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Abstract: Changing trends in ecostegm productivity can be quantified using satellite
observations oNormalized Diference Vegetation Index (NDVIHowever the estimation

of trends from NDVI time seriesdiffers substantiallydepending onanalyzedsatellite
dataset, theorrespondingspatotemporal resolutionand the applied statistical method.
Here wecomparethe performance ofa wide range oftrend estimation methodsand
demonstrate that performandecreases with increasingter-annual variabilityin the
NDVI time series Trendslopeestimaésbased on annual aggregated time series or based
on a seasoal-trend modelshow better performances than methods that remove the
seasonal cycle of the time serie&. breakpoint detection analysis reveals that a
overestimation of breakpoints in ND trendscan result in wrong or even opposite trend
estimatesBased on our results, we give practical recommendations for the application of
trend methods on loagerm NDVI time series.Particularly, weapply and compare
different methods orNDVI time seies in Alaska, where both greening and browning
trends have been previously observed. Hiare multimethod uncertainty of NDVI trersd
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is quantified through the application of the different trend estimation met@ougesults
indicatethat greening NDYtrendsin Alaskaare more spatially and temporally prevalent
than browning trendsWe also showthat cetected breakpoint;y NDVI trendstend to
coincidewith large fires. Overall, ouranalyses demonstratbat £asonal trend methods
need to be improvedgainst intelannual variability to quantify changing trends in
ecosystem productivity with higher accuracy.

Keywords: greening; browningbreakpoints seasonal cycleseasortrend model;boreal
forest; tundrafire; disturbancesAlaska

1. Introduction

Climate change will likely change biome distributions, ecosystem productivity and forest carbon
stocks[1]. Such ecosystem changes can be detected and quantified usingempdiral satellite
observations of the land surface. Different states of the lamthce can be measured by
satellitederived biophysical parametdid. The Normalized Difference Vegetation Index (NDY3]
is a remotelysensed measure of vegetation greenness and is related to structural properties of
plant® like leaf area index[4] and green biomass[5]d but also to properties of vegetation
productivityd like absorbed photosynthetic active radiation and foliar nitrd§e®]. As NDVI is
related to such a variety of vegetation properties, multiple explanations for a change in NDMI sigha
are possible. Nevertheless, the NDVI from AVHRR (Advanced Very High Resolution Radiometer)
satellite observations is the orfjobal vegetationdatasetvhich spans a time period tfreedecades
and thus allows the quantification and attribution of gstesn changes as a result of ecosystem
dynamics and varying climate conditior3ifferent ecosystem changes can be analyzed from NDVI
time series. For example, annuaéanor peakNDVI provides an integratedew on photosynthetic
activity [7], the seasonaNDVI amplitude is related to theomposition ofevergreen and deciduous
vegetation8] andthe length of the NDVI growing season can be related to phenological cH8hges
Thus, trend detection in NDVI time seriesin helpto identify and quantify recénchanges in
ecosystem properties from a local to global scale.

l ndeed, positive NDVI t rends [10f Ghese greenimggrényls o c
were reproduced by a Dynamic Global Vegetation Model (DGVM) and attributed to increasing
tempeatures[11]. The temperature increase drives an expansion of shrubs in the arctic Tundra, which
can be observed as greening trefid§. The initial greening trend stalled or reversed in large parts of
the boreal forest of Northern America. Negative NOVF ends ( Aibr own iwittlgfibe) ar
activity [13], increasing water vapour pressure defiéd] or to cooling spring temperatur¢$s].
Regional changes in summer precipitation changed greening NDVI trends to browning trends also in
Eurasian bora forests in the late 199046]. Nevertheless, browning NDVI trends are highly
discussed because they differ based on the used satellite fiatak#t Most studies used the GIMMS
(Global Inventory, Monitoring, and Modeling Studies) NDVI dataset whiels produced based on
4 km AVHRR satellite observatiorid9]. A comparison between the GIMMS dataset and a Canadian
dataset showweakerpostfire recoverytrendsand more negative NDVI trends in unburned forests in
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the GIMMS datasefi20]. Other studies edirm trend estimates based on the GIMMS dataset: Despite
of someregional differences in areas at very high latitudes with low vegetation cover, NDVI trends
from the GIMMS dataset agree with trends from MODIS data (Moderate Resolution Imaging
Spectrometgr[17,18,21] Trends from the GIMMS dataset compare well with trends computed from
Landsat imageryj22]. Changes in tree ring®3,24], temperaturenduced drought stress or insect
disturbance$25] were also observed in regions witfowning NDVI trendsin fact, impacts of recent
trends and variability of climate on ecosystems can be observed usifgioniDVI time series.

