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Abstract: Phenological metrics are of potential value as direct indicators of climate 
change. Usually they are obtained via either satellite imaging or ground based manual 
measurements; both are bespoke and therefore costly and have problems associated with 
scale and quality. An increase in the use of camera networks for monitoring infrastructure 
offers a means of obtaining images for use in phenological studies, where the only 
necessary outlay would be for data transfer, storage, processing and display. Here a pilot 
study is described that uses image data from a traffic monitoring network to demonstrate 
that it is possible to obtain usable information from the data captured. There are several 
challenges in using this network of cameras for automatic extraction of phenological 
metrics, not least, the low quality of the images and frequent camera motion. Although 
questions remain to be answered concerning the optimal employment of these cameras, this 
work illustrates that, in principle, image data from camera networks such as these could be 
used as a means of tracking environmental change in a low cost, highly automated and 
scalable manner that would require little human involvement. 
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1. Introduction 

One aspect of vegetation dynamics that is receiving increasing attention is that of phenology, the 
cycle of events that drive the seasonal progression of vegetation through stages of dormancy, active 
growth and senescence [1,2]. The timing of such phenological events is indicative of the impact of 
both short- and long-term climatic changes on the terrestrial biosphere [3]. The onset and eventual loss 
of leaves regularly alters land-surface boundary conditions through physical changes in structure 
which alters surface albedo, roughness, and surface water and energy fluxes [4,5]. Change to the 
associated length of the growing season and thus primary productivity has an inherent impact on the 
exchange of carbon dioxide with the atmosphere [6,7]. Any extension in the growing season leading to 
increased canopy longevity and carbon gain may provide an increased sink for atmospheric carbon [8], 
although this may contribute to warming due to a decrease in surface albedo [9]. In addition to the 
close links between global environmental change and phenology, any alteration in the timing of 
phenological events has implications for competition between plant species and interactions with 
heterotrophic organisms [10]. Furthermore, ecosystem services to humans of plants, such as the 
production of food, fibre and extractable chemical substances, as well as the seasonal suitability of 
landscapes for recreational activities are impacted by phenology [11]. Consequently, the continuous 
and automated monitoring of phenology is a key issue in science [12], and as such should be fully 
integrated in to a systematic and scientifically credible monitoring programme [13,14]. 

Although plant phenology is one of the most easily observable traits in nature [15,16], there remains a 
challenge in capturing its timing, location and magnitude at appropriate resolutions with certainty [17,18]. 
Two principal approaches have dominated the measurement of phenological events; field-based 
observations and satellite-based observations. These two methods differ greatly in their scale of 
measurement and the technology used; also there are limitations in the integration of these measures [19]. 
Field observations by individuals afford a detailed perspective, but can be compromised by logistical 
challenges and a lack of consistency, continuity and objectivity, and high costs [20]. Though nationwide 
observation networks (for example USA National Phenology Network, www.usanpn.org [21]; and UK 
Phenological Network, www.naturescalendar.org.uk [22]), overcome some of these limitations in 
providing a geographical spread, they still rely on contributions by volunteers. The deployment of 
radiometric sensors at the stand level are proving useful [23,24], but are expensive and currently have 
limited extents [25]. Satellite remote sensing affords a large-scale perspective and methods for 
extraction of phenological metrics are proving robust (e.g., from the medium resolution MODIS and 
MERIS sensors which have a high revisit rate [26]), however, current pixel resolutions mean that 
measurements are often too coarse and make it nearly impossible to detect critical organism, species, 
or community-level responses [27,28]. Further challenges to using satellite data include its sensitivity 
to effects of clouds and atmospheric conditions [29,30]. Moreover, there is the issue of a lack of 
parallel ground-based phenological observations and scalable field models [31].  

Visible light digital cameras have been recognised as a measurement approach that could provide 
inexpensive, spatially representative and objective information with the required resolution. The 
potential of these cameras has been recognised in a number of ecological applications: studies on 
vegetation growth and biomass [15,32], nitrogen status and plant stresses [24], and canopy green-up 
and senescence [27], as well as for automating a range of agricultural monitoring practices [33]. 
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Indeed, simple image processing techniques are making standard the use of digital cameras for the 
detection of phenological events [15,34–36], particularly since these cameras can be networked. As 
such they represent an easily acquired resource for augmenting large scale phenology monitoring 
based on the principles of near-surface remote sensing with a spatial coverage afforded by 
communications technologies [28,37]. Rather than deploying cameras specifically for the task of 
phenological monitoring it has been suggested by Graham et al. that the suitability of freely available 
public cameras associated with monitoring natural areas, roadway conditions, and for human 
surveillance be examined for detecting and monitoring plant phenology [28]. Their proposition was 
that since these cameras are already in situ right across the conterminous United States of America 
these could afford the measurement of phenology across continents. The full potential of this was 
however compromised by the widely varying image resolution among the 1,100 public cameras 
identified, the labour intensive job of manually searching for suitable cameras and georeferencing 
them and finally the loss of data as a result of the changing of the internet addresses of the cameras 
used, permanent disconnection of cameras and changes in view angle. In this paper it is postulated that 
one way to overcome this limitation is to use a high density camera network operating the same 
hardware, for example a traffic camera network [38]. Here the utility of using traffic webcams for 
measuring phenology is explored and a methodology proposed that could be useful in fully 
automatically extracting phenological information from a network of sensors already in place but 
deployed for the purpose of traffic monitoring. It is surmised that key to any method that has the task 
of handling such networked data is that the vegetation with a phenological signal is found 
automatically with no human intervention required. Furthermore, the method must be robust with 
respect to camera movement and so not subject to loss of data.  

2. The Camera Network 

The Highways Agency (HA) is an Executive Agency of the Department for Transport (DfT), and is 
responsible for operating, maintaining and improving the strategic road network in England on behalf 
of the UK’s Secretary of State for Transport [39]. The Agency maintains a high density network of 
traffic cameras deployed along its motorways and major trunk roads affording a continuous monitoring 
of traffic, and by default the vegetation that lines these roads and are within the field of view of the 
cameras. An agreement was made with the HA to access and download images from these cameras: 
three sets of images captured at 10:00, 12:00 and 14:00 local time were downloaded from the HA 
website daily. Cameras might not be available due to maintenance by HA, internet connectivity, and 
HA censorship due to incidents. 

Access was granted to approximately 1,800 cameras in total and the size of each image varied 
between around 15 to 20 kB with the permitted download limit to an average bandwidth of 13 kB/s 
which means that it takes approximately half an hour for the images to download from all the cameras 
available due to the specified bandwidth limit. The digital images were downloaded and archived as 
heavily compressed JPEGs (352 × 288-pixel resolution, with three channels of 8-bit RGB colour 
information) for subsequent processing. Filenames included a date and time stamp for easy reference. 
A manual survey of the images captured by each camera revealed that 900 contained areas of 
vegetation suitable for the study. As a preliminary investigation, the present study was based on 
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3. Methods 

In order to develop an automated method for the extraction of phenological information from this 
network of traffic cameras there were several challenges to surmount. The first relates to the quality of 
each image that is dependent on a number of external factors, such as precipitation, insect activity or 
bird excrement on the lens. Further, vegetation may be obscured by road traffic at certain points in 
time. An additional challenge is that the framing of each individual image from a camera is variable, 
due to camera movement by wind or more significantly because a controller has changed where the 
camera is looking. As automation was desirable, a method that was scalable and transferable to other 
camera networks of this type was also a factor to consider. Accounting for these resulted in a three step 
approach from image capture to extraction of the phenological metrics desired: Step 1—Image  
pre-processing to collect images from cameras that are in the same general direction and align them; 
Step 2—identification of areas of the aligned images that have phenological interest for further 
analyses determination of the greenness of the areas determined over time; and Step 3—extraction of 
phenological metrics to be compared with manual inspection of the images. 

