soil line obtained from lab reflectance of soil samples.TSAVI remained the same correlation 

coefficient with green biomass (Table 4: min_050425, qr_050425).For the green biomass, ATSAVI, 
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based on soil lines extracted by the (R, NIRmin) method from images acquired in 11 May, 31 August, 

18 October, slightly improved the coefficients than the ATSAVI using lab soil line parameters while 

TSAVI still kept the same coefficients (Table 4: min_050511, min_050831, min_051018). TSAVI 

calculated from the soil line, extracted from the 25 April image, by both quantile regression and the (R, 

NIRmin) method, improved the correlation coefficient with green cover than that calculated by lab soil 

line while ATSAVI improved the coefficient with green cover only by the (R, NIRmin) method  

(Table 4: min 050425, qr_050425). TSAVI and ATSAVI using the parameters from the soil line 

obtained from images acquired in 11 May, 31 August, and 18 October with only the (R, NIRmin) 

method improved the relation with green cover (Table 4: min_050511, min_050831, min_051018). 

For TM 2005-04-25, both methods were working quite well for improving relation between VIs and 

green cover/green biomass while only the (R, NIRmin) method actually enhanced the relation between 

VIs and green biomass/green cover for TM 2005-05-11, TM 2005-08-31 and TM 2005-10-18. The 

possible reason that quantile regression did not make the relation better as the (R, NIRmin) method did 

is that the soil line slopes and intercepts for TM 2005-08-31 and TM 2005-10-18 by quantile 

regression are not in the significant level which is P < 0.05 (Table 3). In the study area, the soil line 

parameters simulated from images acquired in early green up period (25 April and 11 May) and late 

senesced season (31 August and 18 October) improved the relationship between ATSAVI or TSAVI 

with green biomass and green cover, which means early green up and late senescence seasons are both 

relatively better seasons than late green up, mature and early senesced period for soil line simulation.  

In this study, NDVI explains more variation for green biomass than other soil adjusted indices 

based on soil line, either from lab reflectance or simulations in this study. For green cover, NDVI still 

shows stronger relation than three soil adjusted indices based on the lab reflectance. However, TSAVI 

based on the soil lines of TM 2005-04-25 by both methods and TM 2005-05-11, TM 2005-08-31, TM 

2005-10-18 by only the (R, NIRmin) method improved green cover extraction rather than NDVI and 

other VIs (Table 4). This means TSAVI based on the soil lines from early green up and late senescence 

enhanced the relation between NDVI and green cover. In this study, PVI is not suitable for either green 

biomass or green cover estimation. Based on the research of Yoshioka, et al. [40], the influence of soil 

background on NDVI decreases when Leaf Area Index (LAI) increases. The average LAI from the 

research conducted is higher than 1.0, which means the effects of soil background on NDVI is quite 

low. It is the possible reason why NDVI shows stronger relation with green biomass/green cover in 

most of the cases in the study area. It is probable in other regions with relatively lower vegetation 

cover, soil adjusted vegetation indices show much stronger relationship with biomass or green cover 

than NDVI.  

5.4. Comparison of Soil Line Extracted from Images with Soil Line Extracted from Field Work 

The intercept of soil lines from field work is much higher than that of soil line extracted from 

images (Figure 9). In Section 5.3, soil lines extracted from early green up period by both methods are 

better than the soil line calculated from lab reflectance of soil samples. As a result, reflectance of soil 

samples is much higher than actual surface soil reflectance with litter and biological crust on it in the 

study area. More importantly, both methods can obtain soil line automatically from imagery with 

better accuracy and less cost than soil line obtained by lab reflectance of soil samples. 
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In addition, soil samples that were dug after the biomass was removed have different soil structure 

from land surface soil. More importantly, the spectral reflectance of litter is much lower than that of 

bare soil (Figure 10). In the study area, which has been conserved for more than 20 years, the ground 

coverage of dead material is much larger than that of bare ground. Therefore, the reflectance of soil 

samples collected after the above ground vegetation, litter and soil crust removed is not a 

representative of actual soil surface.  

Figure 9. Soil line extracted from images with two methods and the soil line from field 

work (The equation represent the soil line based on the lab reflectance of soil samples). 

 

Figure 10. Comparison of bare soil reflectance and dead material reflectance. 

 

The application of soil line is very wide in agriculture aspect, such as reducing soil background 

effects when extracting vegetation information [10,12,16–18], estimating vegetation fraction cover [19], 

vegetation residue cover (litter cover) [20], and atmospheric correction [24]. In the grassland, soil line 

is not widely used probably due to the availability of soil line. In cropland, the bare soil surface is 

normally covered by some vegetation residues, while in the grassland it is covered by plenty of litter 
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and soil crust (e.g., moss and lichen). When collecting reflectance of soil samples in cropland, the 

surface component is pretty much the same as the real surface structure. However, in grassland, 

collected soil samples are different from the real surface soil because the components and structure are 

all changed. In this study, it has been proved that soil line extracted automatically from images 

improved the soil line obtained from the reflectance of soil samples, which means the automatically 

extracted soil line from this study represent the actual soil line more closely. Hence, with the automatic 

soil line extraction methods provided by this study, the soil line of grassland can be obtained more 

accurately with less work. The ability of the two methods for extracting soil lines in cropland have not 

been tested to date, but definitely worth to be further studied in future research. 

Uncertainty of the results of this study probably came from the green cover data because the green 

cover data was measured by observation (human sense of the researcher) from field work. However, 

the green cover data was checked by how strong the relationship is between green cover and LAI, 

which is measured by LAI-2000. In this study, the correlation coefficient between green cover and 

LAI is 0.724, which is acceptable. Another uncertainty from this study is that there are two soil types 

(chernozemic soil and solonetzic soil) in the study area. As Yoshioka, et al. [40] mentioned in their 

research, the general soil line of the local area caused slight difference for each soil type with an 

unique soil line. However, the positive aspect is that there are two soil types in this study area and 

chernozemic soil is the main soil type. More importantly, solonetzic are found where there are no or 

low vegetation cover. Thus, chernozemic soil is the only soil type under consideration for extracting 

green cover/green biomass, which is also the reason for simulating one soil line for each image of the 

study area. Applying the methods of this study for another study area with more dominated soil types, 

it has a possibility to improve the accuracy of soil line simulation directly from imagery by separating 

the different soil types. 

6. Conclusions 

1. Cloud effect is obvious with soil line simulation from imagery. In addition, cloud lessens the 

slope of soil line when the slope is larger than 1 while the influence of cloud on soil line actually 

enlarges the slope when it is less than 1.  

2. Both early green up season and late senescence season are relatively better for soil line 

simulation from images than late green up, mature and early senesced period for soil line simulation. 

Because soil line does not have seasonal variation since soil type is the main factor that changes soil 

line. This conclusion is not about if soil line extracted from images in early green up season or late 

senescence season have better soil lines than soil lines from other seasons. This conclusion is to fill the 

gap where other studies proved that soil line could be extracted automatically from images but few 

studies few studies have focused on which season was better for soil line extraction since  

“near-infrared band” vs. “red band” scatter plots have large seasonal variations where as soil line does not.  

3. For extracting green biomass or green cover information from Landsat images in mixed 

grassland, the (R, NIRmin) method is better for soil line simulation than quantile regression. Soil 

adjusted vegetation indices (Adjusted Transformed Soil-Adjusted Vegetation Index and Transformed 

Soil Adjusted Vegetation Index in this study) based on soil line simulated from images in early green 
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up and late senescence seasons by the (R, NIRmin) method explains more variation for green biomass 

or green cover than those based on soil line from reflectance of soil samples. 
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