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Abstract: Dryland river basins frequently support both irrigated agriculture and riparian 
vegetation and remote sensing methods are needed to monitor water use by both crops and 
natural vegetation in irrigation districts. We developed an algorithm for estimating actual 
evapotranspiration (ETa) based on the Enhanced Vegetation Index (EVI) from the MODIS 
sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET 
(ETo). The algorithm was calibrated with five years of data from three eddy covariance 
flux towers set in riparian plant associations on the upper San Pedro River, Arizona, 
supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was 
based on an equation of the form ETa = ETo [a(1 − e−bEVI) − c], where the term (1 − e−bEVI) 
is derived from the Beer-Lambert Law to express light reflection from a canopy, with EVI 
replacing leaf area index as an estimate of the density of light-absorbing units. The 
resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73). It 
was then tested against water balance data for five irrigation districts and flux tower data 
for two riparian zones for which season-long or multi-year ETa data were available. 
Predictions were within 10% of measured results in each case, with a non-significant  
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(P = 0.89) difference between mean measured and modeled ETa of 5.4% over all validation 
sites. Validation and calibration data sets were combined to present a final predictive 
equation for application across crops and riparian plant associations for monitoring 
individual irrigation districts or for conducting global water use assessments of mixed 
agricultural and riparian biomes. 

Keywords: remote sensing; leaf area index; water balance; alfalfa; saltcedar; common 
reed; mesquite 

 

1. Introduction 

1.1. Need for Evapotranspiration Estimates for River Basin Irrigation Districts 

Dryland (arid and semi-arid) agricultural districts are frequently located in riparian floodplains, 
using water diverted from the river for irrigation of crops. In these districts, crops and natural riparian 
vegetation often must co-exist on limited water supplies [1]. Riparian corridors provide habitat for fish, 
mammals and resident and migratory birds, while agriculture is the primary source of income for 
surrounding communities. Resource managers need accurate estimates of water requirements of both 
crops and riparian vegetation to construct district water budgets and apportion water. Globally, crop 
water budgets require robust algorithms that are calibrated for specific agricultural systems [2]. 
Irrigated lands account for about 18% of total cropland area but 40% of global food production. They 
also consume 60–90% of all water diverted for human purposes. Hence, the main goal of this study 
was to test the feasibility of developing a remote sensing algorithm for mixed riparian and crop 
systems in dryland irrigation districts that can be applied on a global basis. 

1.2. Methods to Determine Crop Water Budgets 

Several methods exist to estimate consumptive water use by crops. Often, diversions and drainages 
(return flows) are gauged to estimate each term [3]. Crop consumptive use (i.e., ETa) can then be 
estimated as a residual in a water balance equation. Another widely used approach is to census the 
planted fields within a district and to estimate consumptive use by applying a crop coefficient 
approach to the fields where: 

ETa = KcETo        (1) 

where ETa is actual evapotranspiration, Kc is a crop coefficient and ETo is reference crop 
evapotranspiration estimated from meteorological data [3]. Kc is derived from experimental data for 
each crop and relates ETa to local meteorological conditions through ETo. An example of this approach 
is the Lower Colorado River Accounting System [4]. In well-monitored irrigation districts, ETo is 
calculated with data from local micrometeorological stations based on wind speed, relative humidity, 
temperature and net radiation data according to the FAO-56 formulation of the Penman-Monteith 
equation [5]. 
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Water balance approaches can provide accurate data for closed basins over long time spans 
(typically annually or longer) over which changes in surface and groundwater storage are negligible 
compared to inflows and outflows. However, these conditions are not always met, and water balances 
are problematic over short time periods or for individual fields. Crop coefficient methods tend to 
overestimate crop consumptive use because they are typically derived for crops grown under optimal 
conditions in lysimeters, whereas actual field crops can have uneven stands and are subject to nutrient 
limitations and periodic water stress between irrigations. Also, neither of these approaches is easily 
adapted to riparian vegetation, for which crop coefficients might be variable or unknown.  

1.3. Remote Sensing Methods for Estimating ETa 

In response to these limitations, numerous methods have been developed to estimate ETa through 
remote sensing with satellite imagery [6,7]. These methods fall into two broad categories. Surface energy 
balance (SEB) methods use data from thermal infrared (TIR) satellite bands to estimate sensible heat 
flux, then calculate latent heat flux (ETa) as a residual in the SEB equation. By contrast, vegetation 
index (VI) methods, used in the present study, combine estimates of green foliage density with 
meteorological data to estimate evaporation from transpiring vegetation (Eveg). VI-ETo methods [8–10] 
substitute a VI for Kc in Equation (1) then calculate ETa based on locally-measured ETo: 

Eveg = aEToVIn      (2) 

where a is a coefficient determined by regressing measured Eveg against a VI and n is an exponent 
relating Eveg to VI [11]. Sometimes Equation (2) is assumed to be a linear function, in which case  
n = 1. In some cases, as in the present study, the calibrating data come from measurements of ETa 
(e.g., from lysimeters or micrometeorological flux towers), in which case Equation (2) estimates ETa 
rather than Eveg. 

