Remote Sens. 2013, 5(8), 3662-3680; doi:10.3390/rs5083662
Article

Hybrid Map-Based Navigation Method for Unmanned Ground Vehicle in Urban Scenario

1email, 1,2,* email, 1,2email, 1email, 1,2email and 1email
Received: 31 May 2013; in revised form: 17 July 2013 / Accepted: 17 July 2013 / Published: 25 July 2013
(This article belongs to the Special Issue Advances in Mobile Laser Scanning and Mobile Mapping)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: To reduce the data size of metric map and map matching computational cost in unmanned ground vehicle self-driving navigation in urban scenarios, a metric-topological hybrid map navigation system is proposed in this paper. According to the different positioning accuracy requirements, urban areas are divided into strong constraint (SC) areas, such as roads with lanes, and loose constraint (LC) areas, such as intersections and open areas. As direction of the self-driving vehicle is provided by traffic lanes and global waypoints in the road network, a simple topological map is fit for the navigation in the SC areas. While in the LC areas, the navigation of the self-driving vehicle mainly relies on the positioning information. Simultaneous localization and mapping technology is used to provide a detailed metric map in the LC areas, and a window constraint Markov localization algorithm is introduced to achieve accurate position using laser scanner. Furthermore, the real-time performance of the Markov algorithm is enhanced by using a constraint window to restrict the size of the state space. By registering the metric maps into the road network, a hybrid map of the urban scenario can be constructed. Real unmanned vehicle mapping and navigation tests demonstrated the capabilities of the proposed method.
Keywords: hybrid map; unmanned ground vehicle; topological map; metric map; simultaneous localization and mapping; Markov localization; laser scanner
PDF Full-text Download PDF Full-Text [2126 KB, uploaded 19 June 2014 01:07 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Hu, Y.; Gong, J.; Jiang, Y.; Liu, L.; Xiong, G.; Chen, H. Hybrid Map-Based Navigation Method for Unmanned Ground Vehicle in Urban Scenario. Remote Sens. 2013, 5, 3662-3680.

AMA Style

Hu Y, Gong J, Jiang Y, Liu L, Xiong G, Chen H. Hybrid Map-Based Navigation Method for Unmanned Ground Vehicle in Urban Scenario. Remote Sensing. 2013; 5(8):3662-3680.

Chicago/Turabian Style

Hu, Yuwen; Gong, Jianwei; Jiang, Yan; Liu, Lu; Xiong, Guangming; Chen, Huiyan. 2013. "Hybrid Map-Based Navigation Method for Unmanned Ground Vehicle in Urban Scenario." Remote Sens. 5, no. 8: 3662-3680.


Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert