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Abstract: Changing trends in ecosystem productivity can be quantified using satellite 

observations of Normalized Difference Vegetation Index (NDVI). However, the estimation 

of trends from NDVI time series differs substantially depending on analyzed satellite 

dataset, the corresponding spatiotemporal resolution, and the applied statistical method. 

Here we compare the performance of a wide range of trend estimation methods and 

demonstrate that performance decreases with increasing inter-annual variability in the 

NDVI time series. Trend slope estimates based on annual aggregated time series or based 

on a seasonal-trend model show better performances than methods that remove the 

seasonal cycle of the time series. A breakpoint detection analysis reveals that an 

overestimation of breakpoints in NDVI trends can result in wrong or even opposite trend 

estimates. Based on our results, we give practical recommendations for the application of 

trend methods on long-term NDVI time series. Particularly, we apply and compare 

different methods on NDVI time series in Alaska, where both greening and browning 

trends have been previously observed. Here, the multi-method uncertainty of NDVI trends 
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is quantified through the application of the different trend estimation methods. Our results 

indicate that greening NDVI trends in Alaska are more spatially and temporally prevalent 

than browning trends. We also show that detected breakpoints in NDVI trends tend to 

coincide with large fires. Overall, our analyses demonstrate that seasonal trend methods 

need to be improved against inter-annual variability to quantify changing trends in 

ecosystem productivity with higher accuracy. 

Keywords: greening; browning; breakpoints; seasonal cycle; season-trend model; boreal 

forest; tundra; fire; disturbances; Alaska 

 

1. Introduction  

Climate change will likely change biome distributions, ecosystem productivity and forest carbon 

stocks [1]. Such ecosystem changes can be detected and quantified using multi-temporal satellite 

observations of the land surface. Different states of the land surface can be measured by  

satellite-derived biophysical parameters [2]. The Normalized Difference Vegetation Index (NDVI) [3] 

is a remotely-sensed measure of vegetation greenness and is related to structural properties of  

plantsðlike leaf area index [4] and green biomass [5]ðbut also to properties of vegetation 

productivityðlike absorbed photosynthetic active radiation and foliar nitrogen [5-6]. As NDVI is 

related to such a variety of vegetation properties, multiple explanations for a change in NDVI signals 

are possible. Nevertheless, the NDVI from AVHRR (Advanced Very High Resolution Radiometer) 

satellite observations is the only global vegetation dataset which spans a time period of three decades 

and thus allows the quantification and attribution of ecosystem changes as a result of ecosystem 

dynamics and varying climate conditions. Different ecosystem changes can be analyzed from NDVI 

time series. For example, annual mean or peak NDVI  provides an integrated view on photosynthetic 

activity [7], the seasonal NDVI amplitude is related to the composition of evergreen and deciduous 

vegetation [8] and the length of the NDVI growing season can be related to phenological changes [9]. 

Thus, trend detection in NDVI time series can help to identify and quantify recent changes in 

ecosystem properties from a local to global scale. 

Indeed, positive NDVI trends (ñgreeningò) occur in the high latitudes [10]. These greening trends 

were reproduced by a Dynamic Global Vegetation Model (DGVM) and attributed to increasing 

temperatures [11]. The temperature increase drives an expansion of shrubs in the arctic Tundra, which 

can be observed as greening trends [12]. The initial greening trend stalled or reversed in large parts of 

the boreal forest of Northern America. Negative NDVI trends (ñbrowningò) are associated with fire 

activity [13], increasing water vapour pressure deficit [14] or to cooling spring temperatures [15]. 

Regional changes in summer precipitation changed greening NDVI trends to browning trends also in 

Eurasian boreal forests in the late 1990s [16]. Nevertheless, browning NDVI trends are highly 

discussed because they differ based on the used satellite dataset [17,18]. Most studies used the GIMMS 

(Global Inventory, Monitoring, and Modeling Studies) NDVI dataset which was produced based on 

4 km AVHRR satellite observations [19]. A comparison between the GIMMS dataset and a Canadian 

dataset shows weaker post-fire recovery trends and more negative NDVI trends in unburned forests in 
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the GIMMS dataset [20]. Other studies confirm trend estimates based on the GIMMS dataset: Despite 

of some regional differences in areas at very high latitudes with low vegetation cover, NDVI trends 

from the GIMMS dataset agree with trends from MODIS data (Moderate Resolution Imaging 

Spectrometer) [17,18,21]. Trends from the GIMMS dataset compare well with trends computed from 

Landsat imagery [22]. Changes in tree rings [23,24], temperature-induced drought stress or insect 

disturbances [25] were also observed in regions with browning NDVI trends. In fact, impacts of recent 

trends and variability of climate on ecosystems can be observed using long-term NDVI time series. 

