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Abstract: The need for an efficient and standard technique for optimal spectral sampling 
of hyperspectral data during the inversion of canopy reflectance models has been the 
subject of many studies. The objective of this study was to investigate the utility of the 
discrete wavelet transform (DWT) for extracting useful features from hyperspectral data 
with which forest LAI can be estimated through inversion of a three dimensional radiative 
transfer model, the Discrete Anisotropy Radiative Transfer (DART) model. DART, 
coupled with the leaf optical properties model PROSPECT, was inverted with AVIRIS 
data using a look-up-table (LUT)-based inversion approach. We used AVIRIS data and 
in situ LAI measurements from two different hardwood forested sites in Wisconsin, USA. 
Prior to inversion, model-simulated and AVIRIS hyperspectral data were transformed into 
discrete wavelet coefficients using Haar wavelets. The LUT inversion was performed with 
three different datasets, the original reflectance bands, the full set of wavelet extracted 
features, and two wavelet subsets containing 99.99% and 99.0% of the cumulative energy 
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of the original signal. The energy subset containing 99.99% of the cumulative signal 
energy provided better estimates of LAI (RMSE = 0.46, R2 = 0.77) than the original 
spectral bands (RMSE = 0.60, R2 = 0.47). The results indicate that the discrete wavelet 
transform can increase the accuracy of LAI estimates by improving the LUT-based 
inversion of DART (and, potentially, by implication, other terrestrial radiative transfer 
models) using hyperspectral data. The improvement in accuracy of LAI estimates is 
potentially due to different properties of wavelet analysis such as multi-scale 
representation, dimensionality reduction, and noise removal. 

Keywords: leaf area index; hyperspectral; imaging spectrometer; radiative transfer; 
DART; LUT; inversion; discrete wavelet transform 

 

1. Introduction 

Leaf area index (LAI) of vegetation canopies controls and moderates different climatic and 
ecological functions [1–3]. Since LAI is one of the principal factors controlling canopy reflectance [4], 
a large body of research has investigated the use of airborne and satellite remote sensing data for its 
accurate estimation [2,5–9].The majority of studies estimating LAI have employed empirically-based 
techniques, which are site-specific and may not be extendable to operational use, given different 
structural and climatic conditions [10]. In contrast, the physical approach using canopy reflectance 
models is based upon an understanding of the physical laws governing the transfer of solar radiation in 
vegetative canopies. It also works with variable measurement conditions and is better suited for many 
large scale applications [11,12]. Physically-based methods can also make full use of the high 
dimensional spectral and multiangular information provided by modern sensors [13]. 

Physically-based models range in complexity from simple nonlinear models to complex numerical 
radiative transfer models. One-dimensional (1-D) canopy radiative transfer models are among the more 
commonly used because of their ease of implementation and computational efficiency [14]. Such 1-D 
models assume that a canopy is composed of horizontal homogenous vegetation layers with infinite 
extent with canopy properties varying only along the vertical depth. However, heterogeneous plant 
stands such as forests may contain partial cover and generally exhibit horizontal variability in their 
structural and optical properties, and are thus poorly represented by 1-D models. The more realistic 
description of reflected radiation from a forest canopy can be provided by 3-D models [11,15–18]. The 
models are referred to as 3-D because the extinction and scattering coefficients that define photon 
interactions are explicit functions of the spatial coordinates [18]. 

The Discrete Anisotropy Radiative Transfer (DART) model is a widely used 3-D model [13,19,20]. 
Though it has a large set of input parameters, the number of parameters can be greatly reduced  
through simple approximation, making it amenable to inversion to estimate model parameters [14]. 
Since its first release [14], its accuracy, range of applications, and graphical user interface have  
been significantly improved [19]. DART uses simplifying hypotheses for simulating vegetation  
landscapes by dividing the scene into rectangular cells characterized by the volume and scattering 
properties of landscape elements. Vegetation canopies are simulated as the juxtaposition of turbid cells 
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characterized by their leaf volume density, leaf angle distribution and optical properties. Soil surfaces 
are simulated with plane opaque surfaces characterized by specific optical properties. It can accurately 
model multiple scattering effects within canopies [20]. Radiative scattering and propagation are 
simulated with the exact kernel and discrete ordinate approaches. The model output predicts any 
specified directional sensor response. It was compared and tested within the European Commission 
Radiation Transfer Model Intercomparison (RAMI) experiment [21] and had an unprecedented level of 
agreement with other candidate models in simulating heterogeneous canopy spectra [13]. 

For the estimation of vegetation properties such as LAI, a model has to be inverted against 
measured reflectance data. Several model inversion techniques are available [16,22,23]. Traditional 
inversion methods like optimization techniques iteratively adjust model parameters until the modeled 
reflectance ‘fits’ or matches measured reflectance. These iterative optimization approaches are not 
feasible for complex models with slow computation time when simulating reflectance over a large 
number of spectral bands. Another widely used inversion method is LUT-based inversion [12,24,25]. 
They require construction of a database of pre-calculated reflectances as a function of key model 
parameters. Then, the spectrum for a particular image pixel is compared with each spectrum in the 
database, and the closest match to the image spectrum is found. The parameter combination that yields 
the closest spectrum in the database is considered to be the inversion solution [26]. The major 
advantage of the LUT-based approaches is that the forward modeling is divorced from the inversion 
procedure, and hence can be used for inversion of any complex model like DART [15,27].  