3.1. Image Pre-Processing  

The cameras are under manual control by the Highways Agency and therefore the direction in 
which the cameras point is variable. The direction is dependent on road traffic conditions at the time 
and any incidents that may have occurred that require closer inspection by the relevant authorities. 
Cameras located away from junctions are more likely to be static for most of the time and are aimed 
looking down the highway rather than across it. The first step of processing is to automatically collect 
images from each camera into sets of images that were taken in the same general direction. This was 
performed by cropping all images to remove static ancillary information (such as overlaid timestamps 
generated by the camera). An initial key image (usually the first one in the set) was established and 
subsequently an attempt to align it with the remaining images from that camera (the test images) 
was made. 

The alignment was not carried out on the raw images, but on ones that had been pre-processed. A 
binary image (two levels) describing where there were strong intensity edges within the image was 
found using an edge detector. This was then blurred with a Gaussian filter, which thickened the lines 
and gave them a Gaussian intensity profile. This was fed into a cross-correlation algorithm; the result 
of which generated a two-dimensional image, where the pixel intensities mapped how well aligned the 
two input images are if they were overlaid with different offsets between each another, in both the  
x- and y-axis. The offset between the maximum pixel value and the centre of the image was used to 
determine how much to offset one image against the other to bring them into alignment. 

Any pair of images where the maximum of the cross-correlation image was within 20 pixels from the 
centre was considered to be part of the same set of images. The offset between the peak and the centre of 
the image represents how much to offset one image against the other to align them. A cross-correlation 
performed between any two images must always have a maximum point, even if the images have 
completely different compositions, furthermore, these maxima could be within 20 pixels from the 
centre by chance. This would have the effect of images appearing to be aligned when they were not. 
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To avoid misalignments, each image was divided into four equal quadrants and cross-correlations 
performed on each quadrant independently. For the image to be taken as part of the same set, the 
offsets between at least three of the quadrants were required to be within 2 pixels of one another. If the 
key image was correlated within 20 pixels and passed the quadrant test then the tested image was 
added to the key image’s set. Otherwise, the image was treated as being taken in a different direction 
and became a new key image to be compared against later images. The process was repeated until all 
images were exhausted, by comparing each successive image with all the key images that had been 
determined so far. This process is also explained as a flowchart in Figure 2. 

Figure 2. Flow-chart describing the image collection and alignment process, along with 
example images output at different stages of the process. 

 

Because images were always tested over all previous key images, even if a match had been found, it 
was possible for some images to appear in more than one set. Intersecting sets were combined by 
calculating the mean offset of the images that were common to both sets (relative to the key images of 
each set) and shifting the offsets in each intersecting set relative to this, thus making a superset. As 
image alignment is part of the collation process, this also has the effect of removing small variations in 
the direction the camera was pointing in, due to the result of wind, for example. The process is 
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resumable; the pre-processing stage can be restarted from where it last finished when newly acquired 
images are available, this means that the results can be continuously updated. 

3.2. Determination of the Greenness of Pixels Containing Vegetation over Time 

The common overlapping area was determined for each combined set and the excess was removed 
from each image. A value of greenness for the remaining pixels of each image in a set was then 
calculated using the following equation:  

greenness  (1)

where: g, r, and b represent the raw green, red and blue values for each pixel [34]. This gives the 
proportion of the pixel’s overall intensity that is on the green channel and is therefore invariant to the 
overall brightness of the pixel. Since parts of the images in the set may not have been of use, either 
because they did not contain vegetation or because the vegetation was frequently obscured by passing 
traffic, areas of interest for each set of images were determined. A pixel was added to the area of 
interest if it had a phenological signature, that is, the greenness value rose in the spring and fell in the 
autumn. The greenness of each pixel in the time sequence was checked to see if it was greater or less 
than the mean greenness for that year (taken between the December solstices). Between the December 
solstice and the March equinox it was expected that the pixel value will be below the annual mean. 
Furthermore, between a month (28 days) before the June solstice and a month before the September 
equinox the pixel greenness was expected to be greater than the annual mean. For an area to be treated 
as having useful phenological information, the expectations needed to be met for over 99% of time 
points. A binary mask of pixels that fitted the conditions was created and applied to find the mean 
greenness value over all useful pixels at each time point. 

