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Abstract: Updated spatial information on the dynamics of slums can be helpful to measure 

and evaluate progress of policies. Earlier studies have shown that semi-automatic detection 

of slums using remote sensing can be challenging considering the large variability in 

definition and appearance. In this study, we explored the potential of an object-oriented 

image analysis (OOA) method to detect slums, using very high resolution (VHR) imagery. 

This method integrated expert knowledge in the form of a local slum ontology. A set of 

image-based parameters was identified that was used for differentiating slums from  

non-slum areas in an OOA environment. The method was implemented on three subsets of 

the city of Ahmedabad, India. Results show that textural features such as entropy and 

contrast derived from a grey level co-occurrence matrix (GLCM) and the size of image 

segments are stable parameters for classification of built-up areas and the identification of 

slums. Relation with classified slum objects, in terms of enclosed by slums and relative 

border with slums was used to refine classification. The analysis on three different subsets 

showed final accuracies ranging from 47% to 68%. We conclude that our method produces 

useful results as it allows including location specific adaptation, whereas generically 

applicable rulesets for slums are still to be developed. 

Keywords: slums; ontology; remote sensing; image classification; texture; object-oriented 

image analysis (OOA); Ahmedabad/India  
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1. Introduction 

The proliferation of slums in cities in developing countries is a major concern for local, national and 

international organizations. Slum eradication is a major target of the Millennium Project [1], and has 

drawn attention to the lack of reliable data for slum areas [2,3]. Many slums are not considered to be 

part of the formal city and are hence not mapped. However, access to reliable spatial and other data on 

slums is essential for assessing the performance of policies and programs for slum eradication. Such 

performance-based urban management requires reliable baseline data in order to implement programs 

for measuring and evaluating policy progress so that required adjustments can be made [4].  

Census surveys are traditionally used for collecting data on inhabited spaces in most countries every 

ten years. However, given the dynamic nature especially of urban areas, available data are often 

outdated. In addition, slums are frequently omitted from formal statistical assessments, hence current 

spatial information on the concentration or location of slum dwellers is frequently absent [5,6]. Other 

methods, such as participatory approaches, require the involvement of local people and are therefore 

time-consuming and resource-intensive [7]. Remote sensing (RS) based methods can provide spatially 

disaggregated and regular information on slums by means of effective detection at variable spatial 

scales [8]. With the increasing availability of very high resolution (VHR) satellite imagery, we 

hypothesize that detection and characterization of slum identification can be improved. 

A high level of complexity is involved in the way real-world objects are represented in remote 

sensing imagery [9]. This, consequently, leads to challenges in image-based detection and 

characterization [10]. Jain [11] studied the identification of slums in fused IKONOS images. She found 

that the heterogeneity of an urban environment could not be represented with a pixel-based 

classification approach using only spectral values. Object-oriented image analysis (OOA), also referred 

to as object-based image analysis (OBIA) and geographic object-based image analysis (GEOBIA), has 

proved to be useful and accurate in urban classification applications [12–15]. Urban areas comprise a 

mix of land cover features such as water, built-up (buildings and impervious) and vegetation (gardens, 

parks, agriculture fields). OOA-based methods have the potential to capture this heterogeneity by 

following a hierarchical procedure for object-classification and by including contextual information for 

objects and non-physical features [13]. In urban studies, this enables identification of buildings, roads, 

and other anthropogenic features more accurately [16]. Cleve et al. [12] showed that an object-based 

classification provides a higher accuracy than pixel-based classification when differentiating urban from 

rural land-use and land-cover categories. Additionally, with the proliferation of high-resolution imageries 

and their improved access, automatic object delineation techniques are being developed [17]. 

Specifically in the case of informal settlements, which can have a relatively complex and undefined 

morphology, OOA-based methods offer the potential to integrate spectral, spatial and contextual 

characteristics [18–20] for classification. Hofmann [19] used OOA to classify informal settlements from 

an IKONOS image. This work was later improved by developing a context-specific ontology to detect 

informal settlements using Quickbird data [5]. OOA also makes effective use of physical proxies to 

characterize urban attributes that are not directly observable, for example for the assessment of social 

vulnerability [13]. Proxy variables of vegetation coverage measured from RS images have been used in 

some studies to derive socio-economic variables [21–23]. A similar approach is attractive for slums and 

informal settlements because spectral information alone does not allow an unambiguous detection. The 
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reflectance resulting from similar surface material composition or land cover of slum and non-slum areas 

can be confusing and thus additional criteria are required to avoid misclassifications. 

