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Abstract: We developed and evaluated a new approach for mapping rubber plantations 

and natural forests in one of Southeast Asiaôs biodiversity hot spots, Xishuangbanna in 

China. We used a one-year annual time series of Moderate Resolution Imaging 

Spectroradiometer (MODIS), Enhanced Vegetation Index (EVI) and short-wave infrared 

(SWIR) reflectance data to develop phenological metrics. These phenological metrics were 

used to classify rubber plantations and forests with the Random Forest classification 

algorithm. We evaluated which key phenological characteristics were important to 

discriminate rubber plantations and natural forests by estimating the influence of each 

metric on the classification accuracy. As a benchmark, we compared the best classification 

with a classification based on the full, fitted time series data. Overall classification 

accuracies derived from EVI and SWIR time series alone were 64.4% and 67.9%, 

respectively. Combining the phenological metrics from EVI and SWIR time series 

improved the accuracy to 73.5%. Using the full, smoothed time series data instead of 

metrics derived from the time series improved the overall accuracy only slightly (1.3%), 

indicating that the phenological metrics were sufficient to explain the seasonal changes 

captured by the MODIS time series. The results demonstrate a promising utility of 

phenological metrics for mapping and monitoring rubber expansion with MODIS. 
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1. Introduction  

Mapping land cover is one of the key applications of remote sensing [1]. The increased availability 

of broad scale Earth observation data together with recent developments in multi-temporal analyses 

techniques have increased the quality of continental to global land cover maps [2], global forest cover 

maps [3], and global maps of cropland extension [4]. The Advanced Very High Resolution Radiometer 

(AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Medium Resolution 

Imaging Spectrometer (MERIS), and Satellite Pour lôObservation de la Terre Vegetation (SPOT 

VEGETATION) capture images of the globe at moderate spatial but very high temporal resolution  

(2ï3 days for MERIS and SPOT VEGETATION sensors; daily for AVHRR and MODIS sensors). 

This high temporal resolution facilitates monitoring dynamic inter- and intra-annual processes on the 

Earth surface, which would not be observable using less frequent Earth observation data. This 

phenological information supports mapping recent land cover and monitoring land cover changes. 

The conversion of natural and semi-natural forests to rubber plantations (Hevea Brasiliensis Muell. 

Arg.) has become a significant land-use change process during the last decade. The conversion occurs 

throughout the tropical and sub-tropical region, but it is especially prevalent in Southeast Asia [5]. 

Transforming natural forests to rubber plantations has significant ecological impacts on water balance, 

carbon cycle, and biodiversity [6]. In some regions, rubber has replaced traditional subsidence 

farming [7] and therefore completely changed local economic structure [8]. Accurate mapping and 

monitoring of rubber plantations is thus of great importance to quantify and project the ecological and 

economic impacts of rubber expansion. 

The need to develop methods for improved monitoring of rubber plantations with remote sensing 

has been recognized already in several studies. Most studies have used high spatial resolution,  

multi-spectral sensors such as Landsat or hyper-spectral sensors [9ï11]. A high spatial resolution is a 

clear advantage for capturing the fine spatial detail of many land-use processes. However, extensive 

cloud cover and limited data availability often diminish the utility of Landsat-like sensors for mapping 

large tropical areas. In comparison, coarse resolution sensors like MODIS provide data at a higher 

temporal frequency, i.e., every day, and over larger areas.  

MODISô high temporal resolution not only increases the chance of cloud-free observations but also 

permits a detailed temporal record (signature) of seasonal vegetation patterns. These temporal 

signatures can be useful to discriminate vegetation and land cover types that are spectrally distinct only 

during short periods of time throughout the year. Time series of MODIS Enhanced Vegetation Index 

(EVI) and Normalized Difference Vegetation Index (NDVI) have been successfully used to 

characterize vegetation types in different environmental settings [12ï14]. For example, MODIS 

Vegetation Index (VI) time series have improved the classification of abandoned farmland, different 

crop types, and semi-arid vegetation by capturing the specific phenological pattern of each land cover 

type. Other studies developed phenological metrics from NDVI or EVI time series to describe patterns 
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in vegetation phenology, e.g., length and peak of the vegetation season, and to use this information for 

mapping different land cover types [15ï17], including different forest types [18].  