The estimation of trends depends on the length, temporal and spatial resolution of the time 

series, the quality of the measured data [26] and the used statistical method. Many studies calculated 

trends based on annual time steps from annually or seasonally aggregated values using regression 

analysis [27]. However, the use of linear regression analysis for estimating trends in NDVI time series 

violates statistical assumptions such as the independence of observations, due to temporal autocorrelation 

or homogeneity [28]. Accordingly, the application of temporal autocorrelation structures [13] or the 

use of the non-parametric Mann-Kendall test on NDVI time series was suggested to circumvent the 

limitations of regression analysis [28,29]. The annual aggregation of time series for trend analysis 

reduces the temporal resolution and time series length. The time series length is critical in determining 

the significance of the trend in a statistical test. On the other hand, annual aggregation supports the 

analysis of trends by eliminating the seasonal cycle in the NDVI time series. The seasonal cycle 

introduces a seasonal correlation structure that hampers trend analysis. In this context, methods were 

developed that make use of the full resolution time series by estimating and subtracting the seasonal 

cycle or by modelling the seasonal signal [30ï34]. Overall, trend estimates from these different 

methods result in similar general spatial patterns of the major regional greening and browning trends 

but substantial differences in areas with weak trends [31]. In short, all trend estimation methods embed 

caveats that may be more or less critical depending on the application. 

NDVI trends are not always monotonic but can change. A positive trend can change for example 

into a negative one and vice versa. Changes between initial greening trends in the 1980s to browning 

trends from the 1990s onwards in high latitude regions were detected based on the GIMMS NDVI 

dataset [35]. NDVI trend changes of this kind can be either gradual or abrupt [36]. For example, 

increasing temperatures in temperature-limited ecosystems can first support vegetation growth that 

results in greening NDVI trends, while a further warming can induce drought stress that slightly turns 

the initial greening to a browning trend (gradual change). Disturbances such as fire events can reduce 

the NDVI signal and initiate post-fire recovery that results in a greening trend (abrupt change). 

Recently, statistical methods were developed and applied to NDVI time series to detect such changes 

(called breakpoints) in trends. Methods like BFAST (Breaks for additive seasonal and trend) [30,33] 

combine trend estimation with approaches that account for breakpoints in the trend. However, the 

reliability of such breakpoints in NDVI trends in high latitude regions is not yet assessed.  

Breakpoints in NDVI time series are related to different effects caused by inter-annual variability. 

Inter-annual variability of NDVI time series can be caused by (1) artefacts of a harmonized dataset 

from different sensors, (2) meteorological distortions like clouds or snow cover and (3) environmental 

processes like effects of year-to-year variations in weather conditions on plant activity or ecosystem 

disturbances. Inter-annual variability affects the annual mean (e.g., reduction of NDVI because of a 

disturbance), seasonality (e.g., longer growing season because of prolonged warmer temperatures) as 
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well as short-term patterns (e.g., unusual snowfall in a summer month) of NDVI time series. The 

aggregation of NDVI time series to mean annual values integrates these different effects which, despite 

the loss in temporal detail, allow us to define and quantify inter-annual variability as the  

standard-deviation of mean annual NDVI values.  

The purpose of this study is to evaluate the performance of different methods for detecting trends 

and trend breakpoints in long-term NDVI time series. Previous studies have used different trend and 

breakpoint analysis methods on NDVI time series without or with limited demonstration of its 

methodological robustness [15]. By evaluating the performance of such methods, this study will enable 

a critical appraisal of combined trend and breakpoint detection methods for their application on NDVI 

time series. The methods chosen for evaluation differ on their used temporal resolution of NDVI time 

series, how seasonality is accounted for, and how the trend is estimated. All approaches make use of 

the same breakpoint detection algorithm [37]. A factorial experiment was performed based on 

surrogate (or ñartificialò) NDVI time series with different levels of trend magnitude, inter-annual and 

short-term variability, seasonal amplitudes and a varying number of trend changes. We tested whether 

the methods are able to re-detect the prescribed trend (i.e., slope of the trend) and trend changes (i.e., 

number and timing of breakpoints) in the surrogate time series. Additionally, methods were applied to 

real NDVI time series of Alaska and the plausibility of breakpoints was assessed in comparison to fire 

events and drought periods. Our results reveal a clear dependence of the methodôs performance on the 

degree of inter-annual variability.  