Model inversion requires that for a unique determination of M parameters from N independent 
measurements (directional or spectral remote sensing measurements), M must be less than or equal to 
N [11,16,28]. Hyperspectral sensors subdivide the optical portion of the electromagnetic spectrum into 
a large number of narrow spectral bands. However, the inherent dimensionality of hyperspectral bands 
could be much lower than the total number of bands because of the noisier data and greater correlation 
in the measurements [29]. Such highly correlated bands artificially carry exaggerated weight and cause 
inversion bias [30,31]. Weiss et al. [32] reported that only a limited number of wavebands are required 
for canopy biophysical variable estimation. Other studies have stated that the selection of a subset of 
spectral bands can lead to a more stable and accurate inversion [27,31]. However, a general criterion 
for the selection of bands has not yet been defined. Meroni et al. [31] and Weiss et al. [32] utilized an 
empirical technique in which, starting from a combination of three bands, they selected bands in a 
stepwise manner. Such a stepwise procedure is a sub-optimal search as there is no guarantee of finding 
the best set of all possible combinations [31,32].  

The discrete wavelet transform (DWT) has been increasingly used in recent years in the processing 
of hyperspectral images for a variety of purposes [33–39]. These studies have shown its importance as 
an effective tool for reducing the dimensionality of hyperspectral data while maintaining information 
content for a variety of applications. Banskota et al. [40] and Pu and Gong [41] have also 
demonstrated the importance of wavelet analysis for empirical estimation of LAI in different 
vegetation types. The utility of the wavelet transform for model inversion has also been explored and 
confirmed in several geophysical and seismic studies, where it is integrated in the forward modeling 
process and the model is inverted in wavelet domain [42,43]. Such direct integration of DWT in 
forward modeling is also a possibility for canopy reflectance models. The transformation and inversion 



Remote Sens. 2013, 5 2642 
 
can also be done in a completely offline mode (independent of forward modeling) by transforming the 
LUT entries and remote sensing measurements into wavelet features.  

The advantages of DWT in LUT inversion are threefold. First, it transforms the correlated set of 
spectral features into wavelet features at different scales; the information carried at different scales is 
less correlated because of the orthogonal nature of transformation [39]. Second, most of the wavelet 
coefficients contain very low values which can be discarded by applying an appropriate threshold 
without losing significant information, thus affording dimensionality reduction. Third and most 
importantly, the wavelet transform affords a multi-resolution analysis of hyperspectral data by 
decomposing it into components of different spectral scales (analogous to spectral bands of different 
width). The sensitivity of canopy reflectance is scale dependent, as some parameters affect reflectance 
locally in a narrow range of spectral bands (e.g., chlorophyll), whereas, parameters like LAI, canopy 
cover and leaf angle affect reflectance over a much wider region of the spectrum. The multi-resolution 
analysis by discrete wavelet transform offers the possibility of re-distributing the effects of different 
parameters on canopy reflectance in a single band over wavelet coefficients at multiple scales. Hence, 
an individual wavelet coefficient might be sensitive to a reduced set of parameters, in contrast to the 
corresponding spectral measurement, potentially leading to an improved inversion of parameters. 

The main objective of this study was to assess the utility of the Haar discrete wavelet transform as a 
feature extraction technique for accurately estimating forests LAI through LUT inversion of DART 
using airborne hyperspectral data (AVIRIS). We posited that the transformation of hyperspectral 
reflectance into wavelet features and subsequent LUT inversion in the wavelet domain might provide 
improved estimates of LAI. We also examined three different sets of wavelet features and their effect 
on inversion accuracy.  

2. Background on Wavelet Transforms 

A wavelet transform enables signal (data) analysis at different scales or resolutions by creating a 
series of shifted and scaled versions of the mother wavelet function [33,44]. The term “mother” 
implies that a set of basis functions {ψα,b(λ)} can be generated from one main function, or the mother 
wavelet ψ(λ) by the following equation [36]: 

 
(1)

where a is the scaling factor of a particular basis function, b is the translation variable along the 
function’s range and λ is a subset of an analyzed signal. In this study, we employ the Haar wavelet 
transform (DWT), which separates a discrete signal f of length n into two subsignals, each with length 
n/2, one being a running average and the other a running difference [45]. We refer to the running 
average, or trend, as the approximation vector, a. For each m = 1, 2, 3,…, n/2, the approximation 
coefficient is calculated as: ܽ௠ ൌ ଶ݂௠ ିଵ ൅ ଶ݂௠√2  (2)
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We refer to the running difference, or fluctuation, as the detail vector, d. Each of the detail 
coefficients is calculated as: ݀௠ ൌ ଶ݂௠ ିଵ െ ଶ݂௠√2  (3)

The subsignals of the original signal define the first level of the Haar transform, usually referred to 
as 1-level. As such, the approximation coefficients and detail coefficients from the first level can be 
referred to as a1 and d1, respectively. Computation of approximation and detail coefficients for 
subsequent levels is achieved by recursively applying Equations (2) and (3) to the approximation 
coefficients of the previous level. Since the subsignals have half the length of the previous signal, a2 
and d2 will have half the length of a1, or n/4. The number of times n is divisible by two yields the 
possible number of decomposition levels. For example, if n = 16 = 24, four levels of Haar transforms 
can be computed. 