For image-based mapping, it is important to have a clear conceptualization of slums as the objects 

of interest. A major challenge is that slums have diverse definitions and can have different appearance 

depending on their geographic setting and local context. This has led to a research gap in slum 

detection using RS. Previous research on slum/informal settlement mapping focused on developing 

context-specific methods. Kohli et al. [10] addressed this gap by developing an ontological framework 

to conceptualize slums using indicators related to the morphology of the built environment. The 

generic slum ontology (GSO) provided a comprehensive description of spatial characteristics and their 

relationships to represent and characterize slums from an image. 

This study adapts the GSO to slums in an Indian city, followed by an OOA-based classification. For 

wider application of a method, it is important to test its applicability in areas of varying characteristics. 

Earlier studies have shown that rulesets obtained by OOA methods can be transferred and reapplied to 

various contexts (subsets of same image or different images) [24,25]. The transferability is defined as 

the degree to which a particular method is capable of providing comparable results for other images. A 

ruleset is easily transferable if it requires minimal manual adaptations for different imaging conditions. 

This study was carried out with GeoEye-1 image of the city of Ahmedabad, India (Figure 2). The 

objectives of this study are as follows: 

• Study the applicability of GSO to an Indian city by integrating expert knowledge.  

• Based on the knowledge from the local slum ontology, develop an OOA method for 

classification of slums. 

• Explore the transferability of the set of parameters used in the OOA method by applying it to 

three different image subsets of a single city.  

2. Study Area 

Ahmedabad, India’s seventh largest city with a population of approximately 5.5 million, covers an 

area of 205 km2 [26]. The city is divided into an eastern and a western part separated by the Sabarmati 

river. The eastern part is the Old City and includes the central town Bhadra that is characterized by the 

barricaded pol system of densely clustered buildings. The Old City is the historical core and is also 

known as “Walled City”. It was found in 1,411 AD and grew over time. The western part includes 

educational institutions, modern buildings, well-planned residential areas, shopping malls, multiplexes 

and new business districts. Slum areas are found in both parts and consist of small, self-constructed 

building units with roof material of tin, thatch, plastic, concrete or clay tiles [27], forming small 

pockets along the river and other parts of the city (Figure 1). In 2001, approximately 25% of the total 

population of the city lived in slums [28]. 

GeoEye-1 images acquired on the 8 January 2010, with a resolution of 0.5 m panchromatic and 

1.65 m multispectral were used for classification. The images were obtained in standard processing 

level, i.e., radiometric and geometric correction was done by the image provider. A resolution merge 

by principal components was performed to produce a pan-sharpened image of four bands with a 0.5 m 

resolution [29]. A vector GIS layer depicting the boundary of the primary river was also used for 
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classification of water. Three subsets of the GeoEye image were used to test the transferability of slum 

identification parameters between subsets (Figure 2).  

Figure 1. Pan-sharpened GeoEye-1 image in true color composite display and ground 

photographs of different parts of the city: (a) Newly planned residential complexes 

emerging on the western side of the river. (b) Old City area. (c) Slum settlement on the east 

of the river.  (d) Typical slum house made of non-durable materials.  

 

• Subset-1 is part of the city center and is approximately 3 km2 in size. It comprises of vegetation, 

river, residential, commercial buildings and slums, with slums located mainly along the river. 

• Subset-2 covers the entire city center, is much larger in size (approximately 18 km2) and 

includes Subset-1. By means of Subset 2, effects of enlargement can be studied. 

• Subset-3 is part of the outer city and contains a mixture of vegetation, industrial and residential 

buildings and slums with slums located mainly close to factories. It is of a smaller size than 

Subset-1 (approximately 1 km2) and thus allows studying the effects of transferability. 

In Ahmedabad, buildings are highly variable in terms of size, color, shape, tone and texture. By 

means of visual interpretation, using parameters such as building roof color, structure, orientation, 

density as well as on road characteristics, amounts and patterns of vegetation and open spaces, it was 

observed that there are many types of built-up areas. For example, the planned residential complexes 

tend to have buildings with bright white roofs that show a well-organized pattern with regular 

orientation and spacing, and are often separated by planned green spaces or vegetation. Some areas 

have buildings with grey, whitish grey or brown roofs with variable green spaces between them, and 
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their size and orientation varies. In contrast, buildings in the Old City are relatively old, the oldest ones 

dating back to 15th century. They show a haphazard pattern with high density, variable orientation, and 

almost no vegetation and open spaces. In the absence of local knowledge, these buildings may be 

incorrectly interpreted as slums. Slum detection studies from satellite images need to address the 

problem of formal-looking informal areas, and informal-looking formal building clusters, as these may 

lead to severe misclassification. By formal, we refer to areas that are planned by the concerned city 

authorities. Informal areas generally develop organically, often built by residents themselves without 

approval from the authorities. Slums are often referred to as informal areas in previous literature [5,10]. 

