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Abstract: To obtain a better understanding of the variability in net primary production 

(NPP) in savannas is important for the study of the global carbon cycle and the 

management of this particular ecosystem. Using satellite and precipitation data sets, we 

investigated the variations in NPP in southern African savannas from 1982 to 2010, and 

disentangled the relationships between NPP and precipitation by land cover classes and 

mean annual precipitation (MAP) gradients. Specifically, we evaluate the utility of the 

third generation Global Inventory Monitoring and Modeling System (GIMMS3g) normalized 

difference vegetation index (NDVI) dataset, in comparison with Moderate-resolution 

Imaging Spectroradiometer (MODIS) derived NPP products, and find strong relationships 

between the overlapping data periods (2000–2010), such that we can apply our model to 

derive NPP estimates to the full 29-year NDVI time-series. Generally, the northern portion 

of the study area is characterized by high NPP and low variability, whereas the southern 

portion is characteristic of low NPP and high variability. During the period 1982 through 

2010, NPP has reduced at a rate of −2.13 g·C·m−2·yr−1 (p < 0.1), corresponding to a 

decrease of 6.7% over 29 years, and about half of bush and grassland savanna has 

experienced a decrease in NPP. There is a significant positive relationship between mean 

annual NPP and MAP in bush and grassland savannas, but no significant relationship is 

observed in tree savannas. The relationship between mean annual NPP and MAP varies 

with increases in MAP, characterized as a linear relationship that breaks down when MAP 

exceeding around 850–900 mm.  
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1. Introduction 

Vegetation over terrestrial ecosystems is a major component of the global carbon cycle since it 

regulates climate through the exchange of energy, water vapor, and momentum between the land 

surface and the atmosphere, controls CO2 and currently absorbs about one-third of anthropogenic fossil 

fuel emissions to the atmosphere [1–3]. Terrestrial net primary production (NPP), known as the 

difference between carbon gain via gross primary productivity (GPP) and carbon loss through plant 

respiration, integrates these and other climatic, ecological, geochemical, and human influences on the 

biosphere [4–6]. Several studies have developed a global and regional understanding of NPP variations 

though methods, time periods used and results have varied. Nemani et al. [4] has reported a global 

increase in NPP by 3.4 petagrams of carbon between 1982 and 1999, based on estimates modeled using 

AVHRR data inputs and climate variables, with 80% of the increase being attributable to ecosystems in 

tropical regions (mainly rainforests) and those in the high latitudes of the North Hemisphere (NH). 

Studies have demonstrated that terrestrial NPP has increased in the middle and high latitudes in 

the NH [3–9] during the 1980–1999 time period. However, Zhao and Running [10] concluded that 

NPP reduced by 0.55 petagrams of carbon globally from 2000 to 2009, when studied using  

Moderate-resolution Imaging Spectroradiometer (MODIS) derived input data in association with 

climate. As such, over the longer time frame of 1980 through 2010 there is still no agreement on global 

GPP or NPP change [11] and there is still much uncertainty even with the availability of satellite 

observations for the past three decades. From the studies to date it is clear that location is key, with many 

northern hemisphere higher latitude regions showing initial (1982–1999) increases in biomass [4,5], but 

in the latter period of 2000–2010, declines also becoming obvious especially in southern hemisphere and 

tropical locations [5]. Given the global importance of these trends, in terms of the potential decline in the 

rate of carbon sequestration in vegetated systems, understanding the multi-decadal patterns of NPP 

trends is of paramount importance [5]. 

Atmospheric CO2 is an essential component in photosynthesis, and thus influence vegetation 

production. Higher concentrations may improve plant growth known as the “fertilization effect”, 

which is limited by nutrients, air pollution, temperature, and precipitation [12]. Also there is general 

agreement among scientists that the climate system is changing as a result of increasing atmospheric 

concentrations of CO2, although the degree to which temperature and precipitation patterns will change 

is still uncertain. Temperature, radiation, and water interact to impose complex limitations on 

vegetation activity in different parts of the world, and ultimately determine the spatial and temporal 

NPP patterns [4]. However, these factors tend to be co-limiting, and differ in their contribution in 

different ecosystems. In the middle and high latitudes, in the NH, where temperature is limited, higher 

temperatures have increased NPP by enhancing vegetation growth [4,6,8,13]. In the tropics (23.5°S to 

23.5°N) the NPP variation is largely constrained by solar radiation due to severe cloudiness [10,14]. In 

drier and colder ecosystems NPP increases linearly with the increase in mean annual precipitation and 

mean annual temperature [15]. In the arid and semi-arid ecosystems and seasonally dry tropical 
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climates NPP is primarily controlled by water availability as precipitation can trigger the emergence of 

green leaves and controls growth duration [16,17]. 