Both SEB and VI methods have been reviewed recently, and their strengths and weaknesses 
compared [10,12,13]. Gonzalez-Dugo et al. [14] found similar levels of accuracy for SEB and VI-ETo 
methods compared to eddy covariance data in a mixed-crop, agricultural district in Iowa, subsequently 
adapting the later method to water-use monitoring in an irrigation district in Spain [15]. In this study, 
we tested the feasibility of developing a generalized VI-ETo algorithm that could be used to estimate 
ETa of arid-zone irrigation districts, including both crops and riparian vegetation. If successful, this 
algorithm could be used to characterize water use efficiency and crop and environmental water needs 
in this type of agricultural biome, as part of an overall strategy to assess global croplands water use [2].  

1.4. Applicability of VI-ETo Methods to Dryland Irrigation Districts 

The two main limitations of VI-ETo methods are: (1) they do not account for direct evaporation 
from flooded fields or from soil and canopies following rains; and (2) they do not account for  
short-term (periods of hours to several days) stress effects on plants [6,13]. These problems tend to be 
minimized in dryland irrigation districts where rainfall is infrequent and 80–90% of applied water is 
consumed in Eveg, see [5]. Stress of crops is minimized due to the provision of irrigation water, and 
riparian plants are mainly phreatophytes that have a more-or-less constant water supply from the 
shallow aquifer under the riparian floodplain [16] (also see [17,18]). Furthermore, an estimate of soil 
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evaporation can be obtained separately with the two-source model for estimating ETa, which uses 
drying curves based on soil type to derive evaporation rates following an irrigation or rain event [19]. 
In districts with significant periods of wet soil due to rain or high-frequency irrigation (e.g., by 
overhead spray booms), the two-source model can be used [19]. However, in flood-and-furrow 
irrigated arid irrigation districts, the single-source model, which lumps evaporation and transpiration 
together in a single Kc, often performs nearly as well as the two-source model [3]. Moisture or nutrient 
stress can result in short-term decreases in stomatal conductance (GS), but in the longer term, plants 
tend to reduce leaf area index (LAI) to match the capacity of the environment to support 
photosynthesis [20]. Hence, over a crop cycle, stress results in a reduction in LAI which can be 
detected as a decrease in VI. 

1.5. VI-ETo Methods Applied to Crops 

Numerous studies have documented a strong correlation between VIs and crop ETa [10]. For 
example, the VI-ETo concept was tested for a number of crops in California’s Central Valley [21] and 
forms the basis of a prototype satellite irrigation management support system developed to predict 
real-time crop water demand in California irrigation districts [22]. Similarly, a recent set of 
experiments in Spain’s Guadalquivir basin irrigation district found an acceptable level of accuracy 
between ETa measured by eddy covariance flux towers and VI-ETo estimates of ETa for four test 
crops [14]. The authors concluded the VI-ETo method produced valid and robust estimates of ETa and 
they, too, developed an operational irrigation management program for farmers in the district based on 
spatially distributed ETa estimates from Landsat imagery [15]. Both methods had errors under 10% 
compared to ground estimates of ETa. However, different algorithms were proposed for each irrigation 
district and no single VI-ETo method has yet been applied across a wide range of irrigation districts. 
Furthermore, riparian vegetation has not been included in estimates of irrigation district ETa. These 
methods can supplement more conventional water balance methods applied to irrigation districts in 
which not all the terms are adequately measured [23,24]. 

1.6. VI Methods Applied to Riparian Vegetation 

Several studies have shown that riparian vegetation is also amendable to VI-ETo or other VI 
methods for estimation of ETa. Surface soils are typically dry for most of the year, so direct 
evaporation of water is low. Nagler et al. [25] developed an algorithm for riparian ETa based on the 
Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectrometer sensors on the 
Terra satellite that adequately predicted (r2 = 0.74) ETa measured at eight moisture flux towers on three 
different river systems and over five different plant associations ranging from grasses to shrubs and 
trees. Scott et al. [26] found that this algorithm reproduced water balance estimates of ETa on the 
upper San Pedro River, Arizona, within 10%. Groeneveld et al. [16] found that a single summer 
Landsat Normalized Difference Vegetation Index (NDVI) image could be used to predict annual ETa 
measured at moisture flux towers for a variety of riparian and desert phreatophyte sites in the western 
US with r2 = 0.95. 

Riparian plant communities are subject to environmental factors that can reduce ETa below ETo. 
ETa typically decreases with increasing depth to groundwater below about 2 m [27]. Depth to 
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groundwater frequently increases over the summer as water is withdrawn to support ETa, hence 
ETa/ETo might not be constant over a growing season [28]. Furthermore, salts can accumulate in soils 
and aquifers, further limiting ETa [29]. Finally, soil hydraulic properties can constrain ETa by limiting 
the rate at which the capillary fringe from which phreatophytes extract water can be replenished during 
the day [30]. Nagler et al. [17,18], working at salinized sites on the Lower Colorado River, found that 
mean ETa across sites could be predicted by VI-ETo methods with a standard error of about 20% 
across sites, but that ETa at any given site could vary much more due to differences in aquifer and soil 
properties among sites. 