3.3. Extraction of Phenological Metrics 

In order to extract dates relating to the onset of greenness (i.e., leaf up) and senescence (i.e., leaf 
fall) the series was smoothed using a local regression via weighted linear least squares and a first 
degree polynomial model (LOESS) with a span of 3 months (84 days) [40]. Phenological dates were 
extracted for each year of acquisition. The dates were found when the smoothed data: rose to 20% 
(beginning of leaf up season) and 80% (end of leaf up season) of the greenness range between the 
minimum and maximum greenness over the growing season; and when the greenness fell below 80% 
(start of senescence) and 20% (end of senescence) of the minimum and maximum greenness over the 
senescence season. An example of this is shown in Figure 3. Validation of the automatically extracted 
phenological dates was challenging, particularly since the greenness values are an aggregate of the 
whole scene captured by the camera which could contain several species with its own phenological 
cycle. Here, the image archive was used in a visual inspection validation process in order to provide an 
idea of the quality of the method outputs. Since the phenological curve is not complete for both years, 
only the end of senescence in 2011 and start of green-up in 2012 are evaluated.  
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Figure 3. Graphical description of the determination of phenological dates. A, season 
maximum; B, start of senescence, 80% between D and A; C, end of senescence, 20% 
between D and A; D, inter-seasonal minimum; E, start of leaf-up, 20% between D and G; 
F, end of leaf up, 80% between D and G; G, season maximum. Vertical lines show 
intersections for date read-off. 

 

4. Results 

4.1. Assessment of Network Usability 

Out of the 900 cameras deemed suitable for use, 72% of images provided sets from which 
phenological metrics could potentially be extracted automatically. The main reason for images being 
unsuitable for use included road structures (such as bridges) appearing too close to the camera; 
frequent motion in camera meaning that images available from the most frequently occurring camera 
angle are very sparse in temporal coverage; and large changes in camera angle which lead to low 
correlations between images in the temporal sequence. Although for illustrative purposes only 18 
cameras are discussed in this paper, the 72% return would result in approximately 650 cameras and 
associated image sets for potential use. This represents a high density spatial coverage from which 
phenological information could be discovered to support research. It is acknowledged that there may 
be some micro-location effects in measurement of vegetation phenology at roadsides in the same way 
that micro-topography had an impact in the study by Fisher et al. [27]. Nevertheless, local processes 
are important to understand when scaling to regional representations such as those captured by satellite 
data [28]. As such this dataset represents an untapped potential particularly in a locality where high 
cloud coverage often precludes the construction of a high quality temporal time-series required for 
phenological measurement [41].  

In each of the camera’s field of view the composition and distribution of the varied vegetation vary 
both in relation to the road and with each other; the method employed for the automatic extraction of 
areas of interest (i.e., vegetation) proved successful generally for the 18 cameras under scrutiny here as 
illustrated in Figure 4. In each case the road, street furniture, sky, areas frequently obscured by 
vehicles, and buildings are masked out leaving only the vegetation of interest. The proportion of 
masked areas differed from camera to camera but a visual inspection of each confirmed that the 
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unmasked parts of the images were only vegetation. Further validation of this was provided by 
summing all of the images from a set which causes the cars to disappear gradually from the resulting 
image since their positions are randomly distributed along the roads within the image. This leaves only 
the constant objects such as the road, sky, trees, signs, buildings and street lamps. This procedure 
allowed the quality of the alignment of the images to be ascertained, with poorly aligned images 
looking blurred. This is the most crucial step with respect to camera usability. Other limiting factors in 
image quality via noise through environmental factors such as precipitation on the lens are ignored and 
accounted for via the smoothing of the high temporal frequency of image acquisition.  

Figure 4. Views of the cameras shown in Figure 1, after realignment and averaging over 
all images with corresponding calculated masks (white) of vegetation used for analysis. 

 

camera 1 maskcamera 1 view camera 10 maskcamera 10 view

camera 2 maskcamera 2 view camera 11 maskcamera 11 view

camera 3 maskcamera 3 view camera 12 maskcamera 12 view

camera 4 maskcamera 4 view camera 13 maskcamera 13 view

camera 5 maskcamera 5 view camera 14 maskcamera 14 view

camera 6 maskcamera 6 view camera 15 maskcamera 15 view

camera 7 maskcamera 7 view camera 16 maskcamera 16 view

camera 8 maskcamera 8 view camera 17 maskcamera 17 view

camera 9 maskcamera 9 view camera 18 maskcamera 18 view
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Figure 5. Calculated greenness levels using Equation (1) for each camera shown in 
Figure 1 over the period of analysis. The crosses show individual data points and the 
continuous curves show the smoothed data used for date extraction. 