Savanna ecosystems, which are characterized by the coexistence of trees and grasses, are more 

sensitive to climate variability, especially precipitation changes. Savanna is a relatively productive 

ecosystem with an average of 720 ± 200 g·C·m−2·yr−1 [18], and the entire African savanna biome gives 

an NPP of 8.9 Pg·C·yr−1, accounting for 13.6% of the global NPP. There are still large uncertainties 

about the contribution of the African continent to the global carbon budget, since few long-term 

measurements have been carried out [19]. The degradation of savannas, which is defined as the reduction 

in vegetation production, will influence the long-term carbon balance and other ecosystem services [20]. 

There is a pressing need for quantitative assessments of land degradation as savanna ecosystems are 

essential for local populations [17] and have been changing largely as a result of climate change and 

overgrazing. Research on long-term NPP change can provide an early warning of land degradation and 

be used to support policy development for food security and economic development [21]. 

The emergence and development of remote sensing has provided a powerful instrument to observe, 

monitor and characterize landscapes, since it is able to offer repeat data of large areas of the terrestrial 

earth surface at longer temporal scales [22]. Satellite data can provide realistic information on vegetation 

dynamics, which is helpful to reduce uncertainties in the estimation of the carbon-budget [14]. Based 

on remote sensing data, partially or entirely, a variety of models have been developed to estimate NPP, 

e.g., the Carnegie-Ames-Stanford approach (CASA) [1], GLObal Production Efficiency Model  

(GLO-PEM) [2], the Biosphere model integrating Eco-physiological And Mechanistic approaches 

(BEAMS) [23], and MODIS daily photosynthesis and annual NPP product (MOD17) [24]. However, a 

long-term NPP time series is still unavailable, although the introduction of the newly released AVHRR 

GIMMS3g dataset will invariably help to address this gap. In this study two globally available data 

sets of the earth’s surface will be analyzed and we will investigate the variations in NPP derived from 

(1) GIMMS3g NDVI data and (2) the monthly MODIS NPP product (MOD17A2). These datasets will 

be used initially to compare the products and then to apply developed methods form the comparison to 

the entire AVHRR GIMMS3g thirty year time-series. We will then link this longer time series of 

vegetation changes to precipitation variability from 1982 to 2010. We address three main research 

questions: (1) Can we use the GIMMS3g products to estimate NPP from 1982 to 2010 based only on 

its relationship to the MODIS MOD17 NPP product? (2) How has NPP changed from 1982 to 2010 

across the study area? and (3) What are the relationships between mean annual precipitation (MAP) 

and annual NPP, as they vary across the main three savanna types and MAP intervals? 

2. Study Area 

The Okavango, Kwando, and upper Zambezi (OKZ) catchments cover about 693,000 km2 in 

Zambia, Angola, Namibia, and Botswana (Figure 1). The elevation in this region ranges from 800 m to 

1,900 m. The combined basins have an annual precipitation range from 400 to 1,300 mm·yr−1. The 

southern portion is semi-arid and is characterized by scarce annual precipitation and high inter-annual 

variability, while the northern part is characterized by higher annual rainfall and relatively low  

inter-annual variability. Multi-decadal trends over the latter half of the 20th Century indicates 

declining MAP, increasing variability, and an increased number of warm phase ENSO events [25]. The 
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majority of the Okavango and Kwando catchments and the headwaters of all three basins are located in 

Angola. Low topography in the south (especially the Caprivi and northern Botswana) makes clear 

hydrologic separation of the catchments difficult. Kalahari sand characterizes a large portion of the 

region’s soil. The upper catchment is characterized by Miombo woodlands, while the lower region is a 

mixed composition of tree-shrub-grass savannas. This region possesses one of the largest free ranging 

populations of elephants in Africa. Human settlements are mainly distributed along water courses, 

especially along rivers in the Caprivi region of Namibia, which makes the human-wildlife conflicts 

acute in the dry season [26]. The future Kawango-Zambezi Transboundary Conservation Area 

(KAZA), the largest in Africa, will span nations attempting to achieve regional-scale conservation 

through cooperative management of shared natural resources [27] and will cover much of this study region. 

Figure 1. Geographical location of the study area. Inset map shows the location of the 

Okavango, Kwando, and upper Zambezi (OKZ) catchment in southern Africa. The white 

lines show the contours of mean annual precipitation (MAP) with an interval of 100 mm, 

which illustrates that MAP increases from south to north. 

 

3. Data and Methods 

3.1. Data Sets 

The GIMMS3g NDVI data set was used in this study, which has a spatial resolution of about 8 km 

and a temporal resolution of 15 days. This data set was previously developed by the Global Inventory 
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Modeling and Mapping Studies (GIMMS) group, and is currently available from July 1981 to 

December 2011 generated in the framework of the Global Inventory Monitoring and Modeling System 

(GIMMS) project at NASA Goddard Space Flight Center. No atmospheric correction is applied to the 

GIMMS data except for volcanic stratospheric aerosol periods (1982–1984 and 1991–1994) [22]. A 

satellite orbital drift correction is performed using the empirical decomposition/reconstruction methods, 

minimizing effects of orbital drift by removing common trends between time series Solar Zenith Angle 

and NDVI [17]. Additionally, this data set has been corrected for factors that do not relate to changes 

in vegetation greenness, and applies an improved cloud masking as compared to older versions of the 