1.7. Experimental Approach 

Our overall goal was to develop a robust algorithm that could be used to estimate annual rates of 
water consumption by crops and riparian vegetation over entire irrigation districts. Our intention is to 
apply this algorithm, if successful, to assessing water use efficiency and pin-pointing opportunities for 
water savings in global irrigation districts [2]. However, ground data for ETa is often available only as 
short-term estimates over limited spatial areas. Furthermore, we wanted to develop an algorithm that 
could be applied over mixed vegetation districts, with crops and riparian plants of different roughness 
lengths and other biophysical properties. In this study, we developed an algorithm for ETa of mixed 
crop and riparian areas based on ETo and the Enhanced Vegetation Index (EVI) from the Moderate 
Resolution Imaging Spectrometer (MODIS) on the NASA Terra satellite. MODIS images are acquired 
near-daily with 250 m resolution, hence are able to closely track the phenology of crops and riparian 
plants over a growing season. The algorithm was calibrated with eddy covariance flux tower data for 
riparian plant communities on the San Pedro River, Arizona, supplemented with data from cotton and 
alfalfa fields in southwestern irrigation districts. The algorithm was then tested against season-long 
results from seven irrigation districts or riparian zones in dryland areas in the US, Spain and Australia, 
determined by water balance or flux tower measurements as reported in the literature. We used 
seasonal or longer data sets for validation because the purpose of the algorithm is to predict  
season-long ETa, not just to reproduce short-term data as in the calibration set. Examples of the 
calibration and validation sites are shown in Figure 1. 

2. Materials and Methods 

2.1. Form of the Algorithm for ETa 

The algorithm for ETa took the form used by Nagler et al. [25] and Guerschman et al. [31]: 

ETa = ETo[a(1 − e(−bEVI)) − c]       (3) 

where a, b and c are fitting coefficients and (1 − e(−bEVI)) is derived from the Beer-Lambert Law 
modified to predict reflection of light from a canopy [32]. As formulated for plant canopies, LAI 
normally replaces N in the Beer-Lambert equation as an estimate of density of light absorbing 
particles, and in our application EVI replaces LAI, assuming a linear relationship between EVI and 
LAI over LAI values from 0 to ca. 4 as demonstrated in [17,33]. The coefficient c accounts for the fact 
that EVI is not zero at zero ETa since bare soil has a low but positive EVI. Note that we are predicting 
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ETa rather than Eveg with this equation because all our ground data sources for ETa included both Eveg 
and direct evaporation from soils. Ground data for ETa were used to determine the coefficients a, b and 
c by regression analyses. 

2.2. Moisture Flux Tower Data 

Riparian ETa data came from three eddy covariance moisture flux towers set in different 
plant communities on the upper San Pedro River, Arizona. The Charleston Mesquite (CM) tower 
(Figure 1A) was in a dense, mesquite woodland; the Lewis Springs Mesquite (LSM) tower was in a 
less-dense mesquite shrubland site; and the Lewis Spring Sacaton (LSS) tower was in a big sacaton 
grass (Sporobolus wrightii) site. Site details and procedures for measuring ETa and meteorological 
variables have been described in several previous publications listed below. 

Figure 1. Examples of calibration and validation sites. (A) San Pedro River woodland 
mesquite (B) Palo Verde Irrigation District (PVID) alfalfa fields; (C) Bushland, TX cotton 
fields with lysimeters; (D) PVID crops; (E) La Violada Irrigation District, Spain; 
(F) Cibola National Wildlife Refuge saltcedar. Red squares show location of flux towers 
(A, B, F) and lysimeters (C). Images from Google Earth. 

 

  

A B 

C D 
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Figure 1. Cont. 

  

Scott et al. [34] described the woodland site in detail and documented the water and carbon dioxide 
fluxes measured in 2001 and 2002. Scott et al. [35] compared all three sites for water and carbon 
dioxide measurements made in 2003. This study includes these previously reported 2003 
measurements plus an additional four years of data from each of these sites collected in 2004–2007. 
Scott et al. [34,35] gave details about the eddy covariance instrumentation and methods. Studies 
incorporating eddy covariance instrumentation commonly use the standard energy balance closure 
method to evaluate the accuracy and efficacy of their measurements [36]. The average daily closure 
ratio ([lE+H]/[Rn_G]) for the sites used in this study ranged annually from 0.89 to 0.92 for the 
woodland, 0.81 to 0.83 for the shrubland, and 0.76 to 0.78 for the grassland. These values are 
consistent with numerous other studies [36]. For our analysis we chose to follow Twine et al. [37] who 
suggested that forcing closure was justified when available energy was known and errors in its 
measurement modest. Consequently, we scaled our latent and sensible heat fluxes to force daily closure 
while conserving the measured Bowen ratio. We computed ETo as the evaporation which would occur 
from a short, well-watered grass with a fixed-height of 0.12 m following the FAO-56 method [5].  

2.3. ETa and ETo of Selected Crops 

The riparian vegetation in this study only covered the low end of possible ETa values based on ETo. 
The mesquite and grass plots in this study were not fully vegetated, with bare soil or sparse vegetation 
occurring between trees, and LAI tended to be lower than for agricultural crops. For example, typical 
woodland riparian zones on three river systems had ETa of only 40% of ETo [25]. We included 
literature values for alfalfa and cotton crops to cover the higher end of ETa values. One source of 
alfalfa ETa data was from Bowen ratio flux tower measurements made in a commercial, flood-
irrigated, 30.1 ha alfalfa field in the Palo Verde Irrigation District (PVID) on the Lower Colorado 
River in 2007–2008 (Figure 1B) [38]. Alfalfa exhibited a saw-toothed pattern of ETa as it was cut 
approximately every 30 days in summer in the PVID. A single MODIS EVI pixel selected over the 
tower location was acquired for 16-day collection periods matched to ETa peaks in 2007 and 2008 
(3 peaks per year). ETo was obtained from the Parker, AZ AZMET station in the same irrigation 
district [39].  