The Old City is a good example of informal-looking formal building clusters. It is thus required to study 

and understand the context in terms of spatial characteristics of different built-up areas. 

Figure 2. Pan-sharpened GeoEye-1 image of Ahmedabad city in color infrared composite 

display. The three overlaid rectangles mark the extent of different subsets analyzed in 

this study. 

 

3. Method 

This section provides a brief description of a local adaptation of the GSO for Ahmedabad and the 

methods used to develop an object-based slum classification. The ontology of a domain is defined as a 

formal representation of all its essential concepts and their relationships [30]. The GSO defined by 

Kohli et al. [10] focused on morphological indicators of the built environment, specified by the 

“durable housing” indicator that refers to the structural quality of a house and its location with respect 

to hazards [3]. The GSO used concepts at three spatial levels: object, settlement and environs. The 

object level referred to the characteristics of the main physical components of the settlement, i.e., the 

variables that relate to buildings and roads within a slum (e.g., building size and shape; regularity and 

width of roads). The settlement level addressed the overall form, shape and density of a slum. Finally, 

the environs level referred to the location of a slum with respect to surrounding areas in terms of land 
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use and hazard-prone zones. While the GSO is a useful framework to formalize knowledge about 

complex features such as slums, it is also too general to be immediately useful to parameterize an 

image classification for a specific setting. Thus, the intermediate step is to adapt the GSO to the 

specific local conditions of a city. 

3.1. Local Ontology of Slums in Ahmedabad 

The GSO indicators were reviewed in relation to the specific morphologies observed in Ahmedabad 

by means of visual interpretation of imagery and discussions with eight local experts during fieldwork. 

These local experts were urban planners, NGO employees working in slum upgrading programs, and 

officials of the Ahmedabad Municipal Corporation (AMC). Relevant indicators were chosen and 

arranged to form a local ontology for Ahmedabad. Specific values and observations of the indicators 

referring to each ontological concept are given in Table 1. These were used to establish appropriate 

parameter settings for the OOA. 

Table 1. Adaptation of concepts from the generic slum ontology to a local ontology for 

Ahmedabad followed by respective object-oriented image analysis (OOA) parameterization. 

Level 
Ontological  

Concepts 

Interpretation 

Element 

Local Slum Ontology  

for Ahmedabad 

OOA  

Parameterization 

Environs 

Location 
Pattern,  

primary data 

Proximity to highways, major roads, 

railways, lakes, drainage and along river 

that are prone to seasonal flooding 

Association-Distance to river 

Neighborhood 

characteristics 

Pattern,  

primary data 

Proximity to employment opportunities 

such as CBD, middle/high socio-

economic status neighborhoods 

Not used due to absence of spatial data 

on the socio-economic status 

Settlement 

level 

Shape Pattern 
Irregular shape, elongated shapes along 

linear features 

Geometry-Buffer for  

slums along the river 

Density Texture 

Roof coverage > 80% 

Amount of vegetation/ 

open spaces < 10% 

Texture-Entropy,  

Contrast Geometry-Area  

of built-up 

Object 

level 

Building 

Shape Size  

Material Color  

Orientation 

variable 

Range of values:10 to 40 m2 

Roofs: corrugated iron sheets, tin, 

concrete, plastic, tiles, thatch 

Range: grey, brown, white Haphazard, 

clumped together 

Geometry-Asymmetry  

Geometry-Area 

Spectral-Layer mean value 

Spectral-Layer mean value 

Access network 

Shape 

Type 

Width 

Irregular 

Paved/unpaved access streets 

Range-variable 

Not used due to limitation of spatial 

resolution. Access streets are not 

visible in highly dense slums 

3.2. Converting Local Ontology to OOA Parameters 

The local ontology guided the OOA parameterization by defining the different features for 

classification. Four broad categories comprising spectral range, geometry, texture and association were 

chosen to translate the adapted ontology to OOA parameters (Table 1). The definitions and details of 
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all the parameters used are given in Tables 2 and 3 respectively. Conversion of ontological indicators 

into object-based parameters was done by integrating expert knowledge until object classification was 

achieved to a visually satisfying degree.  

Table 2. The definitions of the stable parameters used in the classification of three subsets. 

For details on each of the parameters, refer to Haralick et al. [30] and Definiens [32]. 

Parameter Description Definition 

NDVI Normalized difference 

vegetation index 

An index developed to measure vegetation, defined as  

(near-infrared (NIR) − red)/(NIR + red) 

MG Mean green The mean intensity of all pixels forming an image object in the green band. 

RB(SL) Relative border to slums The ratio of the shared border length of an image object (with a neighboring 

image object assigned to a defined class) to the total border length. 