Mallat et al. [46] developed an efficient way to implement the Haar DWT scheme by representing 
the wavelet basis as a dyadic filter tree, or set of high-pass and low-pass filters. The high-pass and low-pass 
filters are related (their power sum is equal to one) and called quadrature mirror filters. Thus, the  
1-level DWT decomposition of a signal splits it into a low pass version (approximation coefficients) 
and a high pass version (detail coefficients). The 2-level decomposition is performed on the low pass 
signal obtained from the first level of decomposition. The final results of a DWT decomposition of a 
spectrum are sets of wavelet coefficients, with each wavelet coefficient directly related to the amount 
of energy in the signal at different positions in the spectrum and at different scales. 

3. Methods 

3.1. Description of the Study Region 

The study area comprises a range of broadleaf deciduous forest types within the state of Wisconsin, 
USA (Figure 1). The northernmost forest sites were located within the Northern Lakes and Forest 
ecoregion (90.120°W, 45.936°N to 90.318°W, 45.966°N), which is dominated by a mixed-hardwood 
forest originating from the large-scale clear-cut practices of the early 20th century. The overstory 
vegetation comprises mostly northern hardwood species dominated by sugar maple (Acer saccharum), 
basswood (Tilia americana), and white ash (Faxinus americana) trees), and in the lowlands by 
speckled alder (Alnus incanta), black ash (Fraxinus nigra) and red maple (Acer rubrum). The southern 
sites were located in the Baraboo Hills (89.698°W, 43.415°N to 89.845°W, 43.392°N) of the 
“Driftless” (unglaciated) ecoregion of Wisconsin. Most of the forests in the Baraboo Hills were cleared 
by the 1870s and have since recovered to forests dominated by red oak (Quercus rubra), white oak 
(Quercus alba), green and white ash (F. pennsylvanica and F. americana), hickories (Carya spp.), 
sugar maple, red maple, and basswood. 
  



Remote Sens. 2013, 5 2644 
 

Figure 1. Study area: (a) State of Wisconsin, USA, showing different counties. The 
general location of the three field sites are shown in green; (b) Plot location overlaid on a 
false color composite from the AVIRIS image (red: 860 nm; green: 667 nm and blue:  
540 nm). Black cross shows a plot which was removed as an outlier from the final analysis. 

 

3.2. AVIRIS Image Processing 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data used in this study (Flight ID: 
f080713t01 and f080714t01) were acquired in July 2008 on NASA’s ER-2 aircraft at an altitude 
of 20 km, yielding a pixel (i.e., spatial) resolution of approximately 17 m (16.8–17.0 m). The 
AVIRIS instrument produces 224 spectral bands (or wavelengths), with an approximate full-width 
half-maximum of 10 nm for each wavelength over the spectral range of 370 to 2,500 nm. 

AVIRIS image preprocessing involved manual delineation of clouds and cloud-shadows, cross-track 
illumination correction, and conversion to top-of-canopy (TOC) reflectance via atmospheric 
correction. Redundant bands due to overlap of detectors were also removed. Cross-track illumination 
effects arise from a combination of flight path orientation and relative solar azimuth. We removed this 
effect by developing band-wise bilinear trend surfaces, ignoring all cloud/shadow-masked pixels, and 
trend-normalizing the images by subtracting the illumination trend surface and adding the image mean. 
Atmospheric correction of the cross-track illumination corrected images to TOC reflectance employed 
the ACORN5bTM software (Atmospheric CORrection Now; Imspec LLC, USA). Due to the low ratio 
of signal to noise at both spectral ends (366 nm–395 nm and 2,467 nm–2,497 nm), and in bands 
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around the major water absorption regions (1,363 nm–1,403 nm and 1,811 nm–1,968 nm) those 
wavelength regions were dropped, resulting in a final total of 184 bands. The pixel spectra 
corresponding to the centers of the plot locations as described in the next section were extracted for the 
final 184 atmospherically corrected AVIRIS bands. 

3.3. LAI Measurement Protocol 

Optical measurements of effective LAI (Le) were estimated from hemispherical photos collected at 
one meter above the forest floor using a Nikon CoolPix 5000 digital camera, leveled on a tripod with 
an attached Nikon FC-E8 183° lens. Le represents the equivalent leaf area of a canopy with a random 
foliage distribution to produce the same light interception as the true LAI and is derived from the 
canopy gap fraction at selected zenith angles beneath the canopy following [47]: ܫܣܮ ൌ ௘Ωܮ ሺ1 െ ሻ (4)ߙ

where, Le is the effective LAI, Ω is the clumping index and α is the woody-to-total leaf area ratio  
(α = w/Le (1/Ω)), in which W represents the woody-surface-area-index (half the woody area per m2 of 
ground area). In this study, we calculated LAI from Le by correcting the effect of clumping but 
neglecting the effect of woods and branches in Equation (4) (i.e., LAI = Le/Ω). 