To date, only few studies have tried to map rubber plantations with MODIS data [19,20]. Li and 

Fox [19] used MODIS Enhanced Vegetation Index (EVI) time series in combination with sub-national 

statistical data on rubber growth to map rubber across Southeast Asia. As statistical data they used 

information on the area of land covered by rubber plantations, on the amount of land in rubber 

production, and on the total amount of latex production at different sub-national administrative units. 

Their results proved to identify mature rubber plantations with a producerôs/userôs accuracy of 

67.0%/98.1% and young rubber plantations with a producerôs/userôs accuracy of 59.4%/97.2%. When 

using MODIS data alone, the producerôs/userôs accuracies of mature and young rubber plantations 

decreased to 60.9%/64.6% and 0%/0%, respectively. The approach from Li and Fox [19] thus heavily 

depended on statistical data, which are not updated very frequently. Dong et al. [20] mapped three 

forest types, including rubber plantations, on the Hainan Island using Advanced Land Observing 

Interferometric Synthetic Aperture Radar (ALOS PALSAR), MODIS NDVI, MODIS EVI, and Land 

Surface Water Index (LSWI) time series. Their results suggested a good separability of rubber 

plantations from other forest types using a simple threshold of summer and winter NDVI composites 

(85% overall accuracy for their binary rubber plantation classification). The method from  

Dong et al. [20] is an effective application of MODIS time series, but it is likely to work well only in 

evergreen forests, as they do not shed leaves seasonally in contrast to rubber plantations. To map 

rubber for the large tropical seasonal forest regions of Southeast Asia based on MODIS time series will 

require an approach that builds upon an in-depth understanding of the phenological patterns of natural 

forests and rubber plantations.  

Short-wave infrared (SWIR) reflectance and SWIR-based indices have been shown to be important 

predictors for mapping rice paddies and certain forest types in Asia and Southeast Asia [21ï23] and 

some studies have used SWIR to derive phenological metrics [24,25]. The importance of SWIR for 

discriminating forest composition and structure has been known of a while [26]. Yet, vegetation 

indices like the NDVI and EVI are commonly used to characterize vegetation phenology. Recently, 

Dong et al. [27] used Landsat data acquired during seasonal leave senescence and found that the 

SWIR-based LSWI in addition to other VIs was important for discriminating rubber plantations and 

forests. Evaluating the outcome of these studies, it is likely that the mapping of rubber plantations and 

natural forests can be enhanced by capturing the phenological dynamics of both land cover classes. 

Furthermore, incorporating the phenological dynamics of the SWIR reflectance might further enhance 

the mapping of rubber plantations. 

In this study, we tested a new approach for mapping rubber plantations and natural forests using 

phenological metrics derived from MODIS EVI and SWIR reflectance time series. By analysing the 

importance of each phenological metric on classification accuracy we then explore the seasonal 

differences of rubber plantations and natural forests based on MODIS time series. Our study is 

performed in the region of Xishuangbanna, China, where rubber plantations have become one of the 

major land cover types over the past decades. 
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2. Study Area 

The autonomous prefecture Xishuangbanna in the Yunnan Province is the most southern prefecture 

of China and borders Laos to the east and Myanmar to the west (Figure 1(A)). The prefecture is 

subdivided into three municipalities: Jinghong, Menghai, and Mengla. The capital of Xishuangbanna, 

Jinghong, is located in the central low elevation areas (~400 to 1,000 m above sea level) of the 

Mekong River. The northern parts of the Jinghong municipality are at a higher elevation, reaching 

2,000 m above sea level. The western municipality Menghai is characterized by higher elevations 

reaching up to 2,500 m above sea level, whereas the eastern municipality, Mengla, is dominated by 

lowlands to the west and highlands to the east. Due to the bordering highlands, Xishuangbanna is the 

only region in continental China with tropical, monsoon-influenced climate. The wet season starts in 

April and ends in November; and the precipitation maximum is reached in July/August with an 

average of 300 mm/month. In the dry season (December to March) heavy fog is occurring frequently. 