E F
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A second source of alfalfa ETa data was from the Imperial Irrigation District (IID) in California, 
using ETa data collected at five commercial alfalfa farms over three years (2006–2008). ETa was 
measured by eddy covariance towers as reported in Hanson et al. [40]. ETo data was from the 
California Irrigation Management System (CIMIS) [41]. MODIS EVI pixels were acquired for the 
period 2006–2008, and mean annual ETa across sites was correlated with mean annual EVI across 
sites. The exact location of the commercial fields was not given in [40] so we chose five fields 
identified as alfalfa fields by having year-round high EVI exhibiting the characteristic sawtooth 
patterns due to cutting. Hence, the fields we chose were not necessarily the same fields where flux 
towers were located but both data sets represented commercial fields within the IID. 

Cotton ETa values were obtained from the USDA-ARS Conservation & Production Research 
Laboratory, Bushland, Texas [42]. ETa data were collected in a 10 ha field planted to cotton in 2008 as 
part of an experiment to compare lysimeter ETa values with those collected by neutron hydroprobe soil 
water balance and eddy covariance flux towers (Figure 1C). Two precision weighing lysimeters (9 m2 
each) in the field were surrounded by cotton planted at the same density and irrigated at the same 
frequency as the lysimeter crops. We obtained the MODIS EVI pixel centered on the middle of the 
field for the dates of maximum ETa and LAI (DOY 219-247) using neutron probe results as they were 
distributed over the whole field. ETo data was from an on-site micrometeorological station and was 
calculated by the FAO-56 method [5]. 

2.4. Sources of Validation Data 

We tested the ETa algorithm against annual data collected for five dryland irrigation districts and 
two riparian areas based on independent estimates of ETa not included in the calibration data sets 
(Table 1). Crop ETa estimates were based on water balance estimates over one or more growing seasons, 
in which ETa was reported as a residual of inflows minus outflows. Taghvaeian and Neale [43] 
constructed a water balance for the PVID for 2008 (Figure 1D), using gauged inflow and outflows and 
estimates of canal losses and seepage generated by the irrigation district. Cultivation is year-round and 
the main crops are alfalfa, cotton, small grains and winter vegetables. Their estimate for ETa was 
1,268 mm·yr−1. We obtained MODIS EVI pixels for the dates covered in the water balance study but 
created a 500 m buffer zone to exclude MODIS pixels that were mixed with adjacent desert habitat. 
ETa estimated by MODIS was then compared to ETa by the water balance study. 

Allen et al. [3] conducted a detailed water balance for IID for the period 1990–1996 based on 
gauged inflow and outflow data and a census of planted areas. Most of the IID has a subsurface 
drainage system through which the drainage fraction is collected and conveyed to the Salton Sea for 
disposal; hence all outflows can be quantified. Reference evapotranspiration (ETo) is monitored at 
three stations in the district [41]. Over 40 different crops are grown in IID including alfalfa, cotton, 
sugar beets, corn, wheat, Sudan grass, Bermuda grass and winter vegetables. They reported ETa of 
1,243 mm·yr−1. We updated their estimate to 2001, the first complete year for which MODIS imagery 
was available, using consumptive water use data from the Lower Colorado River Accounting 
System [44]. They reported diversions minus returns of 3.61 × 109 m3·yr−1 for 2001, equal to 
1,763 mm·yr−1 over the 2.16 × 105 ha cropping area as reported in [3]. However, returns did not 
include flows to the Salton Sea from subsurface drainage in IID, estimated at 1.23 × 109 m3·yr−1 [45] 
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and yielding an ETa estimate of 1,194 mm·yr−1, close to the more detailed estimates in Allen et al. [3] 
for 1990–1996. We compared this estimate to a MODIS ETa estimate for 2001 obtained by acquiring 
pixels incorporating the IID minus a buffer zone around the perimeter of the district. 

Table 1. Comparison of MODIS EVI estimates of 2008 ETa with ground measurements. 
PVID = Palo Verde Irrigation District, CA; IID = Imperial Irrigation District, CA;  
VAU = Victoria, Australia; BRID = Bear River Irrigation District, UT; LVSP = La Violada 
Irrigation District, Spain; CNWR = Cibola National Wildlife Refuge, CA; PR = Platte 
River, NE. 

Location MODIS 
EVI 
(mm·yr−1) 

Ground 
Measurement  
(mm·yr−1) 

No. Years 
Data 

ETa/ETo Difference  
between Means 
(%) 

Ground 
Method 

Ref. 

PVID Crops 1,369 1,268 1 0.72 7.7 WB [43] 
IID Crops 1,144 1,194 1 0.65 4.3 WB [44] 
VAU Maize2  726 666 2 0.72 8.6 WB [46] 
BRIP3 903 877 1 0.75 2.9 WB [47] 
LVSP  676 616 8 0.66 9.3 WB [23] 
CNWR 
Riparian 

886 817 1 0.46 8.1 BR  [38] 

PR Riparian1 431 370 2 0.63 7.7 BR [48] 
Mean 876 830 - - 5.4   

1 May–August growing season; 2 November–June growing season; 3 April–October growing season. 

Greenwood et al. [46] conducted a water balance study of maize under center-pivot irrigation in a 
30.4 ha field in Northern Victoria, Australia (VAU). They measured crop water use over two growing 
seasons (2003–2005) based on measured application rates and soil moisture depletion rates measured 
weekly by neutron hydroprobe. Mean ETa was 666 mm·yr−1 over both growing seasons (ca. 150 days 
each). We acquired data for the single MODIS EVI pixel located over the center of the field for the 
dates over which crop ETa was estimated by Greenwood et al. [46]. 

