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Abstract: Radiometric precision is difficult to maintain in orbital images due to several 

factors (atmospheric conditions, Earth-sun distance, detector calibration, illumination, and 

viewing angles). These unwanted effects must be removed for radiometric consistency 

among temporal images, leaving only land-leaving radiances, for optimum change 

detection. A variety of relative radiometric correction techniques were developed for the 

correction or rectification of images, of the same area, through use of reference targets 

whose reflectance do not change significantly with time, i.e., pseudo-invariant features 

(PIFs). This paper proposes a new technique for radiometric normalization, which uses 

three sequential methods for an accurate PIFs selection: spectral measures of temporal data 

(spectral distance and similarity), density scatter plot analysis (ridge method), and robust 

regression. The spectral measures used are the spectral angle (Spectral Angle Mapper, 
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SAM), spectral correlation (Spectral Correlation Mapper, SCM), and Euclidean distance. 

The spectral measures between the spectra at times t1 and t2 and are calculated for each 

pixel. After classification using threshold values, it is possible to define points with the 

same spectral behavior, including PIFs. The distance and similarity measures are 

complementary and can be calculated together. The ridge method uses a density plot 

generated from images acquired on different dates for the selection of PIFs. In a density 

plot, the invariant pixels, together, form a high-density ridge, while variant pixels (clouds 

and land cover changes) are spread, having low density, facilitating its exclusion. Finally, 

the selected PIFs are subjected to a robust regression (M-estimate) between pairs of 

temporal bands for the detection and elimination of outliers, and to obtain the optimal 

linear equation for a given set of target points. The robust regression is insensitive to 

outliers, i.e., observation that appears to deviate strongly from the rest of the data in which 

it occurs, and as in our case, change areas. New sequential methods enable one to select by 

different attributes, a number of invariant targets over the brightness range of the images.  

Keywords: change-detection; spectral correlation mapper; spectral angle mapper; 

Mahalanobis distance; Euclidean distance; bi-temporal 

 

1. Introduction 

Spectral images acquired from the same area at different times contain valuable information for 

regular monitoring of the Earth’s surface, allowing us to describe the land-cover evolution, vegetation 

phenology, and natural hazard events. However, it is difficult to maintain radiometric accuracy in 

orbital images due to changes in atmospheric conditions, Earth-Sun distance, detector calibration, 

illumination angles, viewing angles, and sensor oscillation, as are required in order to highlight the 

spectral changes of interest. Another common problem in change-detection analysis from different 

sensors, such as Landsat Thematic Mapper (TM) and Landsat Enhanced Thematic Mapper plus 

(ETM+) images is that they, additionally, require the evaluation of radiometric consistency between 

sensors to ensure comparability between the temporal images [1,2]. Thus, methods for ensuring 

radiometric consistency among temporal images are necessary to remove, or compensate for, all the 

above effects, except for actual changes on the land surface, allowing the surface reflectance or 

normalized digital numbers obtained under different conditions to be placed on a common scale [3].  

In previous studies, two levels of radiometric correction were developed: absolute and  

relative [1,4–6] (Figure 1). In absolute radiometric correction, atmospheric radiative-transfer codes are 

used to obtain the reflectance at the Earth’s surface from the measured spectral radiances. The absolute 

method corrects for following factors: changes in satellite sensor calibration over time, differences 

among in-band solar spectral irradiance, solar angle, variability in Earth-Sun distance, and atmospheric 

interferences. In contrast, relative correction by normalization does not find the true radiance of the 

surface or remove atmospheric errors, but instead transforms the digital numbers to a common  

scale [3]. Thus, the radiometric properties of an image are adjusted to match a reference image [7,8], 

image normalization uses a histogram-matching method [9] or a linear-regression method [10]. 
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Figure 1. Flowchart of the main methods developed for radiometric normalization. 

 

The linear regression method is the most widely used approach for relative correction. Initially, the 

technique was based on simple regression that considered all the pixels of temporal images [10]. 

Subsequently, normalization was performed considering landscape elements with reflectance values 

that are nearly constant over time, ‘pseudo-invariant features’, or PIFs [7,11–13]. Therefore, the key 

problem of the image regression is to obtain an appropriate procedure for a selection of PIFs. For the 

regression model to be reliable, selection of radiometric control targets must consider the following 

characteristics [11,14,15]: small changes in elevation for which the thickness of the atmosphere over 

each target is approximately the same; minimal amounts of vegetation due to high susceptibility 
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changes over time; positioning in flat areas in order to minimize the influence of changes in sun angle 

between the images; and a large range of brightness values. PIF selection can be made by visual 

inspection or through computational methods.  

PIF selection through visual inspection establishes regions of interest for the dark and bright (DB) 

areas [14]. In this objective, the PIFs can be selected using scatterplots with Kauth-Thomas (KT) 

greenness-brightness components [7]. However, visual inspection methods are subjective and 

dependent on the analyst’s selection, which can decrease accuracy.  

Computational methods for PIF selection are more accurate, considering an automatic extraction. 

There are two main strategies, which consider the different dimensions of the image (X, Y, and Z 

components): (a) band-by-band methods that compare a pair of bands at different times (X and Y 

dimensions of the image), and (b) pixel-by-pixel methods that compare a pair of spectra at different 

times for a pixel (Z dimension of the image). 

PIF detection methods that perform comparisons between pairs of bands are the most commonly 

used. These include no-change buffer zone around a fitted line from linear regression [16] or principal 

components [2,3,17]; robust-regression [18,19]; scatter-plot density [20–22]. Generally, two attributes 

are used to identify the PIFs: invariant point density and residual values obtained from differences 

between observed and estimated values from the linear model. 

Elvidge et al. [16] proposed a method called automatic scattergram controlled regression (ASCR), 

which performs a linear regression between the temporal image pairs and calculates a no-change buffer 

zone from the orthogonal distances between the points and the fitted straight-line. Du et al. [3] selected 

the PIFs using principal component analysis (PCA) and a no-change buffer zone. The authors consider 

the most probable linear relationship between two individual bands is described by the first principal 

component. The pattern of pixel distribution resembles an ellipse, described adequately by the major and 

minor PC axes. The quality control of the method establishes a range around the primary major axis  

(no-change buffer zone), until obtaining an acceptable linear correlation coefficient (r) of candidate PIFs 

from the two images. This procedure limits the no-change buffer zone from the minor PC axes 

(orthogonal to the first axis) which shows the deviations to the main axis. In addition, the user can apply 

thresholds for rejecting cloudy and water pixels. Although the method improves the optimal linear 

regression model, it still has problems. If the invariant point density is too low the sample will not be 

well-represented in first component. Thus, there is a tradeoff between the sample size and the correlation 

coefficient. The main limitation of these two methods is the elimination of outliers in a single step  

(no-change buffer zone). If the initial data contain many outliers, the first estimate of the linear regression 

or PCs can be wrong, as the subsequent steps of buffer zone and the elimination of outliers. The reliability 

of the first straight-line is of high importance for the solution, however, this is not always possible. 

Furthermore, a marked reduction in the buffer zone can have a result similar to the first straight-line. 