2. Data and Methods 

2.1. GIMMS NDVI3g Dataset 

The GIMMS NDVI3g dataset (third generation GIMMS NDVI) is a newly available long-term 

NDVI dataset and was derived from NOAA AVHRR data (National Oceanic and Atmospheric 

Administration, Advanced Very High Resolution Radiometer) [38,39]. In comparison to a previous 

version of the dataset [19], it was improved for applications in high-latitude regions through 

calibrations to stable targets in these regions [38,39]. The dataset covers the period July 1981 until 

December 2011 with a 2-weekly temporal and 8 km spatial resolution. The quality of AVHRR data is 

affected from sensor changes between the NOAA satellites and orbital decay but it was shown that 

trends based on the previous NDVI dataset are not affected by these artefacts [40]. In the new GIMMS 

NDVI3g dataset such effects were substantially reduced [38,39]. 

We further pre-processed the GIMMS NDVI3g dataset for the specific requirements of our study. 

The year 1981 was excluded from our analysis in order to analyse only years with full data coverage. 

Especially in high-latitude regions NDVI observations are often affected from snow or cloud cover. 

Such NDVI values are flagged as ñsnowò or ñinterpolatedò in the GIMMS NDVI3g dataset [38,39]. 

The reliability of such interpolated NDVI values under snow or cloud conditions is unclear. We 

addressed this fact in two ways: (1) we assumed interpolated NDVI observations under snow 

conditions are the best available estimate and we did not change these NDVI values (hereinafter called 

ñallò observations). (2) NDVI values that were flagged as ñsnowò were excluded from the analysis 

(hereinafter called ñexò observations). We kept interpolated observations that were not additionally 
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flagged as ñsnowò to make sure to use enough observations throughout the growing season because 

three of the four assessed trend methods need seasonal observations in order to be applicable for trend 

detection (Section 2.3). To exclude potentially remaining effects of cloud or haze contaminations, the 

dataset was further aggregated to monthly temporal resolution using the monthly maximum value 

which is a commonly applied procedure [41]. 

2.2. Breakpoint Detection Algorithm 

The breakpoint detection algorithm as described by Bai and Perron [37] and Zeileis et al. [42] was 

used in this study. The breakpoint detection algorithm searches for a structural change in a regression 

relationship, i.e., for varying regression parameters before and after the breakpoint. That means a 

detected breakpoint splits a time series in two segments. In a first step, the ordinary-least squares 

moving sum (MOSUM) test is used to test for the existence of breakpoints in the time series. If the test 

indicates significant structural changes (p Ò 0.05), different numbers and locations of breakpoints are 

iteratively tested in the second step. For this purpose, the optimal number of breakpoints is estimated 

by minimizing the Bayesian Information Criterion (BIC). The optimal position of a breakpoint is 

estimated by minimizing the residual sum of squares of this regression [37,42].  

The breakpoint detection algorithm was used based on recommendations of Bai and Perron [37]. In 

order to detect long-term trend changes, a minimum amount of observations between two breakpoints 

was defined as 48 monthly observations (or four years) and a maximum number of two allowed 

breakpoints were selected. Therefore, an optimized number of breakpoints between zero and two can 

be detected. This prevented that detected breakpoints are solely affected by year-to-year changes and 

supported the detection of only major breakpoints in the long-term trend. Further, detected time series 

segments of a length smaller than eight years were not considered as trends.   

2.3. Methods for Trend Estimation 

2.3.1. Trend Estimation on Annual Aggregated Time Series (Method AAT) 

Method AAT estimates trends and trend changes on annual aggregated time series. The seasonal 

NDVI time series is first aggregated to annual values. The annual mean, growing season mean or 

annual peak NDVI can be calculated to aggregate the seasonal NDVI time series to annual values. 

Mean annual NDVI was used for the factorial experiment based on surrogate time series. Breakpoints 

are estimated on the annual time series using the method of Bai and Perron [37]. For each derived 

trend segment the slope of the trend is estimated by linear least-squares regression of the annual values 

against time. The significance of the trend in each time series segment is estimated by the  

Mann-Kendall trend test applied on the annual aggregated NDVI values [43].  