Lecina et al. [47] conducted a water balance study of the Bear River Irrigation Project (BRIP), 
Utah, for the 2008 growing season over a 1,213 ha surface irrigated area in which on-farm 
measurements of irrigation applied and infiltration were made at 13 sites over the season. Main crops 
are alfalfa and other forages, corn and winter/spring cereals. Mean ETa was estimated to be 877 mm 
for the April to October irrigation season. MODIS EVI pixels covering the dates of the water balance 
study were acquired for the study area minus a buffer zone. Barros et al. [23,24] conducted a water 
balance study in La Violada Irrigation District (LVSP) (4,000 ha) (Figure 1 E) in the Ebro River Basin 
in Spain for the years 1995–2008. The balance was based on measured diversions and returns and 
estimates of ETa based on soil moisture depletion rates following irrigation events. Main crops are 
corn, alfalfa and winter cereals. ETa for 2001–2008 (the period for which MODIS imagery was 
available) was 616 mm·yr−1. We obtained the MODIS EVI pixels encompassing the area of LVSP 
minus a buffer area around the perimeter for model evaluation. 

The final validation included data for two riparian areas within irrigation districts: The Cibola 
National Wildlife Refuge (CNWR), a saltcedar (Tamarix ramosissima) dominated terrace on the 
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Lower Colorado River below PVID (Figure 1F), and a site on the Platte River dominated by common 
reed (Phragmites australis). At the first site, ETa was measured at three Bowen ratio moisture flux 
towers set in stands of saltcedar chosen to represent the range of conditions on the terrace in 2007 and 
2008 [38]. Mean ETa over sites and years was 817 mm·yr−1. Corresponding MODIS EVI pixels were 
acquired to encompass the CNWR minus a buffer area around the perimeter. Irmak et al. [48] 
measured ETa with a Bowen ratio moisture flux tower in 2009 and 2010 at a site on the Platte River 
dominated by common reed (Phragmites australis) and surrounded by rain-fed and irrigated crops in 
Merrick County, Nebraska (PR). Mean ETa of the riparian vegetation over the two years was 
379 mm·yr−1. We acquired the single MODIS EVI pixel centered on the tower site for the dates 
covered by the tower ETa measurements. 

2.5. Acquisition of MODIS EVI Pixels 

MODIS MOD 13 gridded 250 m VI products are supplied to end-users by NASA as 
atmospherically and radiometrically corrected 16-day composite images (for details of image 
acquisition and processing see: http://modis.gsfc.nasa.gov/); MODIS EVI pixels were obtained from 
the Oak Ridge National Laboratory [49]. The pixel selection tool displays the approximate MODIS 
pixel footprint on a high-resolution Google Earth image; hence it is possible to positively co-locate 
ground sites with pixel acquisition sites if images or maps are available for the ground site locations. 
This condition was met for all sites except the IID alfalfa sites in this study. The choice of EVI was 
based on its superior performance in predicting ETa noted in previous studies [6,25]. EVI is calculated 
from band reflectance values as:  

EVI = 2.5 × (NIR − Red)/(1+ NIR + (6 × Red − 7.5 × Blue))  (4) 

where the coefficient “1” accounts for canopy background scattering and the blue and red coefficients, 
6 and 7.5, minimize residual aerosol variations [6].  

2.6. Statistical Analyses and Other Methods 

Statistical and graphical analyses were conducted with Systat, Inc., software (SigmPlot 12.5), 
Chicago, IL Exponential curves and linear regression equations were fit to data points by the least 
squares method, and goodness of fit is reported as the coefficient of determination (r2), standard error 
of means (SEM) and P-value for the regression coefficient (slope) of each equation. ETa estimates by 
MODIS were compared to ground estimates by the t-test for paired values. Since 6 of 7 ETa estimates 
were lower by MODIS compared to ground methods, potential bias was also assessed by the Wilcoxon 
Signed-Rank test using an on-line calculator (http://www.vassarstats.net/wilcoxon.html). 

3. Results and Discussion 

3.1 EVI and ETa Data for San Pedro Riparian Vegetation 

Sixteen-day time-series of EVI are shown in Figure 2A and ETa at each tower are compared to ETo 
in Figure 2B. Peak summer EVI and ETa values tended to overlap among sites. Peak ETa values were 
about 60% of ETo, and were only 42% of ETo on an annual basis, as the vegetation was dormant 
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during winter. ETa lagged behind ETo, with peaks in July vs. June, respectively. ETa was strongly 
correlated with EVI across sites (Figure 3), and slopes of ETa vs. EVI were not significantly different 
at the 95% confidence level (P > 0.05) among sites. 