GIMMS NDVI data set. The GIMMS3g NDVI data use the maximum NDVI value over a 15-day 

period to represent each 15-day interval to minimize corruption of vegetation signals from atmospheric 

effects, cloud contamination, scan angle effects and so on at the time of measurement [28]. The 

maximum value composite (MVC) method was used to obtain monthly NDVI from January 1982 to 

December 2010 to further reduce cloud effects, and the pixels with mean annual NDVI value less than 

0.2 were removed to reduce the effect of non-vegetation cover. Overall, the GIMMS3g archive is 

considered the best dataset available for long-term trend analysis of vegetation greenness.  

A second satellite based dataset, overlapping for 11 years with the AVHRR data was also utilized in 

this research, the monthly MODIS NPP product (MOD17A2), which spans from January 2000 to 

December 2010 at a 1-km spatial resolution [5,24]. It is the first regular, near-real-time data set for 

repeated monitoring of NPP over vegetated land [29]. The principle of the MOD17 algorithm is the 

application of the radiation conversion efficiency logic to predictions of daily GPP and the subsequent 

estimation of maintenance and growth respiration terms that are subtracted from GPP to arrive at  

NPP [24,25]. These data are freely available to the public from the Numerical Terradynamic 

Simulation Group (NTSG) at the University of Montana. The study area covers three tiles: h19v10, 

h20v10, and h20v11. Based on the QA information, only the pixels of good quality (labeled with “0”) 

were considered. To match the grid cell size of MODIS NPP data with other data sets, we adopted a 

simple but frequently used way to resample. The values of each 9 × 9 grid block were average to create 

a single pixel, if the values with “good quality” were more than 80% of the total after the values out of 

2-time standard deviation were removed. 

We chose the Matsuura and Willmott data set of monthly precipitation (1982–2010) which has a 

spatial resolution of 0.5 degree by 0.5 degree with grid nodes centered on 0.25 degree. These datasets 

improve upon a previous global mean monthly dataset with a refined Shepard interpolation algorithm 

and an increased number of neighboring station points included in the analysis [30]. Based on the grid 

nodes included in the three catchments we interpolated the datasets into continuous surfaces with a 

spatial resolution of about 0.08 degrees using inverse distance weighted interpolation. 

A land cover map of Africa derived by the Global Land Cover (2000) project was used, which has a 

spatial resolution of 1-km [31]. The map is based on daily observations made from November 1999 to 

December 2000 by the VEGETATION sensor on the SPOT4 satellite. The thematic accuracy of the map 

is higher at aggregated levels; thus, leaving the classification at the level of forests, shrublands and 

grasslands results in a higher class confidence than more specific class labels. In this study, the detailed 

land cover classes were aggregated into three categories: tree savanna, bush savanna, and grassland 

savanna (Figure 2). Tree savanna is defined as a tree-dominated savanna with tree canopy cover more 

than 15% and canopy height more than 5 m, bush savanna is defined as a shrub-dominated savanna type 
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with shrub canopy cover greater than 15% and canopy height less than 5 m with no or sparse tree layer, 

and grassland savanna is defined as a grass-dominated savanna type with herbaceous cover greater than 

15% and tree and shrub canopy cover less than 20%. Tree savanna is mainly distributed in the northern 

half of the study area, bush savanna is largely distributed in the southeast, and grassland savanna is 

distributed in the southwest and in the upper reach of Zambezi River (Figure 2). The size of grid is 

resampled to 0.08 by 0.08 degree to match the spatial resolution of the GIMMS3g NDVI data set.  

Figure 2. Map of land cover for the Okavango, Kwando, and upper Zambezi (OKZ) catchment. 

 

3.2. Deriving Monthly Net Primary Production (NPP) Data Set 

The conversion from the GIMMS3g NDVI into estimated NPP was done from per-pixel 

correlations between the 11 overlapping years of monthly GIMMS3g NDVI and MODIS NPP  

(2000–2010) data. The per-pixel strength of the linear relationship between these two data sets was 

determined by calculating the Pearson correlation coefficient for the 11-year monthly observations 

(Figure 3). Meanwhile, the significance value of each pixel was used to assess the confidence of its 

corresponding correlation coefficient. The 11 overlapping years were split into two periods: 7 years for 

model calibration and 4 years for model validation. A bootstrapping regression model was used for the 

model calibration, with the pixels of significant and positive correlation coefficient with the monthly 

MODIS NPP (2000–2006) as the dependent variable and the monthly NDVI as the independent 

variable. The bootstrapping regression model is a nonparametric approach to statistical inference 