Limitation in the use of the buffer zone indicates the need for a different approach, already 

described in statistical science in the 1970s [23,24]. The theory of multidimensional robust estimators 

searches the identification of outliers by successive interactions. Robust-regression is a form of the 

regression analysis insensitive to outliers, i.e., observations, which do not follow the pattern of the 

other observations, and they have serious effects on statistical inference. Thus, this procedure is an 

improvement to least squares, which fit a model from the valid observations. Heo and FitzHugh [18] 

developed an optimal linear regression model with a robust criterion for effective outlier rejection. 
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Their procedure consists of a robust statistical method in that the change points are concentrated in 

residual outliers. Similarly, Olthof et al. [19] adopted a simple robust regression method, called  

Theil-Sen to radiometric correction. This method is a non-parametric, rank-based regression technique 

that uses the median of all slopes of unique pairwise observations separated by a minimum distance as 

the maximum-likelihood slope for the regression. 

The density scatter plot method (ridge method) compares two images made at different times in a 

scatter plot and calculates the point density. The PIFs describe a high-density ridge along a straight line 

near the 1:1 line (the ridge), while areas with pronounced change (clouds and land cover changes) are 

characterized as having low density [20]. In summary, the methods attempt to identify the regression 

line, along which unchanging pixels plot, because everything else (plots off the ridge) are pixels that 

have changed. So the key is to eliminate outliers and then to regress a line of no change and finally to 

establish a density threshold within which a point can deviate from the ridge without being considered 

as significantly changed. 

However, PIF detection methods using band comparisons (simple linear regression, robust 

regression, density scatter plot, and linear transformations) present errors when there are few PIFs in 

the image. If the preponderance of pixels contains systemic changes, the identification of PIF may 

contain biased distortions. Thus, the use of these methods must adopt a “PIF assumption” for their 

implementation [3], considering the premise that the consistently changed targets are not the majority 

of targets in each scene.  

This problem in PIF detection can be avoided by ignoring the relationship between bands (X and Y 

dimension) and focusing instead on the particular spectral relationship between each pair of temporal 

pixel (Z dimension). PIF detection methods, using spectral comparison, consider the distance measures 

(Euclidean and Mahalanobis distance) and similarity measures (cosine correlation and Pearson’s 

correlation) [25,26]. In this approach, PIF detection is independent of its neighbors, unlike other 

methods that are only possible from a set of pixels. Thus, errors in the detection of temporal points 

from weakly correlated images are eliminated. 

Canty et al. [27] proposed a new approach for the calculation of spectral measures, instead of 

considering the original images they adopted the canonical variates, calculated from Canonical 

Correlation Analysis (CCA). CCA establishes a linear combination between two groups of temporal 

images, such that their mutual correlations are showed in their pairs of canonical variates. The change 

detection is determinate by the differences between the pairs of CCA components, which are called by 

authors, Multivariate Alteration Detection (MAD). The metric used for the selection of PIFs was the 

square of the normalized Euclidean distance. Selected PIFs are used for radiometric normalization 

using linear regression. 

In this study, a new algorithm is formulated for radiometric normalization that combines three 

methods for the detection of PIFs: similarity and distance measures, a density scatter plot method, and 

robust linear regression. The methods presented are complementary and can be used together in 

consecutive steps that improve the selection of PIFs. The method was implemented in software 

developed in C++.  

The proposed methods have been applied in an extensive irrigation project located in the Gorutuba 

region, Central Brazil. The irrigation project has established an important economic growth vector to 

agricultural activities and agro-industries, keeping the production under a high climate risk. The São 
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Francisco River provides a steady water flow for use in irrigated farming. The topography is generally 

very flat, which favors the development of agriculture irrigation, involving the establishment of dikes 

and regulations. The agriculture irrigated produces mainly fruits; species include banana, pineapple, 

and mango. Thus, this area is suitable for this study because it presents different targets such as: lake, 

city, cultivated area, and natural vegetation. 

2. Methods 

The automatic radiometric normalization consists of the following steps: co-registration of the 

temporal images, selection of the PIFs, and linear regression from the PIFs. In this paper, the algorithm 

for the automatic detection of the PIFs combines methods that provide a gradual selection (Figure 2). 

Initially, the method performs a spectral analysis in time, using similarity and distance measurements, 

followed by band comparison from the density scatter-plot analysis, and finally a robust regression to 

eliminate possible outliers. Thus, each one of these methods was used to sequentially eliminate change 

points and create invariant point sets to achieve the radiometric normalization of the temporal images. 

Figure 2. Operational pseudo-invariant features (PIFs) identification and radiometric 

normalization processing. 

 

2.1. Image Acquisition and Preprocessing  

The method considers, as inputs, two co-registered temporal images with their three dimensions: X, 

Y, and Z (spectral profile) acquired in the same geographical area at two times (t1 and t2). In the 

present paper, Landsat TM (Thematic Mapper) images are used. These were acquired without clouds 

during the same month of sequential years (9 September 2001, and 21 September 2011) in order to 

minimize any differences in sun angle and vegetation growth stage (Figure 3). Images have a size 

dimension of 1,000 × 1,000 pixels. 

The images were co-registered from twelve ground control points identified in each image using 

ENVI software. The warping method used was the first-order polynomial (simplest method) combined 

with the nearest-neighbor resampling method to avoid interference in the pixel spectrum. The root 

mean squared error (RMS) value reported by ENVI was <0.2 pixels. Images have to be superimposed 
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within 0.2 pixels (RMS) to achieve an error of only 10% [28,29]. Normalization was conducted by 

using the 2011 TM scene as the reference image to adjust the 2001 image. In radiometric 

normalization, the determination of reference and unnormalized variables is arbitrary, since both 

variables have measurement uncertainty associated with them, and the purpose is to convert them to a 

common scale. The importance of the reference image increases when the radiometric normalization is 

performed for a large amount of image over time, because all other images are adjusted to it. Thus, the 

choice of the reference image may be the best visual quality as well as the larger range of values, so 

that the information can be maintained as much as possible [30]. 

Figure 3. Location map of the Gorutuba region, Central Brazil. Color composite images of 

2001 and 2011 (RGB: TM345). 
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2.2. Pixel-by-Pixel Methods 

2.2.1. Spectral Measures from the Original Images 

The PIFs can be determined by distance and similarity measures between the spectra of images with 

the same spatial position at different times [25,26]. The main similarity measures used in the spectral 

classification are: cosine correlation used in the Spectral Angle Mapper (SAM) [31] and Pearson’s 

correlation coefficient used in the Spectral Correlation Mapper (SCM) [32], while the main distance 

measure utilized is Euclidean distance used in the minimum distance. Table 1 shows the use of the 

measures in change detection (CD), considering the pixel X for the first (t1) and second (t2) times. The 

variable “i” corresponds to the spectral band and ranges from 1 to the number of bands (N). 

Table 1. Spectral Measures in Temporal Analysis. 

Measures Formulation Characteristics 

Euclidean Distance for 
change detection 
(EDCD) 

 
Sensitive to offset and gain 
factor 

Spectral Angle Mapper 
for change detection 
(SAMCD) 

∑

∑ ∑

 
Negative correlation is not 
detected 
Invariant to gain factor 

Spectral Correlation 
Mapper for change 
detection (SCMCD) 

∑

∑ ∑

 
Negative correlation is 
detected 
Invariant to offset and gain 
factor 

The spectral measures provide different information about the target. This is because each measure 

has its own characteristics, which justifies the use of different measures in accordance with the spectral 

behavior and data type [26]. The EDCD is sensitive to the bias (additive) factor and gain (multiplicative) 

factor. SAMCD is unable to detect negatively correlated data and invariant to bias factors. SCMCD is 

invariant to the bias and gain factors, and may be used with anti-correlated data. Values range from −1 

to 1, where 1 means identical spectra, 0 means they are completely uncorrelated, and −1 means they 

are perfect opposites. The SCMCD is therefore insensitive to illumination effects and is appropriate for 

eliminating shadows. The major difference between the correlation methods is that SAMCD uses 

primary values for  and , whereas SCMCD uses data centered by the means  and . Thus, 

the cosine correlation is equivalent to the uncentered version of Pearson’s correlation, assuming the 

population mean is zero.  