Figure 2. (A) EVI values for pixels corresponding to moisture flux towers on the San 
Pedro River used for model calibration; (B) ETa measured at flux tower sites compared to 
ETo. CM = Charleston mesquite site; LSM = Lewis Spring mesquite site; LSS = Lewis 
Spring sacaton grass site. 
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Figure 3. Scatter plot of ETa measured at flux towers on the San Pedro River used for 
model calibration and EVI; CM = Charleston mesquite site; LSM = Lewis Spring mesquite 
site; LSS = Lewis Spring sacaton grass site. Black lines are best fit for individual sites (not 
significantly different at P = 0.05) and the equation is for all sites combined. 

 

3.2. EVI vs. ETa/ETo for Combined Riparian and Crop Sites 

Since ETo differs among irrigation districts due to local meteorological conditions, ETa was 
normalized as ETa/ETo across combined sites (Figure 4). ETa/ETo increased with EVI but was 
distinctly nonlinear. An algorithm in the form of Equation (3) fit the data with r2 = 0.73 and a standard 
error of the mean (SEM) of 0.136 of ETa/ETo. Maximum ETa/ETo projected for EVI = 1.0 is 1.29, 
within the range expected for freely transpiring alfalfa crops compared to grass reference crop 
ETo [3,5]. On the other hand, a linear model would greatly overestimate ETa/ETo if based on riparian 
data, and would underestimate riparian ETa/ETo if based on crop data. Therefore, Equation (5), which 
has a biophysical justification based on the Beer-Lambert Law, succeeds in unifying riparian and crop 
data into a single algorithm: 

ETa = ETo [1.73(1 − e−2.25 EVI) − 0.220]      (5) 

3.3. Validation Data Sets 

Estimates of ETa by MODIS EVI using Equation (5) are compared to ground estimates of ETa in 
Table 1. Differences between estimates for individual sites ranged from 2.9 to 9.7% and the difference 
between means across all sites was 5.4%. Individual site differences were not significant by paired  
t-test (P = 0.894). However, ETa at 6 of 7 sites was higher by MODIS than by ground estimates, a 
marginally significant difference (P = 0.051) by the Wilcoxon Signed-Rank test (W = 24), indicating a 
possible small positive bias for the MODIS estimates compared to the ground estimates. 
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Figure 4. ETa/ETo vs. EVI for San Pedro moisture flux tower sites used in model 
calibration and alfalfa measured by moisture flux towers in the Palo Verde (PVID) and 
Imperial (IID) irrigation districts and for cotton measured by neutron hydroprobe soil water 
balance in Bushland, Texas (TX Cotton). 

 

3.4. Final Equation for ETa 

Since ETa across sites did not differ significantly between methods for the validation data, they 
were combined with the calibration data to produce a final equation of best fit (Figure 5). The r2 (0.77) 
and SEM (0.124) improved slightly compared to calibration data (Figure 4). The final equation of best 
fit was: 

ETa = ETo [1.65 (1 − e−2.25EVI) − 0.190]    (6) 

The projected ETa/ETo at EVI = 1.0 was 1.29. Hence, ETa was constrained between 0 at EVI = 0.05 
(e.g., bare soil or dormant vegetation) and 1.28 ETo at EVI = 0.973, the highest EVI value observed in 
this study. Nagler et al. [18] developed a preliminary algorithm for ETa for agricultural and riparian 
associations on the Lower Colorado River, using a limited data set and a linear regression model. 
Equation (6) should provide more accurate predictions over a wider range of ETa than the 
previous algorithm. 

ETa maps of the Palo Verde Irrigation District agricultural fields and the Cibola National Wildlife 
Refuge riparian zone are displayed in Figures 6 and 7, respectively. These maps are based on three 
MODIS collection periods in June and July 2007, during the period of ground ETa measurements by 
Bowen ratio flux towers. The maps show the general features of ETa within each area, but due to the 
low resolution of MODIS imagery, they could not capture the distribution of ETa within individual 
fields and could not be used for tasks such as irrigation scheduling on specific farms. 
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Figure 5. Combined results of calibration and validation site for ETa/ETo vs. EVI. 

 

Figure 6. MODIS ETa map for the southern portion of the Palo Verde Irrigation District, 
CA. Pixel values are the mean for three acquisition dates (26 June–28 July 2007), based on 
mean ETo = 9.8 mm·d−1. 

 



Remote Sens. 2013, 5 3863 
 

Figure 7. MODIS ETa map for the southern portion of the Palo Verde Irrigation District, 
CA. Pixel values are the mean for three acquisition dates (26 June–28 July 2007), based on 
mean ETo = 9.8 mm·d−1. 

 

3.5. Limitations and Sources of Error and Uncertainty in ETo and ETa Estimates 

Despite the apparent success of Equations (5) and (6) in predicting ETa across crops and riparian 
vegetation, some caveats must be considered. First, the ground data used to calibrate and validate 
remote sensing methods are themselves subject to error and uncertainty. For example, the source of 
ETo data can produce error among estimates [50]. While all of the present results were based on ETo 
calculated for a hypothetical grass reference crop by the FAO-56 method [5], the required data are not 
available for all irrigation districts on a global basis and are rarely available for riparian corridors away 
from irrigation districts. Simpler methods of calculating ETo, for example from temperature or solar 
radiation data, are available, but they can differ from the FAO-56 method by 10% or more and can 
exhibit different seasonal patterns [50]. The FAO-56 method is specifically designed for short crops 
with radiation as the main constraint on ETo and might not be the best scalar for tall crops or natural 
vegetation units, e.g., [18]. Furthermore, ETo is subject to measurement error. Allen et al. [3] pointed 
out that the CIMIS system replaced measurements of net radiation with estimates based on solar 
radiation in 1989, resulting in a 13% lowering of ETo values at IID after the change in methods, a 
discrepancy which has not been corrected. ETo estimates by CIMIS and AZMET stations in the 
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same irrigation districts along the Arizona-California border also differ by about 11% (higher by 
AZMET) [51].  