Temperatures do not drop below 15 °C except for the very high elevation areas. Wet-season 

temperatures are high with peaks around May and August/September. With its junction location 

between different climate and ecological zones, Xishuangbanna inhabits a diverse flora and fauna, 

which makes up for 20% of the total species diversity of China [28]. However, Xishuangbanna is also 

home to a massive rubber producing agro-industry [6] established in the late 1990s [29].  

Figure 1. (A) Topography of the study area. (B) Location of the study area. (C) Available 

Quickbird imagery. 

 

The rubber trees in Xishuangbanna are deciduous trees that shed their leaves for a relatively short 

period of two to four weeks during the coldest and driest month (January to March) [30]. Throughout 
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the rest of the year, rubber trees stay foliated. Forests in Xishuangbanna can be differentiated into four 

major forest types: (1) tropical rain forest, (2) tropical seasonal moist forest, (3) tropical montane 

evergreen broad-leaved forest, and (4) tropical monsoon forest [31]. Forest types 1 to 3 are evergreen 

forests, whereas forest type 4 is a deciduous forest, influenced by annual dryness caused by the 

monsoon climate. Evergreen forests rely on heavy water deposition from fog in the dry season to 

overcome water shortages [32]. Tropical rain forests and tropical seasonal rain forests present 

differences in species composition, caused by different soil types. Montane evergreen broad-leaved 

forests are only found in elevations higher 1,000 m. Monsoon forests mostly occur on the low 

elevation banks of the Mekong River or in low elevation basins. The Natural Forest Conservation 

Program (NFCP), which has been established in 1990 [33], strictly protects remaining natural forests 

in Xishuangbanna. However, before the NFCP was established, forests have largely been converted to 

shifting cultivation or other cash crops. Many forest areas are therefore segmented by abandoned or 

fallow lands, which are covered by secondary vegetation such as deciduous monsoon forests, savannah 

woodlands, bamboo, and grasslands [34]. These small patches of deciduous vegetation within the 

natural evergreen forest can change the phenological response of tropical rain forests to a more 

seasonal variation [31]. Rubber plantations, in turn, can be mixed with other cash crops such as 

pineapple, which are cultivated year-round. In such cases, rubber plantations might have green 

vegetation during the dry season. 

3. Data and Methods 

The objective of our work was to evaluate the utility of phenological metrics derived from MODIS 

time series to map rubber plantations and natural forests in Xishuangbanna. We therefore derived 

phenological metrics from MODIS EVI and SWIR time series (see Section 3.3). To evaluate the added 

value of including SWIR metrics into a classification, we trained and validated three Random Forest 

classification models (see Section 3.4) based on: (1) phenological metrics from the EVI time series, 

(2) phenological metrics from the SWIR time series, and (3) phenological metrics from both, EVI and 

SWIR time series (Figure 2). 

Figure 2. Processing scheme showing the comparison of the models based on phenological 

metrics to each other and to the full time series model. RF: random forest classification; 

Acc.: accuracy assessment; TS: time series; Var. Imp.: variable importance. 
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As a benchmark, we then compared the classification accuracy of the best model based on 

phenological metrics to the classification accuracy of a model based on the full, fitted time series data 

(Figure 2). Finally, we calculated the variable importance (see Section 3.4) for the overall best model 

based on phenological metrics. By doing so, we explore the relative importance of each phenological 

metric for classifying rubber plantations and forests. 

3.1. Moderate Resolution Imaging Spectroradiometer (MODIS) Data Preparation 

We used the MODIS Terra Vegetation Index product (MOD13Q1, H/V 27/6) from Collection 5 at 

250 m spatial resolution. MODIS data were retrieved from the National Aeronautics and Space 

Agency (NASA) Earth Resource Observation and Science Center via the Global Visualization Viewer 

(GLOVIS). The time series spans the period from January 2010 to December 2010 with a 16-day 

interval, resulting in 23 time steps. We extracted the SWIR reflectance and the EVI time series from 

the MOD13Q1 Vegetation Index product. We used absolute SWIR reflectance instead of a normalized 

SWIR based index, because we wanted to test direct effects of the SWIR on the mapping accuracy of 

forests and rubber plantations. The EVI is a vegetation index using the red (” ), NIR (” ) and blue 

reflectance (” ) (Equation (1)): 

ὉὠὍςȢυ  
” ”

ρ ” φ ” χȢυ ”
 (1) 

We chose the EVI instead of NDVI, because it is less sensitive to atmospheric noise and does not 

saturate as early as NDVI at high biomass [35].  