GLCM Grey level co-occurrence 

matrix 

Proximal combinations of pixel brightness values (grey levels) within a 

particular band of an image. 

GLCMEnt(R) GLCM entropy for red 

band 

The measure of orderliness within a band of an image and relates to textural 

homogeneity. 

GLCMCon(R) and 

GLCMCon(B) 

GLCM contrast for red 

and blue band 

The amount of local variation within a band of an image. 

Merge Merge region Neighboring image objects of the same class are merged. 

Area Area of object The number of pixels forming an image object. 

Asym Asymmetry The ratio of the lengths of minor and major axes of an ellipse approximation of 

the object. 

ES Enclosedness by slums Image objects that are completely enclosed by objects belonging to selected 

class. 

MDS(R) Mean diff. to scene for red 

band 

Difference between the mean intensity of a band and all pixels forming an 

image object in the same band. 

Table 3. Ruleset summary and the quantitative classification criteria used for different 

subsets. The classification steps show the sequence with top being attempted first. 

Seq 

No. 
Classification Steps Ruleset-1 for Subset-1 Ruleset-2 forSubset-2 Ruleset-3 for Subset-3 

1 Classify Water 
Multiresolution segmentation 

using thematic layer 

Multiresolution segmentation 

using thematic layer 
No water body 

2 Object creation Multiresolution segmentation (Ψ = 40, wshape = 0.5, wcompt = 0.5 ) 

3 Classify Vegetation NDVI > 0.1 

4 Classify Shadows MG < 208 MG < 122 MG < 131 

5 Classify Built-up GLCMEnt(R) > 3.7 

6 Buffer along river Within 500 Pixels Within 500 Pixels No buffer 

7 Classify Slums 

GLCMCon(B) < 4, 

ES, RB(SL) > 0.3,  

62,000 < Area < 63,000 

2.5 > GLCMCon(B) < 5, 

ES, RB(SL) >0.3 

5 < GLCMCon(R) < 9 

ES, RB(SL) >0.3 

8 Clean-up 
MG > 240, Area < 25,000, ES, 

RB(SL) > 0.3 

MG > 155, Area < 6,000, ES, 

RB(SL) > 0.3 

Area < 50,000, MDS(R) > 5, ES, 

RB(SL) > 0.3, Asym < 0.5 

The first step in an OOA is image segmentation, i.e., dividing the image into regions or objects of 

homogeneous pixel values within the segmented objects. We used multi-resolution segmentation in the 
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analysis. Multi-resolution segmentation is a bottom-up segmentation method based on a pairwise 

region merging technique [31]. The first step is to assign appropriate values to the key parameters, 

namely scale (Ψ), shape (wshape) and compactness (wcompt) to segment objects. Here, Ψ determines the 

maximal allowed heterogeneity of the objects. A large value of Ψ results into a low number of 

relatively large objects, whereas a small value for Ψ results in a large number of relatively small 

objects [31]. The parameter wshape balances the shape vs. the spectral homogeneity of objects as the 

sum of two is equal to one. A value of 0.5 was assigned to wshape to give equal weight to shape and 

spectral reflectance. The parameter wcompt determines the compactness of the edges of objects. The 

values to Ψ, wshape and wcompt are assigned based on expert knowledge and the purpose of 

classification [32]. Currently there is no standardized or widely accepted method for optimal scale 

determination for different application areas and images, though methods such as ESP (Estimation of 

Scale Parameter [6]) or the POF (Plateau Objective Function [33]) have been making the segmentation 

parameterization process easier and more transparent. In addition, in recent years the initial 

segmentation, and thus the above parameters, have become less important, with subsequent object 

shaping procedures allowing more control over the analysis process (e.g., [34]). Parameter values and 

segmentation results are shown in Figure 3. The segments outlining individual buildings and trees in 

non-slum areas and clumped buildings as objects in slum areas can clearly be seen (Figure 3). 

Figure 3. Multiresolution segmentation of the multispectral image (Ψ = 40,  

Shape wshape = 0.5, wcompt = 0.5). (a) The individual buildings and trees are outlined in the 

non-slum areas. (b) In the slum areas, image objects are clumps of buildings due to the 

relatively low color contrast. 

 

Next, spectral (intensity, brightness), spatial (size, shape, area), textural and contextual features 

(relation with neighboring objects) of the resulting image objects were analyzed (Table 2). These 

features allowed classification of image objects into meaningful classes. A sequence of steps was 

repeated until all objects were classified. These steps form a ruleset that was then to be applied to the 

different image subsets (Table 3). The settings and adjustments made for each image subset are 
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described below. We have to consider this within the usually taken OOA approach to have a common 

ruleset applicable for every subset. The accuracy assessment is discussed in the results section  

3.3. Approach for Slum Identification and Classification 

3.3.1. Subset-1 Part of City Center 

A multi-resolution segmentation was performed to create segments that delineate meaningful 

objects such as the roofs of buildings and trees (Figure 3). Water was classified by using an existing 

polygon layer of the river. Normalized difference vegetation index (NDVI) values above 0.1 were used 

to classify vegetation. Shadows correspond to low brightness values in an image and were classified 

using mean green (MG) < 208 values. Building roof texture is homogeneous and has high entropy. 