Ground methods for measuring ETa are also subject to error. Lysimetry is perhaps the most accurate 
way to measure ETa, with errors under 5% [52] but extrapolating lysimeter results to field conditions 
can produce errors in the order of 10–20% even under controlled conditions [42]. Water budget methods 
for estimating ETa typically have error rates of 5–10% even under ideal conditions, and the error rates 
increase when some of the terms have to be estimated rather than measured. Allen et al. [52] estimated 
that Bowen ratio and eddy covariance moisture flux towers have typical errors in the order of 15–30%, 
which can perhaps be reduced to 10–15% under ideal conditions. In the present study, the SEM for the 
calibrating data set was about 23% of the mean value of ETa/ETo, and the SEM for the combined 
validation and calibration data sets was 21%, within the error bounds of the likely ground 
measurement errors. However, the average error for predicting ETa/ETo by Equation (5) was less than 
10% for each individual validation site and was only 5.4% across sites. This suggests that errors are 
likely to be random rather than systematic, so the SEM decreases as more sites and longer 
measurement periods are added [53].  

3.6. Comparison with Other VI Methods for ETa 

Several remote sensing methods have been developed recently to estimate ETa with VIs or other 
optical band combinations (i.e., surface reflectance in visible + NIR bands, in contrast to SEB methods 
that use TIR bands). VI methods cannot be used to measure instantaneous rates of ETa as can thermal 
band methods, but for long-term monitoring of ETa, this is an advantage because VI values tend to be 
stable over days to weeks, while thermal bands provide only a snapshot of the SEB at the time over 
satellite overpass. We briefly review three remote sensing methods below to show the basic 
similarities in approach and levels of accuracy of these types of methods. 

Guerschman et al. [31] developed a procedure for estimating ETa at the continental scale in 
Australia. It was based on MODIS EVI in the same exponential-decay, rise-to-a-maximum form as in 
Equation (3), but it also used the Global Vegetation Moisture Index (GVMI) as a means to 
differentiate between open water and bare soil when EVI is low. The GVMI detects water by 
absorption in the short wave bands on MODIS; a low EVI and high GVMI indicate an open water 
area. The model also included a precipitation interception term (high EVI and high GVMI). Hence, the 
algorithms used in [31] can be applied over a wider range of landscape surfaces than the present 
algorithm. They calibrated it with flux tower data from two forests, two open savannas, a grassland, a 
floodplain and a lake, and validated it with water balance data for 227 unimpaired catchments across 
Australia. The model has a Root Mean Square Error (RMSE) of 22% of the mean ETa for calibration 
sites, and RMSE of 19% for the validation sites, similar to the present results. 

Mu et al. [54] developed a MODIS-based ETa product meant to be applied across all global biomes, 
from rainforest to arctic tundra. The model was based on the MODIS fPAR/LAI product, which uses 
the Red and NIR bands and is linearly related to NDVI. It applies values for fPAR into the Penman-
Monteith equation for ETo to solve for ETa. It has additional features such as corrections for view 
angles and a biome look-up table that accounts for differences among plant communities in the 
relationship between fPAR and LAI. The algorithm also adjusts leaf-level GS as a function of biome 
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type, and accounts for nighttime transpiration and direct evaporation from wet surfaces, among other 
features. When compared with ETa measurements from 46 moisture flux tower sites in diverse biomes, 
the remote sensing algorithm differed from tower results by an average of about 24%. This model has 
been proposed as an operational MODIS ETa product. 

Fisher et al. [55] developed a global model for terrestrial ETa that used the normalized difference 
vegetation index (NDVI) and the soil adjusted vegetation index (SAVI) as VI inputs. As in the 
present study and that of Guerschman et al. [31], transpiration by the plant canopy was assumed to be 
non-linearly related to LAI through the Beer-Lambert Law. ETo was estimated by the Priestly-Taylor 
equation, and requires only net radiation and surface temperature, which can be derived from remote 
sensing inputs. The algorithm also included estimates of bare soil evaporation and direct evaporation 
of water from leaves following rain events, based on daytime estimates of relative humidity, assuming 
periods of high relative humidity are reflective of rainfall events. The model was tested against 16 flux 
towers representing a wide diversity of habitat types, and produced r2 values of 0.55–0.96 among sites, 
and an overall r2 of 0.90, with a SEM of 13% of mean annual ETa across sites. 

Yebra et al. [53] compared ETa from 16 Fluxnet tower sites over six different land cover types with 
six different vegetation measures provided by MODIS. None of the VI or other MODIS products was 
uniformly superior, although EVI performed best over most of the land cover types. An ensemble of 
the three best-performing VI products combined with local Penman-Monteith parameters derived from 
the flux towers had r2 = 0.82 and a RMSE of about 20% of the mean ETa across towers. Similarly good 
results were obtained by scaling ETo with EVI, as used in the present study. Both the Yebra et al. [53] 
and our approach benefit from including locally-measured meteorological data. Hence, an important 
part of the present method is availability of high-quality micrometeorological data within the irrigation 
districts used for calibration and validation. 