Hemispherical images were collected at 18 plots (60 m × 60 m) characterized by broadleaf decidous 
forest types. All measurements were made during the peak of the summer growing seasons in 2008 
and 2010 during uniformly overcast skies or during dusk or dawn when the sun was hidden by the 
horizon. Images were collected in the JPEG format at the highest resolution (2,560 × 1,920 pixels) to 
maximize the detection of small canopy gaps. We followed the protocol of Zhang et al. [48] to 
maximize the distinction between sky and leaf/woody material. At each plot, we measured Le at nine 
subplot locations: the plot center, 30 m from the plot center in each of the four cardinal directions, and 
the mid-point of each 30 m transect. Images were processed using DHP-TRAC software to estimate Le 
and Ω, using a nine ring configuration but selecting only the first six rings for analysis to minimize the 
impacts of large zenith angles on the Le retrievals and the calculation of LAI [47,49]. 

One broadleaf plot of our 18 total was removed from the analysis based on Cook’s Distance, which 
identifies influential observations on the basis of how a linear function changes when a certain 
observation is deleted [50]. The removed plot had the highest LAI (6.67) and unusually low 
reflectance throughout the near-infrared (NIR) region (maximum reflectance of 42% at NIR plateau). 
Cook’s test identified the plot as suspicious (partial F-statistic = 0.83, Cook’s distance = 0.97), and the 
reason for the discrepancy of this one plot was indeterminate, but likely due to either GPS error or 
disturbance to the plot between the times of data collection and imaging. The range of the LAI values 
for the remaining 17 plots was 2.95–5.75.  

3.4. DART Scene Formulation 

We used DART version 4.3.3 to simulate canopy reflectance for different parameter combinations. 
The DART model was run in a UNIX environment using a computer with 32 processors (eight  
Quad-Core AMD Opteron TM 8356 Processor) and 64 GB of physical random access 
memory (RAM). 
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DART requires users to build a computer representation of a relevant earth landscape scene such as 
a forest, an urban area, and water body. Ideally, the scene area should be large and should include 
important details about the landscape. For instance, a forest scene should be built with a large number 
of trees, and the resolution of the scene (cell) should be high enough to represent canopy elements such 
as leaves, twigs, and branches. This level of details leads to unacceptable computational time 
requirements for a LUT building process. Thus, a scene of reasonable size and detail needs to be 
determined that allows one to operate DART with an acceptable accuracy level. In this study, 
simulations were conducted using a simple forest representation. A repetitive forest landscape pattern 
made up of four trees with ellipsoid shaped crowns was chosen; previous studies have found this 
representations to be optimal [16,19]. The trees were described by slightly different heights (8, 9, 10, 
and 11 m). Both the scene size and the dimension of the tree crowns (major and minor axis) were 
varied to obtain scenes of different ground cover (Figure 2). The canopy was represented by foliage 
only, without woody branches and twigs. DART simulations with this simple forest representation is 
justified by the fact that the LUT building process uses mean reflectance values of the simulated 
images and not the 2D spatial information of these images. 

Figure 2. Tree scenes with variable tree ground covers from 100% down to 70%. Discrete 
Anisotropy Radiative Transfer (DART) works with an infinite scene comprised of a 
repetitive pattern of these tree scenes. 

 

3.5. Creation of LUT Database 

Construction of a LUT of reflectance values for a large number of bands with a 3-D model such as 
DART requires an unacceptable computational time. We used an efficient strategy to populate the 

Cover = 100% Cover = 90%

Cover = 70%Cover = 80%
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LUT grid with a sufficient number of DART simulations by identifying the realistic combinations of 
different DART parameters and their suitable ranges. The process to develop the LUT is described below.  

Initially, a preliminary LUT with a wide range and coarse increments for parameters was constructed 
for only four narrow AVIRIS bands (550 nm, 1,139 nm, 1,692 nm, and 2,208 nm). PROSPECT [51], 
which is built into the DART interface, was used to calculate leaf optical properties (reflectance and 
transmittance). PROSPECT calculates leaf hemispherical transmittance and reflectance as a function 
of four input parameters, leaf structural parameter (N), leaf chlorophyll a + b concentration (Cab, 
µg/cm2), leaf dry matter content (DM, g/cm2), and equivalent water thickness (EWT, cm). Together 
with the PROSPECT parameters, the parameters that were systematically varied (free parameters) 
were leaf area index (LAI), leaf angle distribution (LAD), soil reflectance (SL), and crown cover (CC). 
The range for some of the parameters (Cab, LAI, DM, and EWT) were set based upon the databases of 
leaf measurements spanning all common and rare tree species collected by Serbin [52] in the upper 
Midwest and eastern US.  