3.2. Reference Data  

The collection of reference data in the data scarce and remote areas of Southwest China is a 

challenging task. In this paper, we used a combination of field data, high resolution Quickbird imagery 

from Google Earth
TM

 (GE), and RapidEye imagery acquired through the RapidEye Science Archive 

(RESA) as reference data. With the GE true-colour imagery at very high spatial resolution  

(2.6 m × 2.6 m) it was possible to visually identify the systematic row structure of rubber plantations. 

The RapidEye imagery has a lower spatial resolution (interpolated to 5 m × 5 m), but the sensor 

features a red-edge band and a near-infrared band, which facilitated differentiating between rubber 

plantations and forests. RapidEye imagery was available for the entire Xishuangbanna prefecture, 

whereas Quickbird imagery in GE was only partly available (Figure 1(C)). Field mapping was 

performed during April 2012 in the township of Manlin and South of the city of Jinghong in 

Xishuangbanna (Figure 1(C)). We used the field data to help with the interpretation of GE and 

RapidEye imagery. 

To construct a representative reference data set, we randomly selected 520 MODIS pixels. The 

sample size was chosen based on a multinomial distribution as suggested by [36,37], using a 

confidence level of 95% (precision of 5%) and an estimated probability of 35% of the largest class. 

This number was selected based on a priori  knowledge from a preliminary analysis. As response 

design, each pixel was labelled according to its primary land cover using the GE Quickbird and 
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RapidEye imagery (Table 1). The primary land cover was defined as the land cover that covered the 

largest share of the MODIS pixel area. Hence, we included pure and mixed pixels as reference data. 

Table 1. Reference classes and number of reference pixels. 

Class Description Number of Pixels 

Rubber plantation 
Areas covered by rubber trees in varying stand density. Undergrowth varies 

between open soil and fruits. 
154 (30%) 

Forest Primary and secondary forests with a canopy cover greater than 40%.  257 (49%) 

Non-forest 

Areas not covered by rubber plantations or natural forests. Mostly covered 

by crops (eggplant, rice, corn, pineapple, melon, among others), as well as 

areas with artificial land cover (urban and transportation), water, and shrubs. 

109 (21%) 

3.3. Time Series Analysis 

We used the TIMESAT software [38] to extract phenological metrics from the EVI and SWIR time 

series. First, TIMESAT fits a double logistic function to each pixelôs temporal signal using a non-

linear least-square fit [39]. The result is a fitted time series for each pixel that is temporally smoothed, 

i.e., data only shows residual atmospheric noise and is gap-filled (e.g., for clouds). We setup 

TIMESAT to apply three fitting iterations, an adaption-strength parameter of 2, a seasonality 

parameter of 1, and a window size of 1 for the median filter. 

Figure 3. Raw and fitted Moderate Resolution Imaging Spectroradiometer (MODIS) 

Enhanced Vegetation Index (EVI) (A) and short-wave infrared (SWIR) (B) time series of a 

natural forest pixel with phenological metrics. A: Base values of season; B: Start of season; 

C: Maximum of season; D: End of season. 

 

(A)             (B) 

Based on the fitted time series we then extracted nine phenological metrics (exemplified in 

Figure 3). The metrics can be grouped into temporal metrics that describe the timing of seasonal events 

(x-direction) and spectral metrics (y-direction) that describe the EVI and SWIR values at seasonal 
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events. The maximum is the maximum value for a given season (C). The base value is the mean of the 

off-season minima (A). The season amplitude is the difference between the base value and the season 

maximum. Season start (B) is defined as the day of year (DOY) at which the time series value 

increased 50% in relation to the season amplitude, and season end is defined as the DOY at which the 

time series value decreased 50%, respectively (D). The length is the time difference between season 

start and season end. The left and right derivatives are the first order derivative in point B and C. And 

finally, the middle is the DOY at which the maximum occurs. For some pixels (n = 938; 0.3%) no 

season was extractable, because of extreme noise or cloud cover. These pixels were excluded from 

further processing steps and labelled as ñno season foundò in the resulting classification maps. 