 

4.2. Extracted Time-Series Plots 

The resultant time-series plot of the mean greenness value over all useful pixels is illustrated in 
Figure 5 for each camera. Table 2 provides the root-mean-square (RMS) error on fit and the percentage 
of time-points present in time-series plots for each camera. It is evident that the plots are, 
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unsurprisingly, inherently noisy, particularly those from cameras 8, 9, 11, 17 and 18, because of the 
uncontrolled conditions in which the images were taken. Furthermore there are missing data from 
some of the plots as a result of a step movement in the camera (for example from Camera 4 during the 
autumn of 2011). Despite this in each case there were enough data points available to parameterize a 
simple sigmoid-shaped model and extract the underlying signal. The missing data does however pose a 
challenge when visually extracting phenological dates and as such are excluded from further analyses 
(as per Section 4.3). The phenological signal is clearly well-defined for each camera. In most cases the 
classic trapezoid phenology profile is displayed and for both 2011 and 2012 there was a great 
similarity in the curves. In general terms, the greenness values are seen to increase rapidly from 
March/April, corresponding to a period of leafing-up mainly in the deciduous trees and increased 
photosynthetic activity in other vegetation types that had a strong enough phenological signal to be 
included in the area of interest (e.g., coniferous trees and some shrubs which maintain a minimum 
greenness during the winter months). The curve is seen to stabilize during June, followed by a rapid 
decrease in greenness from the end of August, marking the onset of the autumnal senescence. The 
curve reaches a minimum during the months of December to February. Since the signal extracted is an 
aggregate greenness value of all pixels in the area of interest, those cameras capturing scenes in which 
there is a higher proportion of deciduous vegetation (for example camera numbers 8, 9, 11 and 18) 
display a more pronounced seasonal curve due to large range in net primary productivity attained by 
this vegetation type. Where there are coniferous species in the scene, these will temper the range of 
greenness captured by the camera with a higher proportion of these since these species will not exhibit 
as large a seasonal variation in their photosynthetic biomass [42]. This concurs with other studies that 
have used camera-based indices for characterising canopy phenology [43]. 

Table 2. Quality indicators for the processed cameras. 

No. 
Vegetation Coverage  

on Image (%) 
RMS Error on  

Fit to Time Series (× 10−3) 
Valid Time-Points Present 

(% of Whole Sequence) 
1 32.3 3.96 84.8 
2 7.5 5.27 87.9 
3 21.7 5.19 88.0 
4 11.4 4.49 81.1 
5 6.6 5.63 75.4 
6 11.5 4.38 84.3 
7 6.1 3.72 87.7 
8 19.2 10.82 89.2 
9 34.8 10.28 90.5 

10 12.1 3.46 85.6 
11 21.7 7.11 87.2 
12 18.6 3.39 80.3 
13 15.3 3.24 84.1 
14 7.0 2.41 85.3 
15 20.3 2.72 74.5 
16 30.1 4.18 46.6 
17 8.3 7.44 76.6 
18 27.4 8.20 66.7 
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4.3. Computed Phenological Dates 

The automated computed phenological event dates for all the 18 cameras for each year of 
investigation as indicated by the automatically extracted greenness values are presented in Table 3. 
Figure 6 shows a comparison between the date of end of senescence for 2011 and start of leaf-up for 
2012 observed through the automated method and visual inspection validation dates across the  
18 cameras. In both cases a strong Pearson’s correlation coefficient, r, was found (r = 0.7879,  
p < 0.001, date of end of senescence, 2011; r = 0. 9199, p < 0.001, date of end of start of leaf-up, 
2012). Although the automated analysis estimated dates too early compared with visual inspection of 
the cameras’ images, and others too late, overall the root-mean-square difference between the estimate 
dates using the automated and manual methods was five days. Compared with the date of start of green 
up, the date of end of senescence was less certain. This concurs with other studies (using satellite data) 
that suggest it is more challenging to measure this as a single date [44] but that this can be overcome 
using a different index of the data (e.g., green-red vegetation index (GRVI) [45]). In order to fully 
understand why there was error in the predicted dates the values of greenness would need 
disaggregating to the component vegetation types and further research into different methods of data 
smoothing and date extraction would be required (similar to that applied to satellite data [29,46]). 