The spectral measures can be combined in PIF detection, increasing efficiency. Thus, the user can 

choose the number of spectral measures to be used in PIF detection. PIF selection is only performed if 

the values are consistent with the thresholds of each method. 

2.2.2. Distance Measures from the Canonical Variates 

CCA was developed by Hotelling [33], and measures the linear relationship between two 

multidimensional variables. This multivariate analysis differs of the other transformation methods that 

identify the patterns of relationship within a single set of data. This characteristic has special emphasis 
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in bi-temporal change detection, in which data consist of two sets of bands acquired at different times. 

CCA identifies image patterns common to both times, as well as patterns particular to each time. In 

this way CCA establishes a relationship of a set of predictor variables (V1, V2, …, Vn) from a set of 

criterion variables (Y1, Y2, …, Yn), trying to find two sets of basis vectors (a and b), such that the 

correlations between the projections of the variables onto these basis vectors are mutually 

maximized [34]. 

 (1)

This approach is a complement of the multiple regression method that establishes a relationship of a 

set of predictors (V1, V2, ..., Vn) for a single criterion variable (Y). The calculation of the two sets of 
basis vectors (  and ) can be obtained from the total covariance matrix (Cov) considering the 

two temporal variables Xt1 and Xt2 with zero mean: 

 (2)

where  and  are the within-sets covariance matrices of  and  respectively 
and    is the between-sets covariance matrix. The maximum of correlation (  to 

 and  is the largest canonical correlation. Thus, the canonical correlations between  and 

 can be found by solving the eigenvalue equations: 

 (3)

 (4)

where the eigenvalues are the squared canonical correlations and the eigenvectors  and  

are the normalized canonical correlation basis vectors. The canonical variates (CV) are calculated by 

multiplying eigenvectors with the original images (X) for the first (t1) and second (t2) times subtracted 

by its means (μ) [34]: 

 (5)

 (6)

Each pair of bands is orthogonal and independent of all other bands derived from the same data set. 

Successive pairs of canonical variates are based on residual variance. The first pair of canonical 

variates demonstrates the highest intercorrelation, the next pair, the second-highest correlation, and so 

forth. Thus, canonical correlation is an appropriate and powerful multivariate technique for both 

multiple dependent and independent variables. In this paper, the algorithm for the calculation of 

canonical variates, developed by Borga [34], was adapted for remote sensing images. This algorithm 

performs an ordering of canonical variates according to their eigenvalues. 

Nielsen et al. [35] proposed the Multivariate Alteration Detection (MAD) technique, a  

change-detection method based on CCA. In MAD, the respective Canonical Variates (CVs) of the two 

times are subtracted in order to emphasize the changes: 

 (7)

Therefore, MAD analysis takes the difference between linear combinations of the original data that 

have maximal correlation; it consists in normalization for a change detection scheme.  
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Spectral distance metrics can be calculated from temporal CVs. Canty et al. [27] used the square of 

the Normalized Euclidean Distance (NED2) between pixels of canonical variates to PIF detection: 


 (8)

However, this formulation can provide extremely high values that prevent the display of the 

distance image (rule-image). In this paper, we consider the Normalized Euclidean Distance (NED) 

more appropriate to image comparison with the other methods. NED is a simplification of the 

Mahalanobis Distance. 

NED application in the magnitude of MAD images creates an ellipsoidal distribution that best 

represents the probability distribution of the estimated set by standardization of canonical variates. 

However, spectrum standardization is not always desired. CCA provides an ordering of image quality 

(according to its eigenvalues), where the uncorrelated noises with equal variance ( ) are concentrated 

in the last components (decreasing Signal/Noise ratio). The use of all bands provides an increase of 

magnitude of noise components resulting in signal degradation and interference in the PFI detection. 

Thus, we propose that the user chooses the canonical variates to be used in calculating the distance, in 

order to eliminate noise components.  

NED is not independent of the scene because its formulation uses the standard deviation (dependent 

of the scene). This characteristic differs from other measures; which consider only operations restricted 

to a given pixel; regardless of the size and value of the other pixels [26]. 

2.3. Band-by-Band Methods 

2.3.1. Ridge Method 

Scatter-plot analysis is a powerful approach to exploratory multivariate data analysis. Song et al. [20] 

identifies PIFs using scatter plots between bi-temporal images. However, the remote-sensing datasets 

are usually large, demanding additional procedures such as density representation and subset selection. 

In this work, the density representation is obtained by encoding the density values for a grey-scale 

image as 8-bit integers. The scatter plot can thus be represented by a 256 × 256 matrix. The transfer 

function from density values to gray-scale, or to pseudo-color can be manipulated through the color 

lookup table. 

2.3.2. Robust Statistical Method  

The mathematical model that best describes the normalization bi-temporal images involves linear 

regression of the PIFs. The algorithm assumes that the PIFs at t2 are linearly related to the pixels at t1. 

This implies that the spectral reflectance properties of the sampled pixels have not changed over time. 

 (9)

where “Ref” is the reference image, “Sub” is the subject image, “a” is the linear coefficient, and “b” is 

the angular coefficient. The regression procedure is applied separately for each image band, therefore 

for a Landsat TM scene, six different equations are defined. However, statistical fluctuations may be 
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caused by the presence of outliers. Regression analysis or least-squares estimation are highly 

susceptible to outliers, which can generate erroneous values for slope and intercept, and consequently 

lead to false conclusions. In this regard, the robust statistical methods are suitable to eliminate outliers 

considering a model that explains the greater part of the data. Thus, robust regression determines the 

PIFs in the presence of noise (outliers), which is important for the radiometric 

normalization [18,19,36]. However, errors can occur if the invariant targets do not represent the greater 

part of the scene. In this paper the robust regression is a refinement stage that considers a prior 

selection of PIFs by spectral measures and density scatter plots. 

Several estimators have been developed in order to be insensitive to small deviations from an 

idealized assumption for straight-line fit [23,24]. Maximum-likelihood arguments (M-estimates) are 

usually the most relevant for model-fitting. In this work we adopted the numerical calculation of  

M-estimates described by Press et al. [37]. These estimators minimize the sum of a symmetric, 

positive-definite function f(ri), where ri are residuals, i.e., difference between the data point and the 

fitted value [38]. Several functions have been proposed in order to reduce the influence of large 

residual values on the estimated fit [23,39,40]. In this work we adopted the numerical calculation of 

M-estimates described by Press et al. [37]. For more details about the theory and application of  

M-estimators, see [23,37,41,42]. 

2.4. Optional Use of a Mask 

Optionally, targets with high susceptibility to change over time can be disregarded as being 

unreliable, such as vegetation. The removal of these targets should be made by use of a binary mask, 

which includes the value of 1 in the analysis and ignores the value of 0. Thus, undesirable targets may 

be disposed even with spectral and density measures compatible with a PIF. 