3.4. Classification Algorithm, Variable Importance, and Accuracy Assessment  

In this study, a Random Forest (RF) classification approach was used [40]. RF is ensembles of 

decision-trees wherein each tree is trained on randomly selected features of a bootstrapped sample of 

training data. RF are increasingly used in remote sensing and proved to outperform other machine 

learning algorithms in terms of accuracy and computational resources [41ï43]. Since each tree in the 

forest is only trained on a bootstrapped sample, the complement of the sample (out-of-bag) is used to 

estimate the accuracy of each tree, which is then aggregated over all trees. The aggregated out-of-bag 

accuracy represents an unbiased estimate of map accuracy as long as the reference data were obtained 

via probability sampling, as given in our case [41,43]. We used the out-of-bag predictions to construct 

a confusion matrix from which we calculated overall, userôs and producerôs accuracies [44]. By using 

the out-of-bag accuracy in combination with the random feature selection, the importance of each 

variable for the classification result was estimated. This was done by measuring the mean decrease in 

accuracy if a feature is left out in building a tree. The RF variable importance measure has proven to 

be a reliable tool, providing insights into the predictive power of individual variables [45]. 

The RFs in this study were built using the statistical software R [46] and the randomForest 

package [47]. The number of trees was set to 1000, the sample size of the bootstrapped sample was 

stratified with 70 pixels per class to avoid effects of imbalanced training data [48], and the number of 

features used for each tree was set to the square root of the total number of features, being the standard 

setting in the original RandomForestÊ software [40].  

4. Results 

4.1. Classification Results 

The best model resulted in an overall accuracy of 73.5% and included phenological metrics from 

EVI and SWIR (Table 2). Using SWIR metrics alone achieved an overall accuracy of 67.9%, slightly 

better than the EVI model with 64.4%. The SWIR model discriminated better between rubber 

plantations and forests; producerôs accuracies were 5.8% and 13.7% higher compared to the EVI 

model. In comparison, the EVI model better differentiated between non-forest and forests/rubber 

plantations. Here, userôs and producerôs accuracies of the non-forest class were 23.9% and 9.1% higher 

compared to the SWIR model.  
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The overall best model, trained on metrics from EVI and SWIR time series, resulted in 

classification accuracies of 63.6% for rubber plantations, 80.2% for forests and 71.6% for non-forest 

areas. Confusion mostly occurred between rubber plantations and forests, but also between rubber 

plantations and non-forest areas (Table 3). Forest/non-forest differentiation yielded better results. 

Table 2. Overall producerôs and userôs accuracies for the three models based on 

phenological metrics. 

Land Cover 

Accuracy (%) 

EVI  SWIR EVI and SWIR 

Producerôs Userôs Producerôs Userôs Producerôs Userôs 

Rubber plantation 55.2 50.6 61.0 61.8 63.6 64.9 

Forest 66.5 78.4 80.2 79.2 80.2 84.8 

Non-forest 72.5 59.0 48.6 49.1 71.6 61.9 

Overall 64.4 67.9 73.5 

Table 3. Confusion matrix for the overall best model based on Enhanced Vegetation Index 

(EVI) and short-wave infrared (SWIR) metrics. 

Reference 
Classification 

Rubber Forest Non-Forest Producerôs Accuracy 

Rubber  98 25 31 63.6% 

Forest 34 206 17 80.2% 

Non-forest 19 12 78 71.6% 

Userôs accuracy 64.9% 84.8% 61.9%  

The classification map resulting from the EVI model (Figure 4(A)) showed many forest pixels 

interspersed with rubber plantations (Figure 4(A.1)). It reflects the low producerôs accuracy of rubber 

plantations for the EVI model (Table 2). The map resulting from the SWIR model (Figure 4(B)) 

correctly represented large rubber plantation areas in the central and southern low-lands. However, 

many mixed pixels at the border of non-forest and forest areas in the northern and north-western parts 

of Xishuangbanna were falsely classified as rubber plantations (Figure 4(B.2)), which explains the 

high confusion between non-forest and forest/rubber plantation areas (Table 2). The EVI-SWIR model 

presented an accurate classification map (Figure 4(C)) that best captured rubber expansion areas 

known from previous studies on rubber expansion in Xishuangbanna [11] (Figure 4(C.3)). 