The simulations in the LUT were then compared with the image reflectance to find the optimal 
ranges for individual parameters. The corresponding maximum and minimum reflectance values in 
image-extracted spectra were determined for each simulated band. The maximum and minimum values 
in the individual band were combined to form a maximum and minimum reflectance (max/min) 
spectrum. To allow for potential model/measurement uncertainties, the space was expanded by five 
percent in both directions. A search filter was applied to find the LUT simulations confined within the 
max/min space. The model inputs that led to simulations (candidate solutions) in the resulting reduced 
LUT were examined to infer information about optimal parameter ranges and realistic parameter 
combinations. Combinations of parameter values that produced similar output to image reflectance 
were determined as the range for the rest of model parameters for different combinations of CC, DM, 
and EWT. We selected the four narrow bands in the preliminary LUT as representative of the four 
distinct regions of the vegetation reflectance spectrum. The selection of different subsets of the 
candidate bands did not significantly alter our result. Once the ranges and realistic combinations were 
determined, a simple sensitivity analysis (SA) was performed as in Santis et al. [53] to determine the 
suitable incremental steps of parameter values. Based upon the results, a final LUT with finer 
increments for each important parameter within their narrowed ranges was built. Table 1 shows the 
free parameters, their minimum and maximum values, and incremental steps used for building the final 
LUT. The three leaf angle distributions not shown in the table were planophile, plagiophile, and 
erectophile LADs. A fixed value for fraction of diffuse incoming solar radiation (0.1) was used across 
all wavelengths. A fixed value for Lambertian soil reflectance (20%) was used because of its minimal 
influence on reflectance as identified by the sensitivity analysis (not shown here). This might be 
because of the high value for crown cover (≥70%) used in this study. 

If we had considered all the parameter combinations, 134,400 (16 * 10 * 7 * 2 * 5 * 4 * 3) 
simulations for each AVIRIS band would have been required. After searching for realistic parameter 
combinations, only 5,960 simulations were needed in the infrared bands and 1,920 in the visible bands. 
Simulations were done separately for visible and infrared bands in order to reduce computation time, 
as reflectances in the two regions were sensitive to different sets of PROSPECT parameters. Canopy 
reflectances in the visible bands were simulated using fixed values for EWT (0.007 cm) and DM 
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(0.007 g/cm2). Similarly, a constant value for Cab (30 µg/cm2) was used for the infrared bands. 
Common parameter values in both parts of the spectrum were later used to append the two tables. 

Table 1. Parameters, their ranges and increments for the final simulation. The final column 
shows the total number of values used for each parameter. The parameters are leaf area 
index (LAI), leaf equivalent water thickness (EWT), leaf dry matter content (DM), leaf 
structural parameter (N), leaf chlorophyll a + b concentration (Cab), canopy cover (CC) 
and leaf angle distribution (LAD). The three LADs used were planophile, plagiophile,  
and erectophile.  

Parameters Minimum Maximum Increment Count 
LAI (m2/m2) 2.75 6.75 0.25 16 
EWT (cm) 0.003 0.0183 0.0017 10 

DM (g/cm2) 0.001 0.0132 0.0017 7 
N 1.75 2.25 0.5 2 

Cab (µg/cm2) 20 60 10 5 
CC (%) 70% 100% 10% 4 

LAD - - - 3 

3.6. Calculation of Discrete Wavelet Coefficients 

When computing the DWT, two input parameters are required: the choice of mother wavelet and 
the level of decomposition. We chose the Haar mother wavelet as it is the simplest of all available 
mother wavelets, and recent investigations have illustrated its effectiveness in hyperspectral data 
analysis [33,36,39]. The decomposition level is determined by the type of wavelet and the original 
signal length. In this study, the level was chosen such that it is maximized (6 for 184 bands using the 
Haar wavelet). The DWT was implemented in Matlab (version 7.4, The Mathworks, Inc.) using a 
dyadic filter tree as described in Section 2. The hyperspectral signal in the spectral domain extracted 
for each pixel location was passed through a series of low pass and high pass filters. All the detail 
wavelet coefficients calculated at each level and approximation coefficients at final level were 
concatenated to produce a test dataset with 17 cases. We also calculated similar coefficients for each 
simulated reflectance in LUT and concatenated them with the corresponding model parameters to 
construct a wavelet decomposed LUT database. 

3.7. LUT Inversion 

LUT inversion required similarity matching between wavelet coefficients from plot spectra 
(measured) and the wavelet coefficients from simulated spectra (modeled). Similarity was assessed 
using a least root mean square error (RMSE) comparison of the simulated and measured coefficients 
according to Equation (5): ܴܧܵܯ ൌ ඨ∑ ሺ ௠ܹ௘௔௦௨௥௘ௗ೔ െ ௠ܹ௢ௗ௘௟௘ௗ೔ሻଶ௡௜ୀଵ ݊  (5)

where, Wmeasured is a wavelet coefficient of measured reflectance in test dataset and Wmodeled is a 
wavelet coefficient of modeled reflectance in the LUT, and n is the number of coefficients. The 
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solution of the inverse problem was the set of input parameters corresponding to the reflectance in the 
database that provided the smallest RMSE. Because of potential insufficiency in model formulation 
and calibration and preprocessing errors in measured reflectance, the least RMSE solution might not 
necessarily provide the best estimates of LAI. According to [32], the best parameter retrieval is 
achieved when the number of solutions q ranges between 10 and 50. Consequently, for each of the 17 
cases considered in the test dataset, q = {10, 20, 30, 40 and 50} closest matching LUT entries with the 
lowest RMSE were selected according to Equation (5). Out of the multiple solutions, we selected the 
median LAI value as a final solution. 