2.5. Radiometric Normalization Accuracy 

Greater accuracy implies more similarity between the frequency distribution of reference and 

normalized data, i.e., similar values of mean and dispersion measures. Therefore the comparison of 

these statistical measures in PIFs areas is widely used for radiometric normalization accuracy, since 

this procedure depends only on the resulting images. The main statistical indices are measures of 

central tendency (mean) and dispersion (range, standard deviation, variance, and coefficient of 

variation) between reference and normalized images and linear regression information  

(root-mean-square error and correlation coefficient) [27,30].  

However the sample size has a significant impact on the statistical results. A smaller sampling of 

PIFs regularly gives better performance because it reduces noise and outliers, which can substantially 

degrade the radiometric normalization. Variations in the number of samples modify the statistical data 

for the same method. Therefore, the comparison of methods must use the same number of pixels in 

order to eliminate this effect. In the present study, we developed a program that considers three 

alternatives for the PIFs selection from distance or similarity images (pixel-by-pixel methods): 

threshold values of the spectral measures, number of pixels, and image percentage (all user-defined).  

These statistical procedures, despite being widely used should be evaluated carefully, since they 

represent the linear regression fits, and not directly the quality of PIFs. The comparison of the spectral 
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behavior of known targets is still the most straightforward way to judge the overall performance of the 

radiometric normalization methods. 

3. Results 

3.1. Results of the Pixel-by-Pixel Procedures 

3.1.1. Distance and Similarity Measures from Original Images 

Initially, the PIFs detection using different spectral measures from original images were evaluated. 

Figure 4 shows the spectral measure images in a gray-scale format and PIF images in a binary format. 

The SCMCD image (Figure 4(a)) shows the most likely invariant points as bright, while the SAMCD and 

distance images (Figure 4(b,c)) show them as dark. A PIF selection with less points should adopt a 

threshold with a high value to the SCMCD method; low angles from SAMCD, and low EDCD values. As 

an example, a threshold value of 20% (200,000 pixels) was evaluated for the study area. PIFs 

identified with them are represented with bright colors for each of the three approaches  

(Figure 4(d–f)). The PIFs have been well distributed in the image considering the different targets of 

the scene. 

Figure 4. (a) SCMCD image; (b) SAMCD image; (c) EDCD image; (d) PIF image considering 

20% from SCMCD image; (e) PIF image considering 20% from SAMCD image; (f) PIF 

image considering 20% from EDCD image. 
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Most of the invariant points are identified independently using the three different measures; 

however there are differences among the results and these can be visualized from the intersection PIFs 

among the methods (Table 2). The most pronounced differences occur between the similarity measures 

and Euclidean distance, where nearly half of the PIFs are coincidental. The SAMCD and SCMCD show 

a high PIFs overlap, i.e., approximately 80% of pixels. 

Table 2. Intersection number of PIFs from different methods (SCMCD, SAMCD, and EDCD) 

considering a threshold value of 20%. 

 SCMCD (20%) SAMCD (20%) EDCD (20%) 

SCMCD (20%) 200,000 160,398 106,981 

SAMCD (20%) 160,398 200,000 102,774 

EDCD (20%) 106,981 102,774 200,000 

The spatial location of PIFs from the different methods can be performed by color composite 

images (Figure 5(a)). In the color composite, the invariant points identified by all three methods are 

white, and change points are black. Primary colors (red, green, and blue) indicate identification by a 

single method; secondary colors (cyan, magenta, and yellow) indicate identification by two methods. 

The similarity measures (SCMCD and SAMCD) have greater amounts of common invariant points 

(yellow color). Figure 5(b) shows a PIF image with the intersection of all methods, where the PIFs are 

represented with bright colors. 

Figure 5. (a) Color composite made by combining PIFs from the SAMCD (20%) (Red), 

SCMCD (20%) (Green) and EDCD (20%) (Blue); (b) PIF image obtained from integration of 

similarity and distance measures. 

 

Figure 6 shows an example of the differences between the spectral measures of similarity and 

distance. In Figure 6(a) two temporal spectra that have the same shape and offset difference are 

identified as invariant point using the SAMCD and SCMCD measures, and as a change point by the 
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EDCD. In contrast, Figure 6(b) demonstrates two temporal spectra identified as invariant point using 

the Euclidean distance, and as a change point by the SAMCD and SCMCD measures. These differences 

emphasize that the methods are complementary and their combinations allow a greater constraint for 

PIFs and a significant number of the pixels are change targets between the temporal images 

(Figure 6(b)). 

Figure 6. Differences in PIFs detection between similarity and distance measures: (a) two 

temporal spectra that are identified as invariant point using SAMCD and SCMCD measures; 

and as a change point by EDCD; (b) two temporal spectra which are identified as invariant 

point by the EDCD and change point using SAMCD and SCMCD measures. Black line refers 

to 9 September 2001 and red line refers to 21 September 2011. 

 

Statistical data from the simple linear regression for the selected PIFs are compared in order to 

evaluate the different spectral measures (Tables 3–5). A comparison of the spectral measures adopted a 

simple linear regression to avoid interference from other methods (ridge and robust regression).  

Table 3 gives the corresponding information about regression statistics. PIFs-EDCD shows the best-

fit linear regressions for all bands with the lowest root-mean-square errors (RMSE) and highest 

correlation coefficients (R). This behavior was expected because the minimum Euclidean distance 

tends to be more aligned to a straight line; unlike the similarity measures that can have greater 

variability. PIFs-SCMCD provides better correlation coefficients than the PIFs-SAMCD, however the 

PIFs-SAMCD presents best RMSE values.  

Table 3. Least squares regression on training PIFs (200,000) from SCMCD, SAMCD, and 

EDCD measures;  is the fitted intercept,  is the fitted slope, root-mean-square errors 

(RMSE) is the root mean squared error and R is the correlation coefficient. 

Bands 
SCMCD SAMCD EDCD 

  RMSE R   RMSE R   RMSE R 

Band-1 −7.33 1.114 5.437 0.865 −3.316 1.061 5.121 0.851 −0.869 0.99 2.805 0.93 

Band-2 −3.679 1.162 4.220 0.905 −3.073 1.143 3.901 0.902 0.248 1.006 1.988 0.959 

Band-3 −3.675 1.144 6.615 0.944 −2.547 1.122 6.307 0.93 −0.263 1.026 3.254 0.977 

Band-4 −0.025 1.097 6.642 0.964 2.352 1.066 6.454 0.94 2.518 1.037 4.462 0.98 

Band-5 −1.345 1.06 11.398 0.974 −1.315 1.068 11.688 0.954 2.539 0.991 5.086 0.993 

Band-7 −0.149 1.076 6.642 0.968 0.128 1.076 6.846 0.948 2.026 0.989 3.582 0.986 
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Table 4 shows the means of the 2011 scene (reference image) and 2001 scenes, before and after 

normalizations, using least squares regression line. The differences between the means of reference 

and normalized images are always close to 0.5. SCMCD has the lowest average differences for the 

infrared bands (4,5,7). SAMCD shows a lowest difference value for band 3, while the EDCD for bands 1 

and 2. 

Table 4. Comparison of mean intensities of hold-out test PIFs (20%) for the three PIF 

methods using the 2001 scene before and after normalization to the 2011 scene with least 

squares regression. 