GLCM entropy values, calculated using Haralick’s method [35], discriminated the built-up from other 

classes. GLCMEnt(R) > 3.7 was used to classify the built-up area where GLCMEnt(R) indicates the 

GLCM entropy for the red band. 

According to the local ontology of Ahmedabad, many slums have developed along the river 

(Table 1). The distance of the Old City from the river, calculated from the top edge of the image, is 

approximately 250 m. Based upon this knowledge, we defined a buffer of 250 m on either side of the 

river for slum classification. This prevented misclassifications in the Old City, which forms a major 

part of the city center. The GLCM contrast for the blue band (GLCMCon(B)), enclosedness by Slums 

(ES) and relative border to slums (RB(SL)) were used as parameters for slum classification within the 

buffer (Table 3). The GLCMCon(B) values showed different contrasts between slum and non-slum 

built-up. A GLCMCon(B) < 4 value corresponded to the relative homogeneity and low contrast within 

the slum patches. The feature ES was used to classify the misclassified slum-objects embedded within 

classified slums. For including the missing slums in the buffer, a threshold greater than 0.3 for RB(SL) 

was found appropriate. Therefore, built-up and shadow objects with a relative border > 30% with slums 

were reclassified as slums. Next, objects of the built-up class were merged and the variable Area was 

used outside the river buffer to find additional slum patches. In slums areas, due to poor contrast and the 

resolution that is still relatively large with respect to the size of the slum buildings, individual buildings 

could not be segmented. This can also be considered a limitation of spatial resolution, as building size in 

slums is small. The slum buildings were segmented as clumps as compared to the individual building 

objects in non-slum areas. Thus, a large value of Area could distinguish the slum object from the other 

built-up objects. Misclassifications were removed by applying additional criteria for refining the 

classification results as discussed in Section 3.3.4. The sequence of steps was saved as Ruleset-1. 

3.3.2. Subset-2 Full City Center 

Ruleset-1, developed for the city center, was applied to the larger Subset-2 area. The values for 

parameters Ψ, wshape and wcompt were unchanged, as was the parameter threshold for detecting 

vegetation. The threshold for shadow was changed to MG < 122 as the value of MG < 208 classified 

the entire built-up as shadow. The previous value of GLCMCon(B) < 4 could only partially classify 

slum patches inside the buffer and a new threshold range of GLCMCon(B) between 2.5 and 5 was used 

for classification of slums (Table 3). The reason for the change in thresholds is the relatively large size 
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of Subset-2 compared to Subset-1 as a larger subset resulted in a larger number of objects. New 

threshold values were, as before, decided upon a qualitative evaluation of the resulting classification. 

The ES and RB (SL) parameter remained unchanged. Area was not used for slum classification in this 

ruleset, because its inclusion resulted into a large number of false-positives from the Old City. 

Misclassifications were removed using a clean-up operation. This modified ruleset was saved as 

Ruleset-2 (Table 3). 

3.3.3. Subset-3 Residential and Industrial Part of Outer City 

The morphology in Subset-3 is different compared to that of Subset-1. Subset-3 is characterized by 

large industrial roofs and residential areas in addition to slums. Ruleset-1 was applied to Subset-3 to 

check its transferability. Using Ruleset-1, it was possible to classify vegetation. With an unchanged 

MG value, the whole image was classified as shadow (excluding vegetation). MG values of building 

objects corresponded to the value range for shadows in Subset-1. The value for shadow classification 

was decreased (MG < 131) and with the same remaining steps, the image had a large number of 

misclassifications and low accuracy. Thus, the remaining steps of the ruleset had to be adapted by 

adjusting the parameters. The values for parameters Ψ, wshape and wcompt, remained unchanged, as were 

the thresholds for NDVI and GLCMEnt(R). Slums were detected using modified threshold values of 

GLCMCon(R) (5 < GLCMCon(R) < 9) followed by ES and RB (SL) respectively. There were a large 

number of false-positives from the industrial buildings with long roofs and other built-up areas. These 

misclassifications were removed using clean-up steps and the new modified steps were saved as 

Ruleset-3 (Table 3). 