Remote Sens. 2013, 5 3809 

 

which is more general and robust than traditional distributional assumptions [32]. The outputs, 

including per-pixel mean slope and intercept, were then used to validate and predict the per-pixel NPP 

time series. Figure 4 illustrates the outputs of the bootstrapping regression model for one example 

pixel (Lat: −15.44°S; Lon: 23.25°E). As such, a monthly time series of estimated NPP pixel level 

values were created for the GIMMS3g NDVI data, for the entire study area from 1982 to 2010. These 

data are then utilized in the model evaluation (2007–2010) and the remaining analyses. The eddy 

covariance data from the CarboAfrica database were used to validate the MODIS NPP dataset which is 

the benchmark of our estimates. There are two eddy covariance flux sites of savannas within our study 

area: the Botswana site (Maun, 19.9165°S, 23.5603°E) and the Zambian site (Mongu, 15.4388°S, 

23.2525°E). The former is covered by typical mopane woodland, while the vegetation of the latter is 

broadleaf deciduous miombo woodland. Both vegetation types are representative in our study area. 

The Level-4 records are available with GPP on varying time intervals including hourly, daily, weekly, 

and monthly. Although there was still much uncertainty of NPP/GPP ratios of different ecosystem 

types, here a value of 60% was used to estimate NPP fluxes from Level 4 estimates of GPP based on 

the empirical relationship from Zhang et al. [33]. 

Figure 3. Spatial pattern of correlation coefficient between Moderate-resolution Imaging 

Spectroradiometer (MODIS) monthly net primary production (NPP) and third generation 

Global Inventory Monitoring and Modeling System (GIMMS3g) monthly normalized 

difference vegetation index (NDVI) from 2000 to 2010. 
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Figure 4. The histogram of (a) intercepts and (b) slopes derived from the bootstrapping 

regression model for one example pixel (Lat: −15.44°S; Lon: 23.25°E). 

 

3.3. Net Primary Production (NPP) Trend Analysis 

To detect the changing trends in NPP across the study region, the seasonal Kendall test was applied. 

It is a non-parametric test which can address the time series with seasonal variation, having missing 

values, tied values, or outliers, and does not require normality of the time series [34]. It is widely used 

in the field of hydrology to evaluate the significance of trends in time series such as water quality, 

stream flow, and precipitation [34–36]. This method is developed from the Mann-Kendall test which is 

based on the correlation between the ranks of a time series and their time order, but is improved to be 

able to use seasonal data sets to address variability [34]. The seasonal Kendall test was conducted on 

the per-pixel NPP time series to obtain the spatial pattern of changing trends. The significant and 

positive Kendall correlation coefficient (τ) value indicates an increasing trend, while the significant 

and negative τ value suggests a decreasing trend.  

4. Results 

4.1. Assessment of the Derived Monthly Net Primary Production (NPP) 

A comparison of monthly NPP from eddy covariance flux sites and MODIS monthly NPP shows 

that a highly significant and positive correlation exists and a close 1:1 match of field-based and 

MODIS NPP is observed (Figure 5). 

Across the study area, the correlation coefficients between monthly NDVI values and monthly 

MODIS NPP values (both for 2000–2010) are universally positive, and statistically significant 

(Figure 3). The mean correlation coefficients of tree, bush, and grassland savanna is 0.71, 0.73, and 

0.74, respectively, which indicates that a strong linear relationship for all cover types. As NDVI has 

strong linear relationship with NPP in the study area, bootstrapping regression can be used to derive 

estimated or predicted NPP from the NDVI data set [17]. To assess the performance of predictions, we 

calculated the per-pixel root mean square error (RMSE) based on the predicted NPP and original 

MODIS NPP from 2007 to 2010 (Figure 6). The RMSE for tree savanna, bush savanna, and grassland 

savanna is 44.15, 38.78 and 33.03, respectively. This indicates that the predictions of NPP of grassland 

savanna are more accurate than that of bush and tree savanna, but that all performed well and are more 
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than acceptable for use here. The spatial pattern of mean annual predicted NPP (calculated across 

water years, from September to August) is consistent with that of mean annual MODIS NPP 

(Figure 7a,b) for the overlapping 4 years. The predicted NPP value of different land cover classes is 

also close to the original NPP value.  

Figure 5. Comparison between monthly net primary production (NPP) from eddy 

covariance flux towers and Moderate-resolution Imaging Spectroradiometer (MODIS) 

monthly NPP. The 1:1 line is shown, along with the fitted line of linear regression. 

 

Figure 6. Spatial pattern of root mean square error between predicted net primary 

production (NPP) and original Moderate-resolution Imaging Spectroradiometer (MODIS) 

NPP for 2007–2010. 
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Figure 7. Spatial patterns of (a) mean annual Moderate-resolution Imaging 

Spectroradiometer (MODIS) net primary production (NPP) and (b) mean annual predicted 

NPP (2007–2010). The mean annual NPP is the summed monthly values of water year 

from September through August. 