The classification accuracy of the SWIR-EVI model based on the full time series data was 74.8%. 

Thus, the metric-based model was slightly less accurate (1.3% difference). The differences were 

largest for rubber plantations, which had a producerôs accuracy of 63.6% with the metrics-based model 

and 68.8% with the model based on the full time series (5.2% difference). 
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Figure 4. (A). (A.1ïA.3) Enhanced Vegetation Index (EVI) classification map with  

details. (B). (B.1ïB.3) short-wave infrared (SWIR) classification map with details.  

(C). (C.1ïC.3) EVI-SWIR classification map with details. 
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4.2. Variable Importance 

We estimated the relative importance for each phenological metric based on the combined  

EVI-SWIR model. For better visibility we analysed importance of EVI and SWIR metrics in the 

combined EVI-SWIR model separately (Figure 5). The by far most important phenological metric of 

the EVI was the base value followed by the length, left derivative, and amplitude. Within the SWIR, 

the base value was also the most important metric followed by the start, the middle, and the maximum 

of the season. Hence, the spectral values of the EVI metrics were more important than their timing, 

whereas with the SWIR, temporal (start and middle) and spectral (base value and maximum) metrics 

were important predictor variables in the combined EVI-SWIR model. 

Figure 5. Variable importance measure for the overall best model based on Enhanced 

Vegetation Index (EVI) and short-wave infrared (SWIR) metrics, estimated by the mean 

decrease in accuracy if a feature is left out in building a decision tree (Section 3.4). 

 

5. Discussion 

Using phenological metrics for mapping natural forests and rubber plantations resulted in an overall 

accuracy of 73.5%. The finding that phenological metrics are reliable predictors of land cover is in 

agreement with other studies that used phenological metrics to map other land cover types [16]. We 

also identified that overall accuracies only slightly increased when using the full time series instead of 

the phenological metrics (1.3% increase). However, differences were largest for rubber plantations 

(5.2% increase in producerôs accuracy), which was our main class of interest. This suggests that the 

phenological metrics were overall sufficient to capture the spectral-temporal differences between the 

different land cover classes, but using the full time series generally achieved higher accuracies. 

Nonetheless, using phenological metrics has several advantages: The feature space is substantially 

reduced (i.e., 46 vs. 18 features for the EVI-SWIR model), which reduces redundancies and  

multi-collinearity in the explanatory variable set [49]. Second, phenological differences in land cover 

can be broken down into single key metrics describing a specific land cover. These more simple 

metrics facilitate the interpretation of phenological differences and their importance for land cover 



Remote Sens. 2013, 5 2806 

 

classifications. These more generalized metrics might also increase the transferability of the results to 

other study areas [49]. Third, metrics that have been identified as relevant for differentiating between 

natural forests and rubber plantations can be monitored over time more easily than tracking changes in 

multi-dimensional annual time series. These three arguments support the use of phenological metrics 

as predictor for land cover. 

The study also demonstrated the importance of SWIR for mapping rubber plantations. While 

phenological metrics based on EVI differentiated better between non-forest and forests/rubber 

plantations, phenological metrics based on SWIR were important to differentiate between rubber 

plantations and forests. Based on the EVI, the temporal-spectral profile of rubber plantations and 

forests were very similar (Figure 6(A,B)). In comparison, the SWIR profile showed distinct differences 

between rubber plantations and forests (Figure 6(D,E)). In the SWIR, the peak of the season occurred 

on average much earlier over rubber plantations (day of year, DOY: 128 ± 80) than over forests (DOY: 

176 ± 48). Similarly, the season start was much earlier in rubber plantations (DOY: 48 ± 80), 

compared to forests (DOY: 96 ± 48). The differences in the timing of the season start and peak in the 

SWIR were also reflected by the high importance of these metrics as predictor variables in the RF 

classification (Section 4.2). 

The temporal differences in the SWIR time series between rubber plantations and forests may be 

explained by several reasons. In the dry season, green vegetation cover of rubber plantations is low and 

the spectral signal is dominated by open soils, which leads to an increase in SWIR reflectance. The 

decrease in soil water content in the dry season may further increase SWIR reflectance [50]. The 

SWIR maximum of rubber plantations therefore represents the coldest and driest time of the year. 