Table 3. Automatically calculated phenological dates for the cameras that are shown Figure 1. 

Camera No. 
2011 Season 2012 Season 

Start of Senescence End of Senescence Start of Green-up End of Green-up 

1 28-Aug 08-Nov 14-Mar 09-May 

2 19-Aug 04-Nov 27-Mar 05-May 

3 07-Sep 05-Nov 01-May 01-Jun 

4 25-Aug 05-Nov 18-Mar 22-Apr 

5 30-Aug 09-Nov 02-Mar 28-Apr 

6 17-Aug 03-Nov 26-Mar 09-May 

7 26-Jul 26-Nov 03-Apr 16-May 

8 07-Aug 15-Nov 02-Apr 09-May 

9 26-Jun 10-Nov 23-Mar 10-May 

10 25-Aug 26-Nov 21-Mar 02-May 

11 16-Aug 09-Nov 27-Mar 12-May 

12 30-Jul 14-Nov 26-Mar 30-Apr 

13 12-Aug 29-Nov 18-Mar 27-Apr 

14 08-Sep 26-Nov 23-Mar 02-May 

15 21-Aug 07-Nov 01-Mar 02-May 

16 30-Aug 20-Nov 18-Mar 03-May 

17 18-Aug 19-Nov 31-Mar 22-May 

18 13-Jul 23-Nov 06-Mar 11-May 
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Figure 6. Ground truth dates versus dates automatically calculated from cameras; (a) end 
of senescence 2011; (b) start of green up 2012. Note: missing points are due to lack of 
camera data for visual inspection. 

   
(a)       (b) 

5. Discussion 

The results obtained in this pilot study are encouraging. It is suggested that the methods for using 
the images captured by these traffic cameras are refined and in doing so the ecological value of these 
data will be fully realised. The data could benefit a multi-scale monitoring programme of phenology so 
critical for an improved understanding of environmental change, in particular that associated with 
climate variability [13]. The continuous measurement of phenology at high temporal and spatial 
resolution affords an understanding of trends in vegetation productivity and this could be achieved via 
aggregation across multiple species or for specific species in selected locations [47]. The ability to 
focus on species is possible via the manual extraction of areas of interest and would allow a better 
understanding of the seasonal-gap that exists between species [48], as well as the role of site-specific 
properties and geographical location [49]. The images captured by these traffic cameras offer extended 
analysis possibilities, particularly when coupled with similar resolution observations of precipitation 
and temperature, carbon flux measurements and soil properties [47]. This will benefit the understanding 
of budgets of carbon and water exchange (e.g., gross primary productivity (GPP) [50,51]) and moreover 
shed light on any interannual variability in the growing season caused by weather conditions 
(e.g., windstorms [52]) and other occasional but often severe biotic stresses that influence the 
physiological status of trees [45,53]. Beyond this there is scope for the data to be used in the 
understanding of ecosystem interactions, food chains, pollination, breeding and migration [54,55]. 