 

The model’s seasonal NPP results were evaluated using MODIS NPP from 2007 to 2010. We 

calculated the mean monthly NPP by land cover classes in the entire study area (Figure 8) and 

comparisons were made (Figure 9). Model estimates closely follow the seasonality and magnitude of 

MODIS NPP for each land cover class. It looks that NPP is consistently overestimated in comparison 

to MODIS NPP during the green-up phase. A period of overestimate suggests the ratio of the 

increasing rate of NPP to that of NDVI (slope) at this period is lower than the fitted slope. For one 

thing, the greenness of vegetation which can be better indicated by the NDVI values rises rapidly 

during the green-up phase; for another, the NPP might not increase as rapid as the greenness during the 

green-up phase as NPP is significantly controlled by leaf-intercepted photosynthetically active 

radiation. A highly significant correlation coefficient of 0.78 is observed for all savanna types 

combined. The performance of the bootstrapping regression model for estimating monthly NPP is 

slightly different in terms of savanna types as suggested by comparison between model-derived NPP 

and MODIS NPP. There is a highly significant linear correlation for tree savanna, bush savanna, and 

grassland savanna with correlation coefficients of 0.77, 0.74, and 0.80, respectively. A close match 

with 1:1 line for tree savanna, bush savanna, and grassland savanna is observed with slope coefficients 

of 0.88, 0.76, and 0.81, respectively (Figure 9). To validate annual aggregated NPP, we randomly 

selected pixels across the study region and extracted annual aggregated NPP of model estimates and 

MODIS for the 4 overlapping years. On an annual basis, annual total NPP predicted by bootstrapping 

model correlate positively with annual total MODIS NPP for tree savanna, bush savanna, and 

grassland savanna with correlation coefficients of 0.86, 0.70, and 0.75, respectively. The fitted line for 

grassland savanna is closest to 1:1 line with slope coefficient of 0.93, the slope coefficient of fitted line 
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for tree savanna is 0.90, and the slope coefficient of fitted line for bush savanna is 0.73, furthest from 

the 1:1 line (Figure 10).  

Figure 8. Comparison of model derived monthly net primary production (NPP) with 

monthly Moderate-resolution Imaging Spectroradiometer (MODIS) NPP from 2007 to 

2010 by land cover classes: (a) tree savanna; (b) bush savanna; and (c) grassland savanna. 

 

Figure 9. Scatter plot of model-derived monthly net primary production (NPP) with 

monthly Moderate-resolution Imaging Spectroradiometer (MODIS) NPP by savanna types 

from 2007 to 2010. 
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Figure 10. Scatter plot of annual aggregated net primary production (NPP) of model 

estimates with annual Moderate-resolution Imaging Spectroradiometer (MODIS) NPP. 

These points were randomly selected across our study area. 

 

4.2. Spatial Pattern of Net Primary Production (NPP) Variability from 1982 to 2010 

Generally, NPP decreases from north to south across the study area (Figure 7b). The NPP of tree 

savanna is higher than that of bush and grassland savanna (Table 1). NPP in the upper reaches of the 

Zambezi River is lower than that in the same latitudes as this region is covered by floodplain grasses 

which have lower NPP (Figure 7b). The northern portion is characterized by a small coefficient of 

variation (CV), whereas the southern section is characterized by a large CV (Figure 11) which suggests 

that NPP in the south has experienced higher variability. Bush savanna has a higher variability of NPP 

and tree savanna has the smallest, which is indicated by the mean CV values of each land cover class 

(Table 1). 

Table 1. The statistical measures of net primary production (NPP) of different  

savanna types. 

 Tree Bush Grassland 

Mean predicted NPP (g·C·m−2·yr−1) 1,142.3 858.2 804.2 
Mean MODIS NPP (g·C·m−2·yr−1) 985.6 743.5 711.3 

CV 0.11 0.12 0.12 
Increase (%) 9.85 7.57 9.17 
Decrease (%) 33.53 54.40 44.33 

Not significant (%) 56.63 38.02 46.50 
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Figure 11. Spatial pattern of the coefficient of variation (CV) of annual net primary 

production (NPP) (for water year from September through August) from 1982 to 2010. 

 

There is a general trend of decreasing NPP across the study region as indicated by the universal 

significant and negative τ values (Figure 12). About 9% of the study area shows a significant and 

increasing trend, there is about 40% showing a significant and decreasing trend, and the remaining 

48% shows no significant trend at all (Bare lands and water areas are excluded from analysis, so the 

total is slightly less than 100%). The percentage of increase, decrease, and insignificant pixels for tree 

savanna is 10%, 33%, and 57%, respectively; the percentage of increase, decrease, and insignificant 

pixels for bush savanna is 8%, 54%, and 38% respectively; and the percentage of increase, decrease, 

and insignificant pixels for grassland savanna is 9%, 44%, and 47%, respectively. So in terms of  

multi-decadal trends, overall the regional NPP has declined across this thirty year period, and when 

broken down into savanna vegetation types, the decline in tree savanna NPP is the least, the decline in 

bush savanna NPP is the highest of all the classes and the decline in grassland savanna NPP is between 

the other two. This suggests that the bush and grassland savanna is potentially representative of a more 

degraded ecosystem over time, as represented by the NPP decrease during the period 1982–2010, 

which would also be reflected in the literature, with declining rates of open grasslands and increasing 

bush encroachment across this region, specifically in the more southern regions dominated by these 

savanna ecosystems.  
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Figure 12. Spatial pattern of Kendall correlation coefficient (τ) for 1982–2010. The 

positive τ value indicates an increasing trend, and vice versa. 