Though, the actual timing may also vary with site conditions, understory vegetation, and rubber tree 

density, visible in the high standard deviation of the SWIR maximum in rubber plantations 

(Figure 6(D)). In comparison, the SWIR signal of forests in the dry season is less influenced by soil 

reflectance, probably because seasonal forests include mixtures of evergreen and deciduous trees, and 

a greater proportion of understory vegetation. These winter/dry season differences between seasonal 

forests and rubber plantations are also supported by the significantly higher EVI base value of forests 

compared to rubber plantations (t = ī2.56, df = 346, p-value < 0.05). This finding is in agreement with 

Dong et al. (2012) [20] who used the difference in NDVI during the winter months to differentiate 

between evergreen forests and rubber plantations, and with Dong et al. (2013) [27] who highlighted 

the importance of NDVI, EVI, and LSWI reflectance in the defoliation period for differentiating 

between rubber plantations and forests. However, in our study, the differences in EVI base value alone 

were not sufficient to accurately separate forests and rubber plantations (lower accuracies with EVI 

model). This may be explained by the varying phenology of forests in Xishuangbanna, which partly 

resembles the phenology of rubber trees (Section 2).  

Interestingly, the SWIR peaked similarly to the EVI during the summer months over forests but not 

over rubber plantations. This summer increase in SWIR for forests may be explained by structural 

changes in the forest canopy, i.e., less shadows and higher reflectance caused by higher leave area. In 

rubber plantations we would expect the same effect, because rubber plantations also increase their 

leave area in summer (higher EVI). However, the winter SWIR reflectance peak in rubber plantations 

caused by the soil signal (discussed above) may simply superimpose the summer peak, because of the 

higher SWIR reflectance of soils. This explanation is supported by the fact that SWIR reflectance of 
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rubber plantations and forests in the summer months are equally high (around 10%, Figure 6(D,E)). 

Therefore, EVI and SWIR time series of forests have coincident seasonal peaks (Figure 6(B,E)), 

whereas rubber plantations have their SWIR peak in the winter/dry season (Figure 6(D)) and the EVI 

peak in the summer (Figure 6(A)).  

The importance of the EVI base value can also be attributed to the separability of forest areas 

(including rubber plantations) and non-forest areas (i.e., cropping, urban, and water areas). All  

non-forest pixels presented a significant lower base value in the EVI time series (mean of 0.27 ± 0.08) 

compared to rubber plantations (mean of 0.39 ± 0.07; t = 11.90, df = 201, p-value < 0.01) and forests 

(mean of 0.41 ± 0.07; t = 14.75, df = 168, p-value < 0.01). Furthermore, the importance of the SWIR 

base value can be attributed to differences between forest and non-forest areas. The SWIR base value 

of non-forest areas was significantly higher (mean of 0.09 ± 0.02) compared to rubber plantations 

(mean of 0.07 ± 0.02; t = ī4.69, df = 183, p-value < 0.01) and forests (mean of 0.05 ± 0.01; t = ī13.84, 

df = 136, p-value < 0.01). This may be explained by the majority of crop pixels within the non-forest 

class, where the soil in the dry season causes a high SWIR reflectance (Figure 6(F)).  

Figure 6. Smoothed Enhanced Vegetation Index (EVI) (AïC) and short-wave infrared 

(SWIR) (DïF) time series extracted and averaged for all reference pixels of the rubber 

plantation, forest, and non-forest classes. Dotted lines indicate one standard deviation. 

 

In comparison to the study from Li et al. [19], we achieved similar producerôs accuracy for rubber 

plantations if compared to their classification based on MODIS and statistical data (63.6% compared to 

67.8%/59.4%), but lower userôs accuracies (64.9% compared to 98.1%/97.2%). However, we achieved 

higher accuracies if compared to their product solely relying on MODIS data (producerôs accuracy: 

63.6% compared to 60.9%/0%; userôs accuracy 64.9% compared to 64.6%/0%). Since their study 

mainly relies on the temporal profile of the EVI we can highlight the importance of the SWIR temporal 

profile for mapping rubber plantations. Nevertheless, their study covered a larger region and accuracy 

measures that were derived from different validation protocols should always be compared with 