In DWT, a large number of coefficients usually contain very low values (near-zero), and do not 
retain any useful information. For example, only 42 out of total 184 wavelet coefficients had 99.99% 
of the total energy (equivalent to variance) corresponding to original reflectance in one of the plots. 
The rest of the coefficients (142) had very low values (cumulatively containing only 0.01% of total 
energy) and might cause inversion bias. Hence, we repeated the inversion procedure but discarded the 
low coefficients. For each measured wavelet spectrum, the amount of retained energy by an individual 
coefficient was calculated as the square of its value. The wavelet coefficients were then sorted in 
descending order of their energies. Two sets of coefficients, which together contained 99.99% and 
99.0% of the energy of original spectrum, were created. During inversion, similarity measurements 
between the wavelet coefficients and simulated spectra (Equation (5) were calculated using only the 
two subsets. For convenience, we named the wavelet set with all coefficients as ALL COEFFICIENTS 
and the wavelet set with 99.99% and 99.0% of energy as ENERGY SUBSET 1 and ENERGY 
SUBSET 2, respectively.  

For comparison purposes, LUT inversion was also performed using the original spectral bands 
(SPECTRAL BANDS) which required assessing the similarity between plot and simulated spectra. As 
before, this was carried out using a least root mean square error (RMSE) comparison, in the case of the 
measured and modeled spectra, according to Equation (6): 

ܧܵܯܴ ൌ ඨ∑ ሺܴ௠௘௔௦௨௥௘ௗ೔ െ ܴ௠௢ௗ௘௟௘ௗ೔ሻଶ௡௜ୀଵ ݊  (6)

where, Rmeasured is a measured reflectance at wavelength λ, Rmodeled is a modeled reflectance at 
wavelength λ in the LUT, and n is the number of bands. 

4. Results 

LUT inversions were performed independently for all wavelet coefficients (ALL COEFFICIENTS), 
high energy wavelet coefficients (ENERGY SUBSET 1 and ENERGY SUBSET 2), and 
untransformed original spectral reflectance (SPECTRAL BANDS). All three sets of LUT were sorted 
from minimum to maximum according to the cost function (RMSE).  

The final results are summarized in Table 2. The first column of the table shows the number of 
solutions considered. The other columns show RMSE and R2 between model inverted LAI and field 
measured LAI for ALL COEFFICIENTS, ENERGY SUBSET 1, ENERGY SUBSET 2, and 
SPECTRAL BANDS respectively. 
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Table 2. Results from LUT inversion. The first column shows the total number of 
solutions selected by least RMSEr to calculate the median LAI value. The other columns 
show the RMSE and R2 between measured and estimated LAI by inversion using ALL 
COEFFICIENTS, ENERGY SUBSET 1, ENERGY SUBSET 2, and SPECTRAL BANDS 
respectively. 

Number of Solutions (q) 
All Coefficients Energy Subset 1 Energy Subset 2 Spectral Bands 
RMSE R2 RMSE R2 RMSE R2 RMSE R2 

10 0.82 0.32 0.62 0.63 0.62 0.44 0.79 0.32 
20 0.69 0.43 0.50 0.75 0.60 0.49 0.65 0.46 
30 0.69 0.42 0.46 0.77 0.56 0.49 0.60 0.47 
40 0.71 0.34 0.49 0.70 0.58 0.41 0.62 0.41 
50 0.70 0.35 0.56 0.58 0.58 0.47 0.62 0.40 

The results show that the LAI estimated from ENERGY SUBSET 1 provided the greatest accuracy 
(RMSE = 0.46 and R2 = 0.77), followed by the LAI estimated from ENERGY SUBSET 2  
(RMSE = 0.56 and R2 = 0.49). Among the different numbers of solutions, the median calculated from 
30 solutions provided the best estimate of LAI, the differences were greatest for q = 10 (RMSE = 0.62) 
and q = 30 (RMSE = 0.46) with ENERGY SUBSET 1. The relations between the measured and model 
estimated LAI based on the median of 30 solutions from ENERGY SUBSET 1, and SPECTRAL 
BANDS are shown in Figures 3 and 4. The figures show that LAI is better estimated using ENERGY 
SUBSET 1 (wavelets) than using SPECTRAL BANDS.  

Figure 3. Observed versus best estimated LAI from wavelet coefficients corresponding to 
99.99% of total energy (ENERGY SUBSET 1). LAI was estimated as the median value of 
30 solutions. 
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Figure 4. Observed versus best estimated LAI from untransformed AVIRIS reflectance 
(SPECTRAL BANDS). LAI was estimated as the median value of 30 solutions. The outlier 
that was not used for the calculation of 1:1 line and the inversion statistics is shown with a 
hollow diamond symbol. 