 

4.3. Relationship between Net Primary Production (NPP) and Precipitation 

Monthly precipitation patterns across this region are of the rains beginning in late October, reaching 

their peak in January, and ending in April. Precipitation for May, June, July, August, and September is 

less than 10 mm in total and represents the dry season on this landscape. In relation to this, the onset of 

the increase in NPP is in November, and it peaks in March. The lowest NPP appears in September and 

October, at the very end of the dry season. There is about a two-month time lag between the seasonal 

change of precipitation and that of NPP, representing the vegetation response to the precipitation 

across the landscape. We calculated MAP and mean annual NPP (the water year is represented here by 

the sum of monthly NPP values from September of one year into August of the next) (1982–2010) of 

the entire study region and extracted their pixel values using different areas defined by land cover 

classes. Figure 13a–c shows the scatterplots of mean annual NPP versus MAP for the three savanna 

land cover classes. The annual NPP of tree savanna has no significant correlation with MAP  

(p = 0.22). By contrast, the annual NPP of bush and grassland savanna are correlated positively with 

MAP with correlation coefficients of 0.62 (p < 0.01) and 0.10 (p < 0.01), respectively. The slope of 

the linear regression model for tree savanna is not statistically significant (Figure 13a), suggesting that 

annual NPP has no linear relationship with MAP. Annual NPP of bush and grassland savanna are 
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linearly correlated with MAP as indicated by the significant slope coefficients (Figure 13b,c).  

Figure 14 shows the spatial pattern of correlation between annual totals of precipitation and NPP. 

Generally the values of correlation decreases from south to north, implying that the linear relationship 

between precipitation and NPP declines as precipitation increases. The map also shows that the 

correlation values over grassland and bush savanna are higher than the values over tree savanna. 

Figure 13. The linear relationship between mean annual precipitation (MAP) and mean 

annual net primary production (NPP) by land cover classes from 1982 to 2010 for (a) tree 

savanna; (b) bush savanna, and (c) grassland savanna. 

 

Figure 14. The spatial pattern of correlation coefficients between annual totals of 

precipitation and net primary production (NPP). 
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Table 2. The slope coefficients of linear regression models of different mean annual 

precipitation (MAP) intervals. 

Intervals 

(mm) 

Study Area Okavango Kwando Zambezi 

Slope P Value Slope P Value Slope P Value Slope P Value 

<450 1.37 <0.001 1.31 <0.001 - - - - 

450–550 0.98 <0.001 0.67 <0.001 1.16 <0.001 - - 

550–650 0.94 <0.001 1.29 <0.001 0.94 <0.01 2.61 <0.001 

650–750 0.26 0.008 0.29 0.03 0.34 0.02 0.06 0.54 

750–850 0.29 0.06 1.10 <0.001 2.73 <0.001 −0.87 <0.001 

850–950 −0.09 0.63 0.47 0.14 0.27 0.55 0.46 0.10 

950–1,050 −0.29 0.35 0.85 0.03 2.27 0.13 −0.83 0.003 

1,050–1,150 0.39 0.32 0.70 0.21 - - 0.38 0.38 

1,150–1,250 −0.003 0.99 1.32 0.10 - - −2.10 <0.001 

>1,250 −0.48 0.015 4.38 0.36 - - −0.17 0.38 

Figure 15. Scatter plot of mean annual precipitation (MAP) and mean annual net primary 

production (NPP) for 1982–2010. The piecewise linear regression was used to fit the points 

to identify the turning point underlying the variations in annual NPP with MAP. 

 

One important feature of the study area is the precipitation gradients across which MAP increases 

from south to north. We conducted linear regression analysis on different precipitation intervals of the 

entire study area and the three catchments (Table 2). The regression results of different precipitation 

intervals show that annual NPP has a significant and positive relationship with MAP when MAP is less 

than about 850 mm. However, the relationships are unstable when MAP is more than about 850 mm, 

which is characteristic of statistical insignificance or a negative regression coefficient. The results of 

the Okavango and Kwando catchments are similar, which are characterized by an abrupt change in the 

relationship between annual NPP and MAP. It should be noted that the regression results of the 

Zambezi catchment are uncertain, which is characterized by generally insignificant relationships 

between annual NPP and MAP. We applied the piecewise linear regression model to fit all pixel values 

from the layers of MAP and mean annual NPP (Figure 15). The piecewise linear regression is an 

effective tool which can be used to identify the turning points (TP) underlying the variations in mean 

annual NPP with MAP [37]. The results show that the TP occurs at the location with a MAP of  
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875 mm. This suggests that NPP for savannas is constrained by, and increases linearly with, MAP less 

than about 875 mm, whereas limited dependence on MAP is shown above this threshold.  