3.3.4. Clean-Up 

A clean-up operation was performed to eliminate non-slum objects from the classified slums and 

reclassify any observed, misclassified slum-objects. For Subset-1, the parameters MG, Area, ES, and 

RB (SL) were used to remove misclassifications. High values of MG (>240) and low values of Area 

(<25,000) of merged slum objects were used to remove the false positives from other built-up objects. 

Subsequently, ES and RB (SL), with the same threshold as earlier (>0.3), were used to reclassify the 

missed slum objects. The same set of parameters was used for Subset-2 as for Subset-1, whereas 

values of MG and Area were modified. Non-slum buildings, classified as slums, were reclassified 

using a lower threshold for MG (>155). Area of objects was further used to remove misclassified  

built-objects. A lower value of Area (<6,000) was used to preserve the smaller slum patches in this 

subset. A sequence of steps using the parameters Area, MDS(R), ES, RB(SL) and Asym, were used to 

clean up in Subset-3. The parameters used for clean-up, MG in Subset-1, did not improve the 

classification. This was due to similar brightness of false-positives from non-slum buildings. Subset-3 

comprised one large patch of slums. Thus after merging the slum objects, a high value of Area 

(<50,000) was used to remove smaller non-slum objects. Two new parameters (MDS and Asym) were 

added in the clean-up of Subset-3. The parameter MDS(R) (>5) could remove misclassified industrial 

buildings due to relatively high intensity difference in the red band. A low value of Asym can be used 

to define square objects. Thus, Asym (<0.5) was used to distinguish irregularly-shaped slum patch 

from non-slum built (Table 3; Figure 4).  
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Figure 4. Integrating expert knowledge from local ontology of Ahmedabad at settlement 

level. Slums tend to have an irregular shape with very high building densities in 

comparison to non-slums. 

 

3.3.5. Accuracy Assessment 

To access the accuracy of the classification in the three subsets, we used manually defined samples 

as reference areas. These areas were delineated by a slum expert from Ahmedabad (Figure 5). The 

accuracy of slums was assessed by using the “error matrix based on training and test area (TTA) mask” 

in Definiens. The error matrix is generated by comparing classification with reference values based 

on pixels. 

3.3.6. Identifying the Most Stable Parameters 

A main aspect of this study was to provide an investigation into the transferability of rulesets from 

one area to the next, and from one scale level to the next. In order to do so, we assigned weights to the 

parameters used for classification depending on the need for adaptation from one subset to another. 

The purpose of weight allocation was to identify the most stable parameters used for classification. 

The parameters that required no change were given a bonus weight of 0.25, resulting in a maximum 

weight of 1. Additional weights were given depending upon the applicability of the parameter, change 

in their thresholds in one, two or all subsets. The significance of specific parameters for classification 

and weight allocation is shown in Table 4. 
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Figure 5. Slum delineations by an expert overlaid on Subset-2 and the magnified view of 

two such delineations: (a) A slum on the bank of the river (b) Slum buildings under the 

vegetation cover. 

 

Table 4. Allocation of weights to the parameters depending on applicability in 

different subsets. 

Class Parameter Subset-1 Subset-2 Subset-3 Bonus Total 

Vegetation NDVI 0.25 0.25 0.25 0.25 1 

Shadow MG 0.25 0.25 0.25 0.2 0.95 

Built-up GLCMEnt(R) 0.25 0.25 0.25 0.25 1 

Slums 

GLCMCon(B) 0.25 0.25 0 0.1 0.6 

GLCMCon(R) 0 0 0.25 0 0.25 

ES 0.25 0.25 0.25 0.25 1 

RB(SL) 0.25 0.25 0.25 0.25 1 

Clean-up 

MG 0.25 0.25 0 0.1 0.6 

Area 0.25 0.25 0.25 0.2 0.95 

ES 0.25 0.25 0.25 0.25 1 

RB(SL) 0.25 0.25 0.25 0.25 1 

MDS(R) 0 0 0.25 0 0.25 

Asym 0 0 0.25 0 0.25 
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4. Results  

For Subset-1, the parameters GLCMCon(B), ES, RB(SL) and Area were used for classification of 

slums. The accuracy for slums before clean-up was 56%. False-positives were removed by using MG, 

Area, ES and RB(SL). The accuracy assessment results after clean-up showed an accuracy of 58% of 

classified pixels (Figure 6). For Subset-2, the same parameters except Area were used for the 

classification with change in threshold for GLCMCon(B). The accuracy before clean-up was 38%. A 

sequence of steps using parameters MG, Area, ES and RB(SL) was used to clean-up the incorrectly 

classified slums. The slums in the vicinity of the river were classified with 47% accuracy after  

clean-up (Figure 7). 

Figure 6. Subset-1 classified using ruleset 1. Slums form a strip close to the east of the 

river with the exception of one slum patch on the west. 