The estimation of trends depends on the lenggimporal and spatialresolution of the time
seriesthe quality of the measured dd26] and the used statistical method. Many studies calculated
trendsbasedon annual time steps from annually or seasonally aggregated values using regression
analysig[27]. However, the use of linear regression analysis for estimating trends in ND&/s¢ines
violates statistical assumptions such as the independence of observations, due to temporal autocorrelatic
or homogeneity{28]. Accordingly, the applicationf temporal autocorrelation structurgk3] or the
useof the nonparametric MarwKendall teston NDVI time series was suggested to circumvent the
limitations of regression analys|28,29] The annual aggregation of time series for trend analysis
reduces the temporal resolution and time series length. The time series length is criticamimicete
the significance of the trend in a statistical test. On the other hand, annual aggregation supports the
analysis of trends by eliminating the seasonal cycle in the NDVI time series. The seasonal cycle
introduces a seasonal correlation structuré haperdrend analysis. In this context, methods were
developed thamakeuse of the full resolution time series by estimating and subtracting the seasonal
cycle or by modelling the seasonal sigfid0i 34]. Overall, trend estimates from these different
methods result in similar general spatial patterns of the major regional greening and browning trends
but substantial differences in areas with weak tr¢8ls In short, all trend estimation methods embed
caveats that may be more or less critical depgnaimthe application.

NDVI trends are not always monotonic but can chadgpositive trend can change for example
into a negative one andce versaChanges between initial greening trends in the 1980s to browning
trends from the 1990s onwards in highitiale regions were detectédsedon the GIMMS NDVI
dataset[35]. NDVI trend change®f this kind can be either gradual or abruf@6]. For example,
increasingtemperatures in temperatdimited ecosystems can first support vegetation growth that
resultsin greeningNDVI trends while a further warming can induce drought stress that slightly turns
the initial greening to a browning trend (gradual chanQesturbance such adire eventscan reduce
the NDVI signal and initiate posire recovery that redis in a greening trend (abrupt change).
Recently statisticalmethods were developeohd applied to NDVI time serids detect such changes
(called breakpoints) in trendslethodslike BFAST (Breaks for additive seasonal and tref3f)33]
combine trend ®imation with approaches that account foeakpointsin the trend. However, the
reliability of such breakpoints in NDVI trends in high latitude regions is not yet assessed.

Breakpointsin NDVI time series are related to different effectsised bynter-annual variability.
Inter-annual variability of NDVI time series can be caused by (1) artefacts of a harmonized dataset
from different sensors, (2) meteorological distortions like clouds or snow cover and (3) environmental
processes like effects of yetaryear variations in weather conditions on plant activity or ecosystem
disturbanceslinterannual variabilityaffectsthe annual meang(g.,reduction of NDVI because of a
disturbance)seasondly (e.g.,longer growing season becausepaoblongedwarmer emperatures) as
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well as shortterm patterns €.9., unusual snowfall in a summer montbf) NDVI time series The
aggregation of NDVI time series to mean annual values intedghagss different effects which, despite
the loss in temporal detail, allows to define and quantify inteannual variability as the
standaredeviation of mean annual NDVI values.

The purpose of this study is to evaluate the performance of different methods for detecting trends
and trendbreakpointan long-term NDVI time seriesPrevious studies have uséddferenttrendand
breakpointanalysis methods on NDVI time series withaut with limited demonstation of its
methodological robustne§ss]. By evaluating the performance ssfichmethodsthis study will enable
a critical appresal of combinedtrendand breakpoint detectianethodgor their application on NDVI
time seriesThe methods chosen for evaluation differtbair used temporal resolution of NDVI time
series how seasonality is accounted for, and how the trend is @¢stimall approaches make use of
the same breakpoint detection algoritiB¥]. A factorial experiment was performed based on
s ur r o g artificgalo (N®VI tinfie series with different levels of trend magnitude, kaenual and
shortterm variability, seasnal amplitudes and a varying number of trend changes. We tested whether
the methods are able to-detect the prescribed trenide(, slope of the trend) and trend changes, (
number and timing of breakpoints) in therrogatdime series. Additionallymethods were applied to
real NDVI time series oflaskaand the plausibility of breakpoints was assessed in comparison to fire
events and drought periods. Our restdtgeal a cleadependence dhe method performance otthe
degree of inteannual vaability.