5. Discussion 

The use of the NDVI has been most widely used as approaches for EO-based monitoring of 

vegetation productivity. Researchers have derived a variety of relevant measures from NDVI time series as 

a proxy of vegetation production, such as the sum of positive NDVI values over a given period, the 

maximum value of the NDVI over a year, or the NDVI integral across growing seasons [17,38]. 

Researchers also use NDVI or NDVI-derived variables as inputs to process-based models to calculated 

NPP, such as the Carnegie-Ames-Stanford Approach (CASA), the Terrestrial Observation and 

Prediction System Model (TOPS) and other light use efficiency models [8,11]. Several studies have 

suggested the existence of a positive relationship between NDVI and either biomass or NPP. However, 

the relationship between NDVI and NPP is not always linear. For biomes with high NPP, this 

relationship becomes saturated, whereas for biomes with low NPP, the relationships are influenced by 

the spectral characteristics of the bare soil. Our study also shows that a slightly weaker relationship is 

found over tree savanna where NPP is higher, and the estimated accuracy of tree savanna is lower than 

that of bush and grassland savanna. The basic assumption to effectively derive NPP from NDVI here is 

the significant linear relationship. Our results show that MODIS NPP has a significant linear 

relationship with GIMMS3g NDVI across the entire study area. Paruelo et al. [39] in the central  

U.S grasslands, found that a positive and statistically significant relationship between NDVI and  

NPP for areas with MAP between 280 mm and 1,150 mm which overlaps well with our study area. 

Fensholt et al. [17] successfully converted the GIMMS NDVI into NPP based on per-pixel correlations 

between overlapping years of GIMMS NDVI and SPOT VGT NPP in the African Sahel. Here we are 

evaluating the performance of the new AVHRR dataset based on the MODIS NPP product using 

bootstrapping regression. The accuracy of MODIS NPP especially in the savanna ecosystems 

potentially has considerable influence on our model estimates. Several studies have highlighted 

limitations of the MOD17 model such as the uncertainties of coarse resolution DAO meteorological 

reanalysis data used in the model, and the global trends and regional patterns derived from MODIS 

NPP have been challenged [11,40–42]. Few studies have been conducted in Africa to evaluate the 

efficiency of the MOD17 model [43–45]. Fensholt et al. [43] found that the MOD17 model 

underestimated NPP in the semi-arid Senegal. Sjöström et al. [44] reported that MODIS GPP 

performed reasonably well in explaining the variability in eddy covariance GPP at a range of African 

ecosystem, but the model was observed to underestimate GPP, especially in dry savanna ecosystems. 

Sjöström et al. [45] found that the MODIS GPP can capture the seasonality but the MODIS NPP was 

underestimated again in dry savanna ecosystems. The possible reasons include the uncertainties of the 

meteorological data, the inappropriate set of maximum light efficiency, and the insufficiency of vapor 

pressure deficit (VPD)’s constraint on GPP. However, a comparison of monthly NPP derived from 

eddy covariance flux sites with monthly NPP from the MOD17 algorithm suggests a better estimate of 

MODIS NPP in our study area, although the sample number is relatively small.  

Although there is some consensus that terrestrial photosynthetic activity has increased over the past 

two or three decades in the middle and high latitudes in the NH [4,9], no such agreement has been 
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reached on tropical regions and specifically, across the most recent decades some studies have 

suggested a switch in trends globally [5]. Beyond just this basic interpretation of the trend and patterns 

over the last thirty years there is also additional confusion regarding interannual variations in NPP at 

global or regional scales as a result of the selection of model used to derive NPP, the research period 

selected, or/and the spatial resolution used. Our results found a universal decline in NPP across the 

study area from 1982 to 2010. These conclusions are in accordance with previous studies which have 

reported that NPP reduces during both periods 1982–1999 and 2000–2009 in this region of the  

world [4,10]. Our research highlights the NPP change of land-cover classes in the longer temporal 

extent (1982–2010) as this new dataset has become available and given the large scale variability, both 

intra and inter annually within most of these trends a longer time series approach is most definitely 

required. Almost half of our landscape revealed significant trends in declining NPP amount for bush 

and grassland savanna, and tree savannas showed declines in about a third of its extent. These trends 

become more significant in the more southerly areas. There are also a limited number of areas 

representing increases in NPP though these most often relate to the presence of water bodies and are 

linked more to flood regime patterns. The overall decline in NPP across this region is −2.13 g·C·m−2·yr−1 

(p < 0.1), corresponding to a decrease of 6.7% over 29 years (1982–2010). 