SCMCD 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

Uncorrected (2001) 76.461 38.203 51.968 64.288 126.890 59.212 

Normalized (2001) 77.273 40.199 55.236 69.964 132.700 63.073 

Reference (2011) 77.830 40.713 55.783 70.484 133.170 63.540 

Difference 0.550 0.513 0.546 0.520 0.465 0.466 

SAMCD 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

Uncorrected (2001) 77.189 38.927 54.111 66.257 132.930 62.097 

Normalized (2001) 78.030 40.927 57.686 72.463 140.140 66.420 

Reference (2011) 78.546 41.431 58.182 72.987 140.630 66.921 

Difference 0.516 0.504 0.495 0.523 0.491 0.500 

EDCD 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

Uncorrected (2001) 72.809 34.229 44.099 56.736 108.240 48.797 

Normalized (2001) 70.809 34.229 44.412 60.840 109.33 49.791 

Reference (2011) 71.224 34.680 44.977 61.367 109.840 50.271 

Difference 0.414 0.4505 0.564 0.527 0.503 0.480 

Measures of dispersion differ among PIFs from ED and measures of similarities (SCM and SAM) 

(Table 5). The PIFs from ED have lower differences of variance and coefficient of variation between 

the reference image and the images uncorrected and corrected. These measurements, between SAM 

and SCM are similar, but SAM presents variance values closest between the reference image and the 

normalized image, whereas SCM shows variation coefficients, which are slightly closer. The range of 

values varies greatly although the SCM and ED present more homogeneous values than the SAM. 

Table 5. Comparison of dispersion measures of hold-out test PIFs (20%) for the three 

measures (SCMCD, SAMCD and EDCD) using the 2001 scene before and after normalization 

to the 2011 scene with least squares regression. 

SCMCD 

  Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

V
ar

ia
n

ce
s 

Uncorrected (2001) 70.69438 59.44261 273.3577 480.6458 2131.235 562.5406 

Normalized (2001) 88.19824 79.76944 358.481 581.9668 2387.68 646.6398 

Reference (2011) 117.2427 98.06528 401.5877 622.2835 2524.955 694.9333 

  



Remote Sens. 2013, 5 2778 

 

Table 5. Cont. 

SCMCD 

  Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

R
an

ge
 Uncorrected (2001) 78 62 113 148 253 143 

Normalized (2001) 87 72 129 162 255 153 

Reference (2011) 99 73 128 148 255 163 

C
oe

ff
ic

ie
n

t 
of

 Uncorrected (2001) 0.109965 0.201812 0.318149 0.341022 0.363826 0.400559 

Normalized (2001) 0.121536 0.22218 0.342774 0.344807 0.36822 0.403169 

Reference (2011) 0.139135 0.243237 0.359244 0.353919 0.377336 0.414881 

SAMCD 

  Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

V
ar

ia
n

ce
s 

Uncorrected (2001) 61.32971 50.99061 203.6081 275.8851 1223.483 361.7351 

Normalized (2001) 69.58914 66.44938 256.8769 315.0233 1392.437 418.5648 

Reference (2011) 95.20167 81.86585 296.2384 355.2058 1531.65 465.3757 

R
an

ge
 Uncorrected (2001) 133 84 127 145 252 140 

Normalized (2001) 141 96 142 155 254 150 

Reference (2011) 99 72 117 138 255 162 

C
oe

ff
ic

ie
n

t 
of

 Uncorrected (2001) 0.101456 0.183442 0.263701 0.250687 0.263134 0.306285 

Normalized (2001) 0.106908 0.199176 0.277837 0.244937 0.266286 0.308022 

Reference (2011) 0.124221 0.218387 0.295823 0.258223 0.278294 0.32236 

EDCD 

  Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

V
ar

ia
n

ce
s 

Uncorrected (2001) 51.63264 44.39962 208.6694 451.3844 1791.989 443.5186 

Normalized (2001) 51.6276 44.39962 219.4595 488.523 1768.854 441.4567 

Reference (2011) 58.49063 48.87633 230.1959 505.5454 1786.699 446.3774 

R
an

ge
 Uncorrected (2001) 91 65 113 148 253 140 

Normalized (2001) 90 65 115 154 251 138 

Reference (2011) 99 69 119 141 254 135 

C
oe

ff
ic

ie
nt

 

of
 

Uncorrected (2001) 0.098691 0.194667 0.327568 0.374467 0.391084 0.431584 

Normalized (2001) 0.101473 0.194667 0.333561 0.363291 0.384677 0.421984 

Reference (2011) 0.107378 0.201592 0.337334 0.36639 0.384839 0.420275 

3.1.2. Distance Measures from Canonical Variates (CVs) 

MAD components have an ordering image that highlights the reduction of intercorrelation between 

the CV pairs and increased noise interference (Figure 7). The last component concentrates the noise 

fraction (Figure 7(f)). 

The scatterplot between the pair of the latest CV-pair appears spherically distributed around the 

data. This is evidence of the predominance of the uncorrelated noises with equal variance in all bands 

(Figure 8). This optimal ordering of image quality (when the noise variances in all bands are equal) is 

similar with the standard principal components transformation. However, CCA transformation is not 

suitable for other types of spatial noise, such as salt-and-pepper noise. The amount of noise reduction 

depends on the degree of temporal-band correlation, the relative noise in each input band, and the type 

of noise performed on the transformed components. 
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Figure 7. Multivariate Alteration Detection (MAD) components of study area obtained by 

subtraction between the canonical variates: (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 6. 

 

Figure 8. Scatterplots between the sixth pair of canonical variable images. 

 

The high correlation frequently exists in multi-temporal data provides a redundancy reduction and 

increasing the signal magnitudes in the first CVs. Once data have been transformed into canonical 

variates with decreasing noise, the subsequent calculation of the distance measures between the 

temporal variables can disregard the noisiest components. This practice should be emphasized with the 

use of the NED or Mahalanobis distance that lead to data normalization, i.e., MAD components are 

converted to a common scale (standard deviation equal to 1). Noise bands that have smaller value 

range (Figure 9), with the use of NED are amplified in comparison with other bands.  
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Figure 9. Frequency histogram of the 1st MAD (black line) and 6th MAD images (red line). 

 

In this work we calculated the NED measures considering two scenarios: with all MAD 

components and removing the noisy components. The NED2 image originally described by Canty [27] 

is not shown due to interference from very high values and because the PIF result is equal to the NED 

considering a same threshold by image percentage. Figure 10 demonstrates the NED-MAD images and 

its PIFs images (20%) considering: all bands, first five MAD components, and first three  

MAD components.  

Figure 10. (a) Normalized Euclidean Distance (NED) image using all MAD components; 

(b) NED image from the first five MAD components; (c) NED image from the first three 

MAD components, (d) PIF image considering 20% of NED image using all MAD components; 

(e) PIF image considering 20% of NED image using the first five MAD components; and 

(f) PIF image considering 20% of NED image from the first three MAD components. 
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Table 6 shows the number of similar PIFs among the NED-MAD images (considering different 

amounts of MAD components) and spectral measures applied to original images (SAM, SCM, and 

ED). PIFs from NED-MAD, using all components, have an overlap of approximately 80% (160, 

923 pixels) with the PIFs using five MAD components, and around 70% (139,654 pixels) with the PIF 

using three MAD components.  

Table 6. Number of PIFs from the intersection of different methods considering a 

threshold value of 20%: NED-MAD using all bands, NED-MAD using first five 

components, NED-MAD using first three components, SCMCD, SAMCD and EDCD. 