3.7. Comparison of VI and Thermal Band Methods to Estimate ETa 

Thermal band and VI remote sensing methods can both give unbiased estimates of ETa with errors 
or uncertainties of 10–30% under ideal conditions [6,7]. When compared head-to-head in agricultural 
fields equipped with flux towers, both methods can give similar results [14]. However, their operating 
assumptions and limitations are different, and the choice of a remote sensing method to estimate ETa 
should consider their differences in light of the objectives of the measurement program. 

VI methods either assume that GS is constant for a given crop or biome type, or they adjust GS 
based on remotely-sensed estimates of surface soil moisture or vapor pressure deficit [54,55]. These 
are reasonable assumptions for crops, which usually grow under non-stress conditions [8,10]. 
However, riparian plants are subject to reductions in GS and ETa due to factors such as salinity and 
depth to groundwater that cannot be detected by remote sensing, so the ratio of ETa to LAI is 
not constant or predictable without knowledge of the physiological constraints on ETa at a given 
site [17,18,56]. Nagler et al. [17,18] found that GS varied by four-fold among stands of saltcedar at 
Cibola National Wildlife Refuge, whereas LAI only varied by two-fold. By contrast to VI methods, 
thermal band methods can account for reduced GS, which is detected as an increase in surface 
temperature [7]. Hence, if the goal is to detect short-term water stress or to schedule irrigations, 
thermal band methods would be preferred over VI methods. 
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On the other hand, VIs provide robust indications of canopy conditions that are stable over days or 
weeks, and are directly related to green LAI and fractional plant cover. Hence, they are well suited for 
monitoring biophysical properties of plants, including ETa and photosynthesis, over a growing season, 
as in the present application. By contrast, thermal band methods provide only a snap-shot of ETa at the 
time of satellite overpass, which typically is from 9:30–10:30 am for Landsat and MODIS imagery in 
the Northern Hemisphere. ETa is then projected over a full day by assuming that the Evaporative 
Fraction (EF, ratio of ETa to net radiation or ETo) is constant during the daylight hours [7]. This is 
often the case for crops [7,13]. However, Nagler et al. [17,18] found that saltcedar under salt stress 
showed marked midday depression of ETa, which would lead to an overestimate of ETa based on the 
assumption of constant daytime EF. Glenn et al. [56] reported that both thermal band and VI methods 
over-estimated ETa by 50% or greater at a high-salinity site in Cibola National Wildlife Refuge due to 
violations in the assumptions underlying each method. Hence, remote sensing estimates of ETa should 
consider the environmental limitations on ETa for each application. 

4. Conclusion 

A significant outcome of the study is the finding that ETa can be estimated across different crops 
and riparian plant communities in dryland climates using MODIS EVI and locally-available 
calculations of ETo. This study provides further evidence that ETa monitoring can be accomplished 
using reflectance-based remote sensing information from satellites, combined with ground data to 
constrain ETo. In areas without complete meteorological information to calculate ETo by the  
Penman-Monteith equation, temperature-based estimates can also be used, e.g., [17,18], and the 
algorithm can be adjusted to use NDVI instead of EVI. In fact, the Blaney-Criddle method for 
calculating ETo, which requires only mean monthly temperature and hours of daylight from a table, 
had a higher correlation with ground measurements of ETa than the Penman-Monteith methods for 
riparian crops [18]. This was because riparian plants in that study were deciduous—dropping leaves in 
winter—and were better matched to the annual temperature curve than the radiation curve, which 
drives the FAO-56 grass reference crop ETo [5]. Hence, the algorithm developed here can be applied 
(with modification) even in data-poor regions.  

The simple algorithm used in this study was successful because in dryland irrigation districts many 
of the confounding effects on ETa that are unrelated to plant cover are minimized. Hence, this 
algorithm can provide a tool for monitoring dryland irrigation districts and riparian areas but cannot 
necessarily be extended to other biomes. As with other remote sensing methods for estimating ETa, 
accuracy improves with repeated measurements over a growing season. For example, Allen et al. [57], 
found that monthly thermal-band METRIC ETa estimates over mixed crops in Idaho irrigation districts 
deviated from lysimeter values by 15%, while annual estimates varied by only 1–4%. Similarly, 
King et al. [58] reported that monthly error rates of >20% were reduced to <10% for annual values, 
similar to the results reported in this paper. For random variations in ETa due to measurement error or 
short-term natural fluctuations, the standard error of the annual mean value is expected to decrease by 
the square root of the number of replicates (months of data or number of flux towers). Hence, we 
conclude with Allen et al. [57] and King et al. [58] that error rates under 10% can be achieved for 
annual estimates of ETa if monthly or more frequent estimates are available through the growing season. 
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The present algorithm is most suitable for developing annual, district-level water budgets for 
agricultural and riparian areas, because the resolution of a MODIS pixel is too low to evaluate 
individual fields (see Figures 6 and 7). The sharp field boundaries visible in Figure 1 become less 
distinct in MODIS images. Combining this algorithm with estimates of district water application rates 
can be a tool for estimating district irrigation efficiency, an important topic in arid regions of the world 
and where there is intense competition for water on a global basis.  
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