Although multiple mechanisms (e.g., nitrogen deposition, CO2 fertilization, climate change) have 

contributed to the change in NPP, NPP variability has been primarily attributed to water availability in 

arid and semi-arid areas where water is a limiting resource [12]. Precipitation as the critical importance 

of water source for plant use is well recognized for savanna ecosystems. Although soil moisture, 

precipitation—evapotranspiration influence directly plant water availability, it seems to be more useful 

to disentangle the NPP-precipitation relationship as precipitation is more easily and directly measured 

at different geographical scales and more frequently as the input for process-based and diagnostic 

models. Our research found that the NPP of tree savanna is less influenced by MAP, where the NPP of 

bush and grassland savanna has a significantly positive relationship with MAP. This is consistent with 

previous studies which have reported that the relationship between NPP and precipitation varies with 

land cover [14,46]. Savanna ecosystems are characterized by the co-dominance of two contrasting 

plant life forms, trees and grasses, which are manifest by their relative representation across savanna 

types. Sankaran et al. [47,48] suggests that MAP is the most important predictor, followed by fire 

return periods, soil characteristics and herbivory regimes. Woody cover shows a strong positive 

dependence on MAP between 200 and 700 mm, but no dependence on MAP above this threshold when 

the effects of other predictors are accounted for. Campo-Bescós et al. [49] find that the impact of a 

suite of environmental covariates on NDVI varies from grass-dominated regions with MAP < 750 mm 

to tree-dominated regions with MAP > 950 mm. Our study also found that the relationship between 

NPP and MAP varies with the increase in MAP. The linear relationship is observed when MAP is less  

than 750–850 mm, while the linear increase in NPP with MAP levels off when MAP exceeds the 

range. Whether this range is applicable to other savanna ecosystems still needs further research. For 

example, Breman and Dewit [50] states that the proportionality breaks down at a precipitation of  

300 mm·yr−1. 

Estimating the interannual variations in NPP quantitatively is important to support policy 

development for food security and resource conservation as the degradation of the vegetation cover in 

savanna ecosystems is increasing. Our study identified the pixels that have experienced a reduction in 
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vegetation production, which may provide an early warning of land degradation. However, our results 

cannot disentangle the reduction in NPP caused by a number of factors, including climate variations 

(mainly precipitation), natural disturbances (mainly fire), and human activities (grazing, agriculture, 

etc.). Methods such as rain use efficiency or RESTREND can be used to tease out the land degradation 

induced by human influences versus that caused by precipitation variability [21,51]. Future research 

will attempt to disentangle these influences spatially across this region. 

6. Conclusions 

Our study used robust bootstrapping regression method to successfully derive monthly net primary 

production (NPP) of the Okavango, Kwando, and upper Zambezi (OKZ) catchments for the long 

period 1982–2010 from the third generation Global Inventory Monitoring and Modeling System 

(GIMMS3g) normalized difference vegetation index (NDVI) data, with the Moderate Resolution 

Imaging Spectroradiometer (MODIS) NPP product. Then we investigated the variations in NPP over 

29 years and disentangled the relationships between NPP and precipitation factor by both savanna 

types and precipitation intervals. A highly positive correlation between NPP and GIMMS3g NDVI 

within our study area provides the basic premise for retrieving NPP effectively through relatively 

simple statistical method. The use of single satellite-derived metric has great appeal for ease of 

application, assessing the effects of uncertainties caused by input data, and simplifying the exploration 

of the underlying mechanism [52]. Our findings show that there is a universal decrease in NPP across 

our study area and NPP of the study area as a whole has reduced significantly at a rate of  

−2.13 g·C·m−2·yr−1, corresponding to a decrease of 6.7% over 29 years. The reduction in NPP might 

decrease the food supply for grazing and browsing herbivores, as the ecosystem is known as their 

habitats and food sources. It is also a possible indicator of the degradation of savanna ecosystem, but 

degradation expressed by decreasing vegetation coverage, bush encroachment, changes in community 

composition, and reduced rain-use efficiency is still worthy of special research. Given the importance 

of carbon sequestration of savannas, a decline in NPP regionally has significant global implications. It 

remains to be seen if this multi-decadal trend, resulting from the newly available GIMMS3g dataset, is 

also found in other regions of the globe.  

Our research teased out the relationships between NPP and precipitation by different savanna 

ecosystem types. There is a significant positive relationship between mean annual NPP and mean 

annual precipitation (MAP) over bush and grassland savanna, but no significant relationship is 

witnessed over tree savanna. This is useful for understanding landscape level changes in vegetation 

amounts, and for improving the characterization of the impact of climate change on such landscapes. 

Our study also got some innovative points in terms of the relationship between mean annual NPP and 

MAP. Notably, the relationship between mean annual NPP and MAP varies with increases in MAP, 

characterized as a linear relationship that breaks down when MAP exceeding around 850–900 mm. 

The existence of this tipping point still needs to be confirmed at other areas and broader extents. The 

use of such 30-year GIMMS3g NDVI time series will greatly improve our ability to determine trends, 

shifts and potential landscape level changes in vegetation growth, such as land degradation, and to 

systematically quantify the relationships between key drivers of vegetation growth and the resultant 

vegetation cover over different temporal and spatial scales [17,28,53–55]. 
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