2. Data and Methods
2.1 GIMMS NDVBgDataset

The GIMMS NDVI3g dataset(third generation GIMMS NDVI)is a newly availabldong-term
NDVI dataset andwas derived from NOAA AVHRR data (National Oceanic and Atmospheric
Administration, Advanced Verjigh Resolution RadiometefB8,39] In comparison to a previous
version of the datas€tl9], it was improved for applications in hidgétitude regions through
calibrations to stable targets in these regi@&39] The dataset covers the period July 198til
December 2011 with 2weeklytemporal and 8 km spatial resolutidrhe quality ofAVHRR data is
affected from sensor changes between the NOAA satellites and orbital decay but it was shown that
trends based on thpFeviousNDVI dataset are not afféed by these artefadi4Q]. In the new GIMMS
NDVI3g dataset such effects were substantially red{@2@9]

We further preprocessed the GIMMS NDWh dataset for the specific requirements of our study.
The year 1981 was excluded from our analysis ireiotd analyse only years with full data coverage.
Especially in higHatitude regions NDVI observations are often affected from snow or cloud.cover
Such NDVI val ues arfie nftlea gnghlekdsMS MOVEBo datassi3s 9]

The reliabilty of such interpolated NDVI values under snow or cloud conditions is un&éar.
addressed this fadh two ways: (1) we assumed interpolated NDVI observations under snow
conditions are the best available estimate and we did not change these NDVIhalegmfter called
Afall 06 ob¢2NNDVavaluestnhsa)t. wer e f | wegegeactuded fsom the analygid
(hereinafter cal Welkeptifiterpolated olissnationsahatiwere sof additionally
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fl agged as Asnowonouglobseradtians tlsraugheut theagyrowing) seasen because
threeof thefour assessed trend methaused seasonal observations in order to be applicabteefat
detection $ection2.3). To excludepotentiallyremainingeffects of cloud or haze contaminaits; the
dataset wadurther aggregated to monthly temporal resolution using the monthly maximum value
which is a commonly applied procedyire].

2.2 BreakpointDetection Algorithm

The breakpoint detection algorithm as describe@ayand Perroi37] andZeileiset al.[42] was
used in this study. The breakpoint detection algorithm searches for a structural change in a regressiol
relationship,i.e., for varying regression parameters before and after the breakpoint. That means a
detected breakpoint spli time series in two segments. In a first step, the ordieast squares
moving sum (MOSUM) test is used to test for the existence of breakpoints in the time series. If the test
indicates significant structural changesdp.05), different numbers anddations of breakpoints are
iteratively tested in the second step. For this purpose, the optimal number of breakpoints is estimatec
by minimizing the Bayesian Information Criterion (BIC). The optimal position of a breakpoint is
estimated by minimizing theesidual sum of squares of this regres$giy2).

The breakpoint detection algorithm was used based on recommendations of Bai an{i3Ferhon
order to detect longerm trend changes, a minimum amount of observations between two breakpoints
was defird as 48 monthly observationsr (four years) and a maximum number wio allowed
breakpointsvere selected. Therefore, an optimized number of breakpoints betzegeandtwo can
be detected. This prevented that detected breakpoints are solely affegtm-toyyear changes and
supported the detection of only major breakpoints in the-terg trend. Further, detected time series
segments of a length smaller tregightyears were not considered as trends.

2.3 Methods fofTrend Estimation
2.3.1 TrendEstimationon Annual Aggregatedlime Series(MethodAAT)

Method AAT estimates trends and trend changes on annual aggregated time series. The season
NDVI time series is firsiaggregatedo annual valuesThe annual mean, growing season mean or
annual pealNDVI can be calculated to aggregate the seasonal NDVI time series to annual values.
Mean annual NDVI was usefbr the factorial experiment based on surrogate time s@&reakpoints
are estimated on the annual time series using the methBdi @nd Pewn [37]. For each derived
trend segment the slope of the trend is estimated by lineatskpaates regression of the annual values
against time. The significance of the trend in each time series segment is estimated by the
MannKendalltrend test appliedn the annual aggregatBidDVI values[43)].