 
NED-MAD  

(All Bands) 

NED-MAD  

(5 Bands) 

NED-MAD  

(3 Bands) 
SCMCD SAMCD EDCD 

NED-MAD (all bands) 200,000 160,923 139,654 52,188 59,408 26,246 

NED-MAD (5 bands) 160,923 200,000 155,799 47,496 55,353 14,738 

NED-MAD (3 bands) 139,654 155,799 200,000 52,204 59,901 17,874 

The number of coincident PIFs from the spectral measures (SCM, SAM, and ED) using the original 

images and the NED using the MAD components are extremely low, indicating a significant difference 

between the two procedures (Table 6). The smaller intersections are among the PIFs from ED and 

NED-MAD. PIFs from the similarity measures (SCM and SAM) have an overlap of approximately 

25% (50,000 pixels) with the PIFs from NED-MAD.  

Table 7 shows the fitted intercepts, slopes, correlation coefficient and RMSE for least squares 

regression on the 200,000 PIFs from NED-MAD images. The removal of the noisiest component 

provides the best fit regression line, with higher correlation coefficient and lower RMSE for all bands, 

except for band 7. Thus, the noise reduction provides a more homogeneous PIF selection. In 

opposition, PIF from NED using only the first three MAD components causes a loss of signal, 

decreasing the fits of regression lines for bands 3, 5, and 7.  

Table 7. Least squares regression on training PIF pixels (200,000) from the NED-MAD 

using all bands, NED-MAD image using first five components, NED-MAD using first 

three components;  is the fitted intercept,  is the fitted slope, RMSE is the root mean 

squared error and R is the coefficient correlation. 

 NED-MAD (All Components) NED-MAD (Five Components) NED-MAD (Three Components) 

Bands   RMSE R   RMSE R   RMSE R 

Band-1 −3.513 1.072 2.314 0.945 −2.249 1.057 2.190 0.955 −0.792 1.039 1.856 0.968 

Band-2 −0.469 1.128 1.721 0.967 0.563 1.104 1.607 0.973 1.439 1.079 1.578 0.974 

Band-3 3.086 1.100 2.792 0.972 4.598 1.075 2.789 0.976 4.774 1.065 3.697 0.962 

Band-4 13.533 0.983 3.646 0.962 14.757 0.967 3.594 0.961 18.918 0.888 5.929 0.913 

Band-5 13.163 1.002 7.158 0.963 15.295 0.990 6.986 0.965 15.875 0.983 6.160 0.975 

Band-7 5.482 1.038 4.053 0.966 8.028 1.004 5.218 0.945 8.203 1.002 5.066 0.952 

PIFs from NED-MAD compared to PIFs from EDCD exhibit higher correlation coefficients for 

linear regression in the first and second bands and the lower for the rest. An inverse behavior is found 
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for the RMSE values, where PIFs from NED-MAD presents lower values for bands 1, 2, 3, and 4. PIFs 

from NED-MAD show best fit regression line compared to the two similarity measures (SCMCD and 

SAMCD) applied to the original images. 

Table 8 shows the means of PIFs from the NED-MAD method considering all-components, first 

five components and first three components for the 2011 scene (reference image) and 2001 scene 

before and after normalizations using least squares regression line. The differences between the means 

of reference and normalized images are always close to 0.5. 

Table 8. Comparison of mean intensities of hold-out test PIFs (20%) for the NED-MAD 

method (all, 5, and 3 components), considering 2001 scene before and after normalization 

to the 2011 scene with least squares regression. 

NED-MAD (All Bands) 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

Uncorrected (2001) 73.53389 34.98043 47.22892 59.63658 120.6294 54.58548 

Normalized (2001) 74.80974 38.51939 54.49465 71.60842 133.6294 61.72854 

Reference (2011) 75.29658 38.97923 55.02094 72.13204 134.0009 62.14728 

Difference 0.48684 0.45984 0.526285 0.52361 0.37149 0.41874 

NED-MAD (5 Bands) 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

Uncorrected (2001) 74.54509 35.99552 49.202 61.24536 125.102 57.13146 

Normalized (2001) 75.96249 39.72751 56.94335 73.55464 138.619 65.13146 

Reference (2011) 76.55546 40.28415 57.46744 73.98557 139.0883 65.3966 

Difference 0.59298 0.55665 0.524095 0.430935 0.46925 0.265145 

NED-MAD (3 Bands) 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

Uncorrected (2001) 74.39065 36.0114 49.06649 63.04542 124.0779 56.60791 

Normalized (2001) 75.96621 39.70047 56.54078 74.37767 137.4494 64.60791 

Reference (2011) 76.50336 40.29939 57.02833 74.90395 137.8846 64.93313 

Difference 0.53715 0.59892 0.487555 0.526275 0.43518 0.32522 

The NED-MAD, considering all the bands, shows the smallest differences for bands 1, 2, and 5. 

However, the differences of the means of PIFs from NED-MAD procedures are larger in all bands 

compared to PIFs from EDCD (Table 4). 

Table 9 shows the dispersion measures of hold-out test PIFs for the three NED-MAD procedures. 

The variance and correlation coefficient between the reference and normalized image present the 

lowest differences distributed in different procedures: NED-MAD with all bands (bands 4 and 7); 

NED-MAD with the first 5 components (band 3), and NED-MAD with the first 3 components  

(bands 1, 2, and 5). The range of values shows greater differences for PIFs from NED-MAD using first 

three bands. 
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Table 9. Comparison of dispersion measures of hold-out test PIFs (20%) for the three PIF 

methods using the 2001 scene, before and after normalization, to the 2011 scene with least 

squares regression. 

NED-MAD (All Bands) 

  Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

V
ar

ia
n

ce
s 

Uncorrected (2001) 39.29503 33.80525 126.7082 171.6435 651.4781 210.9658 

Normalized (2001) 44.91777 43.05102 153.9639 169.1287 651.4781 225.548 

Reference (2011) 50.49108 45.95556 162.0483 179.015 704.9602 243.7734 

R
an

ge
 Uncorrected (2001) 60 58 95 133 238 139 

Normalized (2001) 64 66 105 131 238 144 

Reference (2011) 64 59 101 131 237 148 

C
oe

ff
ic

ie
nt

 

of
 V

ar
ia

ti
on

 

Uncorrected (2001) 0.085247 0.166214 0.238339 0.219685 0.211591 0.26609 

Normalized (2001) 0.089588 0.170338 0.227696 0.181612 0.191006 0.243295 

Reference (2011) 0.09437 0.173915 0.231363 0.185488 0.198141 0.25123 

NED-MAD (5 bands) 

  Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

V
ar

ia
n

ce
s 

Uncorrected (2001) 44.14236 37.52932 137.2826 167.8967 671.9878 223.6594 

Normalized (2001) 50.42474 46.9415 158.6868 156.1622 650.1234 223.6594 

Reference (2011) 54.12543 48.28298 166.2875 169.9436 706.807 252.7447 

R
an

ge
 Uncorrected (2001) 63 58 100 124 238 131 

Normalized (2001) 66 64 108 120 235 131 

Reference (2011) 68 59 104 126 238 132 

C
oe

ff
ic

ie
nt

 

of
 V

ar
ia

ti
on

 

Uncorrected (2001) 0.089127 0.170191 0.238136 0.211567 0.207213 0.261769 

Normalized (2001) 0.093481 0.17246 0.221222 0.169894 0.18394 0.229616 

Reference (2011) 0.0961 0.17249 0.224392 0.1762 0.191144 0.243101 

NED-MAD (3 Bands) 

  Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

V
ar

ia
n

ce
s 

Uncorrected (2001) 47.69037 39.2796 150.0455 222.4742 760.6277 249.8103 

Normalized (2001) 53.1722 46.57776 169.1822 175.7566 735.9215 249.8103 

Reference (2011) 54.9329 48.23015 183.8415 210.5953 773.4186 276.5494 

R
an

ge
 Uncorrected (2001) 68 60 126 143 244 133 

Normalized (2001) 71 65 134 127 240 133 

Reference (2011) 72 59 110 139 251 135 

C
oe

ff
ic

ie
nt

 

of
 V

ar
ia

ti
on

 

Uncorrected (2001) 0.092832 0.174038 0.249647 0.236585 0.222276 0.279208 

Normalized (2001) 0.095989 0.171907 0.230047 0.178243 0.197366 0.244636 

Reference (2011) 0.09688 0.17233 0.237756 0.19374 0.201693 0.256106 

3.1.3. Spectral Analysis from the Dark Radiometric Control Target 

Spectral analysis between the reference and normalized images was made from the dark radiometric 

control targets, considering water body. Dimension of the water body may be important, and small 

sizes may not be representative [12]. The present study adopted 55 pixels present in the center of the 

water body of a dam. Mean of the absolute deviations between the reference and normalized images 
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demonstrates the adequacy of different measures in the PIF selection (Figure 11). Normalized data 

considering the SCM, SAM, and ED methods showed results very close to the reference data. The best 

result is obtained by using the SCM method followed by SAM and ED methods. In contrast, the 

normalized spectra considering the NED-MAD, method show the highest deviations (Figure 11). 

Figure 11. Mean of the absolute deviations between reference and normalized spectra for a 

55 pixels of water body (dark radiometric control target).  

 

Results show a different behavior of the fitting information of the linear regression model from 

PIFs, where for example the distance measures have lower RMSE values and higher R values 

(Tables 3 and 7). These apparently contradictory results can be explained. The distance measures (ED 

and NED) describe a deviation from an ideal condition where there is equality between the temporal 

spectra (null condition), i.e., a regression with a slope of 1 and intercept of zero. Therefore, the 

selection of pixels consider deviations from this ideal condition, even extending the limit of distance, 

and mismatches can occur. However, the distance measures by considering only values close to the 

ideal line (  = ) always provide points fitted to straight line. 

The similarity measures are not consistently related to the accuracy of the prediction, i.e., the degree 

to which the spectrum of time 1 approaches time 2. Statistically, SCM and partially SAM values are 

often unrelated to the sizes of the difference between the temporal spectra. The similarity measures are 

usually found to be a value that describes the quality or relative accuracy of the PIF samples. For 

example, the correlation is not affected by gain and offset effects, which makes high correlations 

possible even when the distance accuracy tends to be too weak or too strong. Thus, the similarity 

measures show a selection of points with larger dispersion measures. This feature allows the SCM to 

detect points without the restriction of an idealized model (  = 0 and  = 1). However, if the scattering 

is appreciable the line-fitting becomes subjective and unreliable. Therefore, the combined use of the 

two measures is the best solution. 

The worst results for the NED-MAD measures are probably derived from the susceptibility of CCA 

to be influenced by the correlation of current changes in the ground target. CCA generates 

eigenvectors that describes the linear relations from the effects of atmosphere, illumination, and sensor 

calibration (that are external to the ground target). Temporal images with the majority of consistently 

changed ground targets generate eigenvalues conditioned to it, which interferes and modify the true 

PIFs, damaging their detection.  



Remote Sens. 2013, 5 2785 

 

These results demonstrate that statistical data from the fits of the linear regression (RMS, 

correlation coefficient, and measures of central tendency and dispersion restricted to selected points) 

does not evidence necessarily the PIFs quality.  

3.2. Results of the Band-by-Band Procedures  

The use of ridge method on the previously selected PIFs allows a supplementary pixels reduction. 

Figure 12 shows scatter plots and PIF images for band 4 made using two density thresholds, 12 and 26. 

In order to emphasize the results of this method for the figure, the original data are regarded as input, 

rather than points previously selected using spectral measurements. The PIFs eliminated for each band 

can be viewed in binary images (Figure 12(d,e)). 

Figure 12. (a) Scatterplot between temporal images (2011 and 2001); (b) scatterplot 

considering a density threshold value of 12; (c) scatterplot considering density threshold of 

26; (d) PIF image considering a density threshold value of 12; and (e) PIF image 

considering a density threshold value of 26. 

 

One problem in density thresholds is the elimination of points having low density that are 

positioned along the line (ridge). These are usually points at each end of the ridge. Therefore, this 

processing step needs to be done carefully to avoid loss of relevant information. The pixels eliminated 

in a particular band can be eliminated in all five other bands. 

The final step is to perform the robust regression for determining the line of best fit to the data from 

the reference and subject image for each image band. Robust regression procedure automatically omits 

eventual outliers in the calculations considering an absolute deviation value. The robust procedures fit 

the calibration line through the dark and bright targets. Figure 13 shows the robust approach based on 
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M-estimation regarding all bands, considering 106 PIFs from intersection of SCM and ED methods. In 

practice, with a good set of targets from the previous methods, there is very little difference between 

the least squares and M-estimation calibration lines. 

Figure 13. Distribution in two dimensions using robust regression of points fitted to a 

straight line, considering 106 PIFs from the intersection of SCM and ED methods:  

(a) band 1, (b) band2, (c) band 3, (d) band 4, (e) band 5, and (f) band 6. 

 

The proposed combination of methods enables one to extract points from various conditions that can 

be applied from image to image. Thus, areas labeled as invariant points in a method can be described as 

change point in the next methods. The method allows one to select a number of targets to cover the range 

from bright to dark data values. This highlights the importance of using difference techniques. 

Statistical analyses of these complementary methods (ridge and robust regression), following  

pixel-by-pixel, always provide the best fit straight line since it eliminates outliers, making the 

demonstration unnecessary. 
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3.3. Program 

The main functions of the program are organized in the main window interface, which contains the 

temporal image input boxes, mask image input box, spectral measures box, density scatter plot box, 

robust regression box, and image display (Figure 14). 

Figure 14. Main window interface contains image input boxes, PIF detection using 

spectral measures, ridge method, and robust regression. 

 

Input files are required for the two temporal images (  and ), which must be co-registered and 

have the same number of rows, columns, and bands. The first image is used as a reference while the 

second is the image to be corrected. The program reads general raster data stored as an interleaved 

binary stream of bytes in the Band Sequential Format (BSQ) and Band Interleaved by Pixel Format 

(BIP). Each image is accompanied by a header file in ASCII (text) containing information to read data 

file, such as: sample numbers, line numbers, bands, interleave code (BIP or BSQ), and data type (byte, 

signed and unsigned integer, long integer, floating point, 64-bit integer, and unsigned 64-bit integer). 
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This configuration combining image and header file allows versatility in the use of different image 

formats. When the user tries to open an image without the header file, an interface requesting the 

necessary information about the input image structure automatically appears. Optionally, a binary 

mask can be used as an input file to disregard some variants targets over time. 

Four options for the automatic detection of PIFs using spectral measures are provided: SCM, SAM, 

Euclidean distance, and NED-MAD. The user can select the measures and their threshold values.  

The program allows the user to select different spectral measures simultaneously. The PIFs are  

only selected if they meet all conditions set out in the spectral measures. The program allows a 

preview of PIF images, obtained by the spectral measures, facilitating the user to, if necessary, reset 

the threshold values. 