 

When Ruleset-1 was applied to Subset-3 (with modified MG for shadow classification) (Figure 8), 

the initial results were with a large number of false positives. To improve the classification the 

GLCMCon(R) was used with different threshold values. ES and RB(SL) were used similar to Subset-1. 

MDS(R) and Asym were new additions in this ruleset for removing false-positives. Subsequently, the 

remaining slum buildings in the proximity of existing classified slums were reclassified by using ES 

and RB(SL). Irregular shapes of slums from the ontology could thus be integrated by using Asym to 

exclude objects misclassified as slums (Figure 4). With Ruleset-3, slums in Subset-3 were classified 

(see Figure 8) with an accuracy of 68%. 
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Figure 7. Classification of Subset-2 with Ruleset-2 after applying clean-up procedures. 

 

Figure 8. Classification results of Subset-3: (a) Application of Ruleset-1, industrial 

buildings are misclassified as slums due to their large roofs. (b) Application of Ruleset-3, 

the slum area is now correctly classified after removing the false positives. 
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Figure 8. Cont. 

 

Identifying the Most Stable Parameters  

Some parameters (in italics in Table 4) were stable and could be used with some or no modification. 

To evaluate the stability, weights were assigned to parameters based on their applicability on different 

subsets. For example, the NDVI was used to classify vegetation in all three subsets with the same 

threshold. A bonus of 0.25 was given in such cases where the same parameter was applied to all 

subsets with the same threshold. . Alternately, the same parameter could be used to classify features 

only after modifying thresholds. For example, MG could be used to classify shadow with changed 

thresholds in all subsets. A bonus of 0.2 was given to the parameter in such cases. There were other 

parameters such as GLCMCon(B) (Table 4), which worked on two subsets but not in the third. In this 

case, a bonus of 0.1 was assigned. NDVI, GLCMEnt(R), ES, RB(SL) followed by MG received the 

highest weights according to their stability (Table 4). For clean-up, ES, RB(SL) and Area were the 

most important parameters. Other parameters were useful but their applicability depended on the 

particular subset characteristics. For example, MDS(R) and Asym were useful for the specific 

morphology of Subset-3.  

5. Discussion 

The advent of VHR satellite imagery has resulted in a surge of RS-based urban studies in a variety 

of areas [22]. A number of these studies have focused on cities of developing countries. Most of the 

earlier urban models and methods were developed in and for a western context. There have been 

successful attempts to apply these models by adapting them to different contexts. The widespread use 

of landscape metrics in urban applications, which were primarily developed for American cities [36], 

is such an example. Nonetheless, there may be problems in adapting such approaches to the developing 

context. An example is the studies on determining socio-economic status of residential areas using 

spatial patterns and configuration, such as the vegetation, impervious surface, bare soil (V-I-S) model 

proposed by Ridd [37]. The V-I-S model is used to infer landuse depending on the proportional 
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abundance of each of the land cover data. This approach may well work in most western cities but has 

limitations in a developing setting such as India.  

For image-based analysis, it is thus important to understand the processes underlying such 

complexities. Slum identification and classification pose an additional challenge, because of 

differences in definition and appearance within and among contexts. The relatively low number of 

international publications on RS-based slum/informal settlement identification in India, despite the 

acknowledged scale and importance of the problem, substantiates the challenges involved in this 

area [11,38]. Our research is an attempt to take a step forward in this direction by using a systematic 

classification approach using an OOA guided by locally adapted generic slum ontology [10]. The use 

of local ontology helped us to integrate expert knowledge during classification. Slum features typically 

used by experts in visual interpretation and delineation served as a starting point for the application of 

the slum ontology. This knowledge integration is important to understand the characteristics of slums 

in a city. We developed a ruleset in OOA to differentiate slum from non-slum areas and explored its 

applicability on subsets of varying characteristics. This was different from developing three distinct 

rulesets independently, as it was carefully checked on which parameters changes were necessary when 

applying the ruleset to the other subsets. Our analysis showed that the parameters NDVI, MG, and 

GLCMEnt(R) were useful for basic classification of vegetation, shadow and built-up, respectively, in all 

three subsets. For classification of slums, GLCMCon(B), ES and RB(SL) were stable and are thus 

transferable parameters. Area, in terms of number of pixels, was suitable for eliminating false positives 

in all subsets. ES and RB(SL) were uniformly useful for reclassifying any misclassified slum objects 

embedded within the slums.  