2.3.2 TrendEstimation Basedn aSeaso-TrendModel (MethodSTM)

The trend and breakpoint estimation in method STM (setatsad model) is based dhe classical
additive decomposition modeind we followed th formulationused in BFAST[3344]. The full
temporalresolution NDVI time series is explained by a piecewise linear trend and a seasonal model in
a regression relationship. Thus, the NDVI vah a timet can be expressed as:
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where U, is the ntercept and} the slope of the trendy are the amplitudes anglthe phases ok
harmonic terms anWis the residual errdd4]. The frequency is the number of observation per year

(i.e., 12 for monthly observations). Parameteyslb are estimatedsing ordinary least squares (OLS)
regression whereby the derived time series segments are considered as categorical interaction tert
with the trend slop&b. The significance of the trend in each segment is estimated fraesadn the
interaction paramer of the regression between time series segmeritband

2.3.3 TrendEstimationon De-Seasonalized@ime Series

Methods MAC (mean annual cycle) and SSA (annual cycle based on singular spectrum analysis)
estimate trends on seascadjusted time series,hich is the fullresolution time series with removed
seasonality. The seasoraldjusted time seriea is the difference between the original NDVI time
seriesy and the seasonal cyde

a=y-s 2)

The slope of the trend; is estimated using OLS from the seaatadjusted time series:

& =a +ta+q 3)

Breakpoints are estimated dfquation (3) with different regression coefficients for each trend
segment. The significance of the trend in each time series segment is estimated with tee vkatin
trend test applied omé seasonaddjusted time series.

The seasonal cycle (or annual cydéEquation R)) is represented by a mean annual cycle (method
MAC) and by a modulated annual cycle (method SSA). The MAC is estimated as the mean seasonal
cycle from the seasonal cyslef all years. This implies that each year has the same amplitude and
frequency in the seasonal cycle. However, the concept of a fixed seasonal cycle is questionable as |
can change due to external forcif§d]. For example, phenological cycles might mha without
affecting the overall trend in a time series. Therefore, method SSA is based on a modulated annua
cycle with slightly varying frequenies and amplitude of the seasonal cyclamongstyears. The
modulated seasonal cycle was estimated usingea@iomensional singular spectrum analysis (SSA) as
described if45]. Singular spectrum analysis was previously used to separate resensd FAPAR
(fraction of observed photosynthetically active radiation) time series into low and high frequency and
seaonal time series componerf®2]. SSA decomposes in a first step a time series into different
subsignals with characteristic frequencies. In a second step, thgigndls with an annual frequency
were summed to build up the modulated annual cycle.

2.4. Simulation ofSurrogate Time Series

2.4.1 Estimation ofinter-rAnnual Variability, SeasonalitgndShort Term Variabilityfrom Observed
Time Series

An important aspect of the experimental desigisthe prescription of time series properties in the
surragyate (artificial) data thatwere observed in the NDVI datasets order to creatsurrogatetime
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seriesthat mimic the full range of possible real world ddtee mean, trend, intemnual variability,
seasonality and shetérm variability was estimatefr all observed NDVI time seriesf Alaskain a
simple stepwise approachHigure J:

(1) The mean oéachNDVI time series was calculated.

(2) In the second step, monthly values were averaged to annual values and the trend was calculate
according to rathod AAT but without conputing breakpoints. Hence, the slope of the annual NDVI
trend over the full length of the time series was estimated.

(3) To estimate the inteaannual variability, the standard deviation and range of the annual
anomalies were caltated.The mean of the time series and the derived trend component from step (2),
were subtracted from the annual values to derive the-temdved and meacentred annual values
(annual anomalies). If the trend slope was not significant (p > 0.05) tlomlynean was subtracted.

The standard deviation and the range of the annual anomalies were computed as measures for tf
inter-annual variability of the time series.

Figure 1. Estimated time series components &orandomselectedexample grid cell in
certral Alaska B8*3 grid cells averaged around central pitd6428N, 64. 762N). The

upper panel shows the originBlormalized Diference Vegetation IndexXNDPVI) time

series with its mean value (red line). The next panels show the estimated trend,
interamual variability (IAV) (.e., annual anomalies), seasonaliiye{ mean seasonal
cycle) and shorterm variability (remainder component), respectively. The sum of mean,
trend, IAV, seasonal and remainder component equals the original time series.
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(4) Inthe next step, the range of the seasonal cycle was estimated. The mean, the trend componer
and the annual anomalies were subtracted from the original time series to calculate a detrended
centered and for annual anomalies adjusted time series. Basbis dme series the seasonal cycle
was estimated as the mean seasonal cycle and the range was computed.