 

5. Discussion  

The results indicate that the discrete wavelet transform (DWT) can be a useful tool for estimating 
forest LAI using hyperspectral data by inverting DART. A simple wavelet decomposition of modeled 
and measured hyperspectral data by Haar wavelets followed by inversion using high energy wavelet 
coefficients provided better estimates of LAI than those provided by inversion using the original 
spectral reflectance.  
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Such procedure also necessitates multiple forward runs which are not suitable for complex  
models like DART. 

The results of this study show that the wavelet transformation of hyperspectral bands can be a 
useful alternative to the band selection techniques employed by previous studies. Wavelet features in 
this study were less correlated than the original reflectance bands owing to the orthogonal nature of the 
transformation. DWT also afforded dimensionality reduction, as 99.99% of the total energy was 
concentrated in few coefficients. Moreover, DWT provided a multi-resolution representation of the 
original signal in which the effects of different parameters on canopy reflectance can possibly be 
distributed over wavelet coefficients of different scales. A narrow band in the red edge region of the 
reflectance spectrum might carry signatures of different parameters including leaf pigments, LAI, etc. 
After wavelet decomposition, the effect of leaf pigments might be relegated to a small-scale wavelet 
coefficient, whereas the effect of LAI might be more pronounced in one of the large scale wavelet 
coefficients (as LAI generally tends to affect reflectance over a larger part of the spectrum than leaf 
pigments). Such decoupling of the effects over wavelet coefficients at multiple scales and 
consequently greater independence among parameters is a useful property for inversion. The greatest 
accuracy obtained by the LUT inversion using ENERGY SUBSET 1 might be attributed to one or all 
of these benefits offered by DWT.  

The poor estimates of LAI by ALL COEFFICIENTS compared to ENERGY SUBSET 1 and 
ENERGY SUBSET 2 demonstrate how essential it is to select optimal wavelet features. The selection 
of wavelet features employed in this study was relatively straightforward as only a small fraction of 
coefficients retained significant information (as measured by energy). The ENERGY SUBSET 1 
discarded the low coefficients and only included the top coefficients cumulatively adding up to 
99.99% of total energy. By doing so, the latter represented the original reflectance with a limited 
number of coefficients without causing significant errors for signal representations (loss of 0.01% of 
total energy). One of the important properties of DWT is that the energy of the Gaussian noise 
component of the signal will usually be dispersed as relatively small coefficients [54]. Hence, getting 
rid of the low coefficients might also have helped us eliminate the noise. 

To understand the effect of different thresholds, we repeated the analysis using a new threshold of 
99.0% energy. This led to a decrease in the best accuracy of LAI estimates from RMSE = 0.46 to 
RMSE = 0.56. With 99.0% energy, only 13 coarse-scale coefficients were retained (three approximations 
and others from scale level 4, 5 and 6), whereas, the 99.99% threshold level retained both coarse scale 
and fine scale detail coefficients from level 1 to 6. These coefficients from different levels are functions 
of scale and position (fine detail versus global behavior at various locations in the hyperspectral signal). 
The greater accuracy by ENERGY SUBSET 1, which comprises both coarse- and fine-scale coefficients, 
than the ENERGY SUBSET 2 implies that both the detail information and the overall trends of the 
hyperspectral signals are important for accurate parameter estimations by model inversion.  

Figures 5 and 6 show the reconstruction of reflectance spectrum for one of the plots using Haar 
wavelet coefficients belonging to the 99.0% and 99.99% energy thresholds. The reconstructed curve 
was more similar to the original reflectance curve in Figure 6 than in Figure 5. Since the 99.0% 
threshold level selected only coarse level wavelet coefficients, the overall size and shape of the curve 
was preserved, but some of the important details in visible and near-infrared parts were missing. It 
might be possible that the best threshold level lies somewhere between 99.0% and 100% other than 
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99.99% used in this study, but we did not undertake a detailed analysis of the best threshold level since 
the main objective of this study was to demonstrate the effectiveness of DWT in DART 
model inversion. 

Figure 5. Reconstructed (with Haar coefficients having cumulative 99.0% energy) versus 
original signal for one of the plots. 

 

Figure 6. Reconstructed (with Haar coefficients having cumulative 99.99% energy) versus 
original signal for one of the plots. 
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30 because the distribution of solutions in terms of LAI was too wide to obtain a good estimate 
(median value). The highest RMSE with q = 10 indicated that the solution closely matching the test 
dataset might not be the best solution to estimate LAI.  