Using a network such as that offered here meets the requirements for a spatially dense set of 
observations that are geographically widespread but comply with standardised rules [36]. Cameras fill 
in the large scale-gap that exists between observers who tend to focus on one tree and the  
satellite-derived data which are useful at the ecosystem scale [50]. From a UK perspective, this 
network could be well placed to understand the impact of current observed trends in the climate on its 
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vegetation: the Central England Temperature has risen by about 1 °C since the 1970s, with 2006 being 
the warmest in the 348-year long record. Seasonal rainfall is highly variable, but there has been a slight 
trend over the last 250 years for decreased rainfall in summer and increased in winter [56]. Any 
environmental impacts already evident are likely to be exacerbated in the near future given climate 
change projections [57,58] which indicate that the UK climate will continue to warm substantially and 
that increases in the number of days with high temperatures will be found everywhere, particularly in 
south east England. Further, reductions in the number of frost days are predicted, as well as increases 
in the number of 10-day dry spells across the UK, this being more pronounced in southern England 
and in Wales. There will also be further changes in rainfall patterns and its seasonal distribution; and 
considerable regional variations can be expected. A detailed study into the observed impacts of climate 
change on UK vegetation to date found that there is clear evidence that climate change is having an 
impact on some aspects of the composition and function of woodland [59]. Leafing has advanced by 
2–3 weeks since the 1950s. However, evidence for increases in tree growth rates and forest 
productivity resulting from lengthening growing seasons is limited for the UK, yet the link between 
climate change, primary productivity and growing season has been evident elsewhere [60]. Current 
records of CO2 fluxes between forests and the tropospheric atmosphere are limited to two sites, which 
do not allow the full heterogeneity of UK trees to be accounted for and are therefore insufficient for a 
full-evidence based management system to support policy decisions on how forests are used in climate 
change mitigation. 

Although further work is to be conducted using this network of cameras, this study joins others who 
have used cameras to capture leaf emergence and green-up (e.g., [34,50,53]) as well as senescence 
(e.g., [36,50]). Such studies point to the possibility of using other combinations of spectral channels 
(e.g., Zhao et al. computed a redness index [36]; Mizunuma et al. used a Hue value [51], with 
Motohka et al. recommending the GRVI [45]). Other suggested research avenues include a focus on 
understorey vegetation [16,61], though this would not be directly applicable using this network, though 
at different times of year the leaf area of certain trees may allow “background” vegetation to be 
observed [48,50]. Another avenue could be to examine the variability in the accuracy with which the 
phenological dates are captured as a function of the timing of the images used. In this study only the 
data captured at 12 noon was processed similar to others [25,34,50,53], however, it has been noted that 
images captured earlier and later than midday better characterise the phenological pattern of plant 
species using machine learning [62], which the currently unused data collected at 10am and 2pm could 
be applied to in future. 

6. Conclusions  

This paper describes the first attempt at fully automatically extracting plant phenological metrics 
from a web-hosted system of traffic cameras. The results obtained demonstrate that a well-defined 
signal related to spring green-up and autumn senescence can be extracted from the images recorded, 
illustrating that valuable information complementary to their primary purpose can be obtained from 
such networks. Key to the method presented here is that vegetation with a phenological signal is found 
automatically with no human intervention required. Furthermore, the method is robust with respect to 
camera movement and so not subject to as greater loss of data as seen in a previous study [28]. 
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Since the method presented in this paper is scalable and transferable it could be applied globally and 
coupled with other cameras of this nature (e.g., CCTV in urban areas). Internet searches have 
confirmed that most countries possessing extensive road networks make use of a corresponding camera 
network to monitor traffic flow. Therefore the approach described here could in principle be applied 
globally at minimal cost, greatly benefiting from both the initial camera installation and the on-going 
maintenance being handled by the road network operators. There is a real potential to roll this out 
within a systematic and scientifically credible monitoring programme achieving a spatial resolution 
and coverage not previously achieved. 

Although this paper demonstrates the method, further work is required: to perform a fuller 
validation and to better understand the nature of the errors that will be present; and to investigate the 
application of methods and image selection to refine the approach. With the passing years there will be 
real value in utilising this image archive to understand drivers of phenological trends, coupling 
extracted metrics with other data. To do this would add further support to the potential use of traffic 
cameras for the measurement of phenology; particularly within a scheme to validate satellite data by 
way of increasing the spatial extent and sampling rate [28]; pertinent since the imminent launch of 
Earth observation systems such as the Sentinels have an improved temporal resolution meaning that 
ground based validation is of increasing importance [63]. Moreover, the use of traffic cameras fills a 
scale-gap between other approaches to measuring phenology and it is suggested that consideration be 
given to a multiple-system approach that incorporates all approximations of phenology (i.e., satellite, 
airborne, terrestrial, citizen based) and overcomes the limitations of each one [64]. 
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