The ridge method can be applied from pre-selected PIFs from the previous step. The density scatter 

plot can be visualized from the preview button, which opens a window interface for the ridge method 

(Figure 15).  

Figure 15. Density scatter plot window has the following attributes: scrolling list of 

density lookup table ramp, scrolling list of the bands, scatter plot viewer, threshold check 

box, and threshold value scrollbar. 

 

In the scatter-plot density window, the user can choose to display the pair of bands and a pre-saved 

color table. At the bottom of the window, the user can set the density threshold value in order to 

eliminate the outliers. The elimination of the targets can be made by considering a single value for 

each pair of bands (multiple thresholds) or a single value for all scatter plots (single threshold). Density 
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threshold value can be set with a scrollbar ranging from 0 to 255, derived by linear conversion of 

density values. 

Finally, the robust regression using PIFs can be applied. In the main window the user can choose 

between the simple linear regression and robust regression from a check box. Thus, both method 

results can be compared. In the robust regression, the user must set the absolute deviation value 

between the regression line and the points in order to select the outliers. When the absolute deviation is 

greater than the set value, the observation is removed and the procedure is repeated. The decrease in 

the absolute deviation value by the user increases the number of outliers.  

The linear regression window can be visualized with the preview button (Figure 16). The user must 

select the band and color table for the density scatter-plot window. Moreover, the program allows the 

visualization of the regression line and the distribution of its points. In the case of a wrong selection of 

points, the program allows the absolute deviation threshold to be modified. Once the threshold has 

been determined, the slope and intercept values are applied for each subject band, obtaining the 

calibrated images.  

Figure 16. Linear regression window with the following attributes: scrolling list of density 

lookup table ramp, scrolling list of the bands, scatter-plot viewer with the straight lines 

from the robust regression, and simple linear regression. 

 

After the generation of calibrated images, the program generates statistics on the following images: 

reference, uncalibrated, and calibrated, considering the following statistical values: mean, variance, 

range, and coefficient of variation. 
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The program generates the following output files: radiometrically normalized images and PIF 

images. All inputs and results are shown in the File List, so it is possible to visualize them by choosing 

“Gray Scale” or “RGB” composite. The display interface provides basic functions for image 

visualization such as zoom areas and pixel values. Moreover, the results (output files) can be read with 

other images viewers. 

4. Discussion 

4.1. Comparison among Spectral Measures 

The spectral measures can be performed on the original images, or on CVs from CCA. The use of 

CCA aims to correct temporal images (gain and offset). Thus CCA generates matrices of eigenvectors 

for both temporal sets that are invariants to linear and affine scaling, provided that the linear 

transformations are homogeneous for the entire image (such as band-by-band method). CCA operates 

throughout the bands; consequently specific effects in different parts of the image are not corrected. In 

addition, the calculation of eigenvectors in CCA is influenced, not only by the gain and offset from 

sensor-illumination-atmospheric effects, but also by systematic changes in the ground. Therefore, the 

contributions of other correlated attributes though the temporal bands (e.g., seasonal changes in 

vegetation, planting cycle) are difficult to determine due to mathematical formulation. The issue of the 

CCA application is to introduce a bias associated with correlations of surface changes to the true PIFs, 

hindering their detection. The canonical analysis (such as the principal components and factor 

analysis) should use images with a prevalence of unchanged targets. Moreover, CVs images have a 

spatial noise that should be considered in the calculation of the distance measures. The elimination of 

noisy components of CVs should be explored as an improvement to the method. 

Spectral measures on the original temporal images consider both land cover changes as undesirable 

effects (e.g., different atmospheric conditions, variations in the solar illumination angles, and sensor 

calibration trends). Normally, the relative radiometric correction adopts the assumption that the linear 

effects are much greater than nonlinear effects [3,16,27]. In this case, SCM measure is completely 

invariant to linear transformations, even considering different behaviors on parts of the image. The use 

of distance measures on the pre-selected data by SCM measure enables the decrease the scattering data 

and outliers. Thus, combining similarity and distance measures on the original images have greater 

simplicity and control over the generated information.  

Statistical data of the linear regression (RMSE, correlation coefficient, and measures of central 

tendency, and dispersion restricted to selected points) does not always describe the PIFs quality.  

4.2. Advantages and Drawbacks of the Proposed Method 

The present method integrates different radiometric normalization algorithms with distinct 

mathematical and statistical operations that provide a set of alternatives according to the characteristics 

of the data. The methods can be combined in different ways, not needing to use all available methods. 

Compared to some previous relative radiometric normalization methods, this new method offers 

several improvements and advantages because a single method cannot be used in all situations. The 

best combination of methods is to adopt a pixel-by-pixel method followed by the band-by-band 
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method. Thus, PIFs selection accuracy is distributed in the different methods that provide a sequential 

selection, taking into account, not only, the statistical behavior of the samples but also their physical 

properties, such as surface moisture, shadow, etc.. This method can be used for the pre-processing of 

different multispectral images (e.g., ASTER, SPOT, CBERS, among others) concerning bi-temporal 

data with the same spectral bands and radiometric resolution. Radiometric normalization of 

panchromatic images can be done considering only ridge and robust regression methods. This relative 

normalization algorithm is wide-ranging and can be used for most operational applications, different 

images and conditions.  

While this approach is straightforward and brings together different algorithms, it still shows 

problems, especially with the effects of heterogeneous aerosol scattering and water vapor content in a 

scene. All methods of PIFs detection presume a uniform behavior for atmospheric effects; being 

suitable for molecular scattering and absorption by ozone and oxygen because their concentrations are 

quite stable over both time and space. Contrary to this, most aerosols are heterogeneously distributed 

which makes this task more difficult and requires the development of new algorithms.  

Furthermore, atmospheric effects on the two images can be different, not only spatially, but also in 

the spectral dimension damaging PIFs detection by pixel-by-pixel methods. Considering aerosol 

effects, a simple procedure is used with infrared bands that are less contaminated, in the specific case 

of TM/ETM+ imagery the bands 4, 5, and 7. However, this procedure is ineffective if there are thick 

aerosols and thin clouds. Therefore, a challenge in improving the methods of relative correction is the 

development of procedures to consider the heterogeneity of the image, i.e., specific linear regressions 

for different portions of the image. 

5. Conclusion 

The automatic selection of the invariant targets eliminates the need of a detailed manual comparison 

between each pair of the temporal image. PIFs detection from only band-by-band method show great 

limitations, requiring assume that the majority of the targets are invariant between a given image and 

the reference image. The improved efficiency of the band-by-band method is obtained by the 

association with pixel-by-pixel methods. Thus this paper proposes a new alternative to radiometric 

normalization between temporal images considering the combination of different procedures for 

automatic PIF selection. There is no one method that is better than others in every situation. Thus, the 

pixel-by-pixel approach (similarity and distance measures considering original image and Canonical 

Variates (CVs)) and band-by-band approach (density scatter plot and robust regression) should be used 

in conjunction to PIF estimation. This is because different methods have particular properties, some of 

which may be desirable for certain applications but not for others.  

The combination of these methods provides a sequence of statistical techniques with independent 

criteria that provides the error minimization and best set of invariant targets. The sequential PIF 

selection obtains a number of invariant targets, which consider the entire brightness range of the 

images, ensuring the linear relationship between the image pairs during the calibration. The procedures 

described in this paper, still present limitations for nonlinear effects, which pose a great challenge for  

future studies.  
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