We chose the Haar mother wavelet in this study, as it is the simplest of various mother wavelets, 
and has been found useful for hyperspectral data analysis in previous studies [33,36,39]. Pu and  
Gong [41] compared different families of wavelets for LAI and crown cover mapping using EO-1 
Hyperion data. They found that the db3 wavelet from the Daubechies family performed best among 
those they analyzed. Given this, we repeated the whole analysis using the db3 wavelet to test whether 
the choice of a wavelet type can lead to any improvement in the accuracy of LAI estimates. We found 
that db3 wavelets performed slightly more poorly as compared to Haar wavelets (best RMSE for  
db3 = 0.49 vs. best RMSE for Haar = 0.46). The better result with db3 wavelets by Pu and Gong [41] 
is likely due to their use of energy features as opposed to wavelet coefficients. The Daubechies 
wavelet transform provides more compact redistribution of the energy of the signal than the Haar 
wavelet [45], so, the approximation coefficients obtained using db3 retain more energy from the 
original signal than those obtained using Haar. Banskota et al. [40] used a genetic algorithm to select 
the best subset of wavelet coefficients in regression models and found approximation coefficients less 
optimal than detail coefficients for explaining variation in LAI. The lower representation of the 
original signal by detail coefficients of db3 could be a likely explanation for different results observed 
in this study than that by Pu and Gong [41]. Figures 7 shows the reconstruction of reflectance spectrum 
for the same plot as in Figure 5 and 6 using db3 wavelet coefficients belonging to the 99.99% energy 
thresholds. The reconstructed reflectance curve using higher energy db3 coefficients were smoother 
than that by Haar coefficients but poorly represented the small variation in original signal.  

Figure 7. Reconstructed (with db3 coefficients having cumulative 99.99% energy) versus 
original signal for one of the plots. 

 

The plot LAI was estimated using DHP following the protocol of Zhang et al. [48]. We 
acknowledge that LAI measurement uncertainty is important consideration in remote sensing research 
as any optical (e.g., DHP), active (e.g., Lidar) or direct measurement (e.g., litter traps, destructive 
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harvesting) can only provide estimate of LAI [55–57]. The uncertainty in ground measured LAI is a 
result of the assumptions that are required for the various techniques (e.g., assumptions related to 
crown geometry, foliar distribution, LAD, seasonal leaf replacement or exchange, leaf optical 
properties, etc.) and the accuracies of measurement protocols (e.g., gap fraction, individual leaf 
area/mass, spatial sampling, etc.) as well as other factors that are more difficult to quantify over large 
areas (e.g., shoot and canopy clumping). However, given all the issues with indirect quantification of 
LAI, it has been well established that the properties related to clumping (at the shoot and canopy 
scales) are those that dominate the uncertainties [56]. Some studies have shown reasonable agreement 
between DHP and traditional allometric and destructive estimates (e.g., [58,59]) when properly 
accounting for foliage clumping. We recognize that the estimation of the degree of foliage clumping 
with DHP-TRAC software in this study might not provide sufficient quantification of clumping at our 
sites. However, given that we wanted to develop an estimate of the LAI range for which to constrain 
the parameter space in our DART simulations, this would not likely be a large source of error in our 
analysis. In other words, the bias due to imperfect characterization of canopy LAI at any one stand 
would not have had a significant effect on the DART simulation if the range of LAI parameterization 
were sufficient for the RTM runs. Figures 3 and 4 provide a comparison of DART inverted and 
measured LAI, which shows the minimal bias in the results, thus illustrating that we adequately 
parameterized DART across the range of expected LAIs that was based on our field measurements. 
Running simulations to quantify the uncertainty in our DART retrievals given the imperfect 
characterization of LAI due to any measurement uncertainty was beyond the scope of this research. In 
fact, to properly quantify the latter would require a detailed and careful synthesis of all uncertainties 
involved, preferably within a Bayesian context to sufficiently determine which assumptions/uncertainties 
dominate the overall error in DART retrieval of LAI (i.e., measurement error, atmospheric correction, 
modeling errors). 

6. Conclusion 

The main objective of this study was to investigate the utility of the discrete wavelet transform 
(DWT) for estimating forest leaf area index (LAI) via inversion of the Discrete Anisotropy Radiative 
Transfer (DART) model using airborne hyperspectral data (AVIRIS). The DWT transforms the 
hyperspectral data into wavelet features at a variety of spectral scales. The multiscale features detect 
and isolate variation in the reflectance continuum not detectable in the original reflectance domain 
such as amplitude variations over broad and narrow spectral regions. We employed the DWT on 
reflectance spectra obtained from hyperspectral data to improve estimation of LAI in temperate forests. 
The model inversion was performed with three different datasets, the original reflectance bands, the 
full set of wavelet extracted features, and two wavelet subsets containing 99.99% and 99.0% of the 
cumulative energy of the original signal. The results show that the LAI estimated from the wavelet 
subset with 99.99% of the cumulative energy provided the greatest accuracy. Our results suggest that 
the Haar discrete wavelet transform can be an effective tool for accurate DART model inversion. This 
study focused only on comparing multiscale DWT coefficients to the original spectral bands. The work 
could be extended by applying sensitivity analyses to assess the effect of variation in LAI on wavelet 
features at different positions and scales. Such an effort might also help identify features that are more 
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sensitive to LAI and less to background signals caused by soil or crown cover. The theory of wavelet 
transforms is still developing, and more wavelet families are being introduced. The exploration of the 
utility of other wavelets in model inversion is well warranted since different families of wavelets are 
suited to different signals and applications. 
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