(5) In the last step, the standard deviation and the range of thdesinodinomalies were computed.
Shortterm anomalies were computed by subtracting mean, the trend component, the annual
anomalies and the mean seasonal cycle from the original time series. The result is the remainder tim¢
series component. The standard deviation of the remainder time series component iS a measure ¢
shortterm varidility.

All the described time series properties were estimated on the full NDVI dataset including all
observationsife., including snowaffected observations). Hence, we could generate a wide range of
gap free surrogate time series. This procedure \waked for all NDVI time series of Alaska to
estimate spatial and statistical distributions of the mean NDVI, the overall trend slope, tHa@mutair
variability as the standard deviation of the annual anomalies, the range of the seasonal cycle and th
short-term variability as the standard deviation of the remainder time series (Figure 2).

Figure 2. Spatial and statistical distributions of NDVI time series propertiddaskaand

time series components of the simulated NDVI time series. The left slameifrom top

to bottommapsof the following time series properties: mean annual NDVI, slope of the
annual trend ( @NDVI / y e ar apnuabvarability diav)drandes vi at i
of the seasonal cycle (seas), and the standard deviation reithéender component (rem).

The middle panel shows the statistical distribution of these properties, respediively

right panel showsxamples othe respectiveurrogatdime series components.
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Figure 2. Cont
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2.4.2 Surrogatelime SeriesandFactaial Experiment

Surrogatetime serieswere simulated based on addition of different time series components that
were estimated from observed time series properties:

Ye=m+T +1 +S +R (4)
wheremis the meanT is the trend component valuethe interannual variabilitycomponent values
the seasonal component aRdhe remainder component at time steps the estimated values of
and| have a annual temporal resolution, theyere repeated for eachme step t of the same year
(forming a step function) to create teenulated monthly time serie$he mean was taken from the
mean of the observed distribution of average NDNV& selected only one mean value for all surrogate
time series because differences in mean are expressed by the irdétbepinear regressiomodels
andwill not affect the trend estimatéor each of the other components, different levels were used to
createsurrogatdime series:

(1) Trend: Time series with strong and weak positive, strong and weak negative and without a trend
were createdDifferent magnitudes of trend slopes were derived from the 1% percentillee
observed distribution of trend slopes (strong decrease), 25% percentile (weak decrease), median (n
trend), 75% percentile (weak increase) and 99% percentile (strong increagetitively.

(2) Interannual variability: Time series with low, medium and high hatenual variability were
created based on normdibktributed random values with zero mean and a standard deviation according
to the 1%, 50% and 99% percentiles of theesbed distribution of the standard deviation of annual
anomalies. Values outside the observed ranges ofantaral variability were set to the minimum or
maximum of the observed distribution, respectively.

(3) Seasonality: Seasonal cycles based on andrdac model with low, medium, and high
amplitudes were created according to the observed 1%, 50% and 99% percentiles of the distribution of
seasonal ranges.



Remote Seng2013 5 2122

(4) Shortterm variability: Different levels of sheterm variability were created based on ndrma
distributed random values with zero mean and a standard deviation according to the 1%, 50% and 99¥%
percentiles of the observed distribution of the standard devidti@mainder time series values.

Figure 3. Examples of simulated time seriesth different components of trend, 1AV,
seasonal and remainder referring to the simulated trend;ainteral variability, seasonal

and remainder time series components, respectively. The sum of these time series
components gives the total simulated surrogate NDwé series (upper panel). Left: time
series with one breakpoint and gradual change (e.g., caused by gradual changes in
environmental conditions), no trend in the first segment and decreasing trend in the second
segment, medium intannual variability, medm seasonality and medium shtgtm
variability. Right: Time series with one breakpoint and abrupt change (e.g., caused by a
few years with exceptional favourable growing conditions), increasing trend in first
segment and decreasing trend in second segrh@h interannual variability, medium
seasonality and low shet¢rm variability.

To introduce trend changes in thems@rogatetime series, trend components with one and two
breakpoints as well as gradual or abrupt changes were created. In casdofakpoint, the break was
introduced 120 months after the beginning of the time series and in case of two breakpoints after 107
and 215 months, respectively. That means one time series canreteghreetime series segments
with a length of 360 mdhs (30 years) in case of no breakpoint, 120 and 241 months in case of one
breakpoint, respectively, and 107, 107 and 146 months in case of two breakpoints, respectively. The
type of trend change was considered as an additional factor, whereby gradgsd ehdnabrupt
changes were distinguished. A gradual change is a change between two trend segments, for which th
last value of the trend component in the first segment equals the first value of the following trend