We used the same set of parameters to explore the scope for creating a generic ruleset that could be 

applied throughout the city irrespective of location and scale. Variability of the urban environment is 

such that a generic ruleset could not be defined. This variability is caused by the composition of 

different built-up areas. For example, Subset-3 comprised industrial structures in addition to residential 

buildings. The ruleset had to be modified to address this by using spectral value (MDS) and shape 

(Asym) parameter to differentiate slums. In addition, the use of different thresholds and parameters for 

clean-up (Table 4) is due to scene-specific adaptations. In the future, it may be a solution to have a 

generic definition of area types like industrial or old city and applying that to the scene to divide it into 

sections that could be further processed with a specific ruleset.  

The same basic approach can most likely be applied to a different context with local adaptation. Once 

the ruleset has been finalized an efficient monitoring of slums over time (e.g., size, density, changes in 

road network characteristics) becomes possible, though rulesets may have to be adapted to new situations 

even in the same area. A further alternative to our approach based on explicitly encoded expert 

knowledge may be to incorporate training data based on known slums, and the use of machine learning 

tools such as Random Forests [39] to identify the relevant parameters that define those urban features. 

Most Indian cities are complex, in terms of morphology and have a historical significance to their 

development. For instance, Ahmedabad, like many other Indian cities, has an old city core known as 

the “Walled City” which developed over 6 centuries ago. During our field visit to Ahmedabad, many 

buildings in the Old City were found to be dilapidated and precarious, and effectively constituting 

slum buildings (Figure 1). After discussion with one of the local experts, we found that the architecture 

and planning in the Old City was predesigned to promote community living and security in case of 
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communal riots. Based on the cultural and historic importance of the Old City, the Archaeological 

Survey of India (ASI) has nominated it for Unesco’s world heritage list [40]. The unique architecture 

comprises “Pol housing”, typically consisting of closely packed houses with a common backyard for 

people from one community (Figure 1). In the absence of detailed ground knowledge, it is difficult to 

differentiate these congested areas from slums in the imagery. This was a limitation of RS-based slum 

identification and, thus, required a customized approach. We used expert knowledge integrated in the 

slum ontology to address this problem. Creation of buffer areas on either side of the river reduced the 

area of analysis for Subset-1 and 2, reducing the misclassifications from the Old City. The possibility 

of missing slums within the Old City remains, but this is more of a problem of slum definition. Our 

method does provide a set of stable parameters that worked on subsets of varying characteristics in an 

Indian city. It may work well if there are no slums outside the river buffer, but care must be taken not 

to use such an approach in an area with completely different characteristics. 

The accuracy values for the three subsets range from 47% to 68% (after clean-up). In the absence of 

reliable data, the delineations of slums by a local planner were used as reference (Figure 5). However, 

the question remains whether such reference data are a suitable benchmark for accuracy assessment. 

The amount of generalization an expert introduces in delineating can impact the accuracy results 

substantially, while the conceptualization used to define slums may also differ. However, in a data 

poor environment, this approach was the best-suited to get an unbiased validation. This problem is 

accentuated by the fact that there are political, administrative as well as physical aspects related to 

slum definitions. An inherit problem of vegetation cover hindering the detection of slum buildings also 

remains (Figure 5). Considering that only morphological indicators derived from images were used for 

classification, the accuracy results are acceptable. Additional information in the form of GIS layers 

may be helpful in refining the results further. For example, slum areas tend to have community water 

connections instead of individual taps in each household. If detailed data on water connections are 

available, it can be integrated with population of a settlement. A scenario with settlements of dense 

population with few water connections could then be used to find probable slums. Similarly, data on 

other utilities such as electricity or gas connections may also be useful. Such additional information 

may also address the problem of distinguishing formal-looking informal areas, and informal-looking 

formal building clusters. For example, the road-side shops and markets in many Indian cities have 

structural similarity to slum areas. We recommend such investigation for future research in slum 

identification studies. 

6. Conclusions 

Slum detection studies need to incorporate the issue of variable definitions and appearance of slums 

in different contexts. To include contextual knowledge, we use expert knowledge encoded in an 

ontological framework to classify slums in the city of Ahmedabad, India. Using the generic slum 

ontology as a basis, we tested the transferability of an Object-oriented image analysis (OOA) method 

for slum classification developed on one image area to other image areas. Our analysis identified 

textural features derived from a grey level co-occurrence matrix (GLCM) such as entropy (GLCMEnt) 

and contrast ((GLCMCon), relation with classified slum objects, in terms of enclosed by slums (ES) and 

relative border with slums (RB) and the size of image segments (Area) as stable parameters for 
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classification of built-up areas and slum identification. These parameters worked on all the subsets 

with minimal adaptation and thus, can be considered as most transferable. The analysis on three 

different subsets shows accuracies ranging from 47% to 68%. The rulesets and further images will be 

placed on our website [41]. The applicability of our OOA-based detection method in other cultural 

spheres remains to be tested.  
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