2.3.2. Trend Estimation Based on a Season-Trend Model (Method STM) 

The trend and breakpoint estimation in method STM (season-trend model) is based on the classical 

additive decomposition model and we followed the formulation used in BFAST [33,44]. The full 

temporal-resolution NDVI time series is explained by a piecewise linear trend and a seasonal model in 

a regression relationship. Thus, the NDVI value y at a time t can be expressed as: 
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where Ŭ1 is the intercept and Ŭ2 the slope of the trend, ɔ are the amplitudes and ŭ the phases of k 

harmonic terms and Ů is the residual error [44]. The frequency f is the number of observation per year 

(i.e., 12 for monthly observations). Parameters Ŭ1, Ŭ2 are estimated using ordinary least squares (OLS) 

regression whereby the derived time series segments are considered as categorical interaction term 

with the trend slope Ŭ2. The significance of the trend in each segment is estimated from a t-test on the 

interaction parameter of the regression between time series segment and Ŭ2.  

2.3.3. Trend Estimation on De-Seasonalized Time Series 

Methods MAC (mean annual cycle) and SSA (annual cycle based on singular spectrum analysis) 

estimate trends on seasonal-adjusted time series, which is the full-resolution time series with removed 

seasonality. The seasonal-adjusted time series a is the difference between the original NDVI time 

series y and the seasonal cycle s: 

sya -=  (2)  

The slope of the trend Ŭ2 is estimated using OLS from the seasonal-adjusted time series: 

tt ta eaa ++= 21  (3)  

Breakpoints are estimated on Equation (3) with different regression coefficients for each trend 

segment. The significance of the trend in each time series segment is estimated with the Mann-Kendall 

trend test applied on the seasonal-adjusted time series. 

The seasonal cycle (or annual cycle) s (Equation (2)) is represented by a mean annual cycle (method 

MAC) and by a modulated annual cycle (method SSA). The MAC is estimated as the mean seasonal 

cycle from the seasonal cycles of all years. This implies that each year has the same amplitude and 

frequency in the seasonal cycle. However, the concept of a fixed seasonal cycle is questionable as it 

can change due to external forcing [34]. For example, phenological cycles might change without 

affecting the overall trend in a time series. Therefore, method SSA is based on a modulated annual 

cycle with slightly varying frequencies and amplitudes of the seasonal cycle amongst years. The 

modulated seasonal cycle was estimated using a one-dimensional singular spectrum analysis (SSA) as 

described in [45]. Singular spectrum analysis was previously used to separate remotely-sensed FAPAR 

(fraction of observed photosynthetically active radiation) time series into low and high frequency and 

seasonal time series components [32]. SSA decomposes in a first step a time series into different  

sub-signals with characteristic frequencies. In a second step, the sub-signals with an annual frequency 

were summed to build up the modulated annual cycle.  

2.4. Simulation of Surrogate Time Series 

2.4.1. Estimation of Inter-Annual Variability, Seasonality and Short-Term Variability from Observed 

Time Series 

An important aspect of the experimental design was the prescription of time series properties in the 

surrogate (artificial) data that were observed in the NDVI datasets. In order to create surrogate time 



Remote Sens. 2013, 5 2119 

 

 

series that mimic the full range of possible real world data, the mean, trend, inter-annual variability, 

seasonality and short-term variability was estimated for all observed NDVI time series of Alaska in a 

simple step-wise approach (Figure 1):  

(1) The mean of each NDVI time series was calculated.  

(2) In the second step, monthly values were averaged to annual values and the trend was calculated 

according to method AAT but without computing breakpoints. Hence, the slope of the annual NDVI 

trend over the full length of the time series was estimated.  

(3) To estimate the inter-annual variability, the standard deviation and range of the annual 

anomalies were calculated. The mean of the time series and the derived trend component from step (2), 

were subtracted from the annual values to derive the trend-removed and mean-centred annual values 

(annual anomalies). If the trend slope was not significant (p > 0.05), only the mean was subtracted. 

The standard deviation and the range of the annual anomalies were computed as measures for the  

inter-annual variability of the time series.  

Figure 1. Estimated time series components for a random-selected example grid cell in 

central Alaska (3*3 grid cells averaged around central pixel 146.424°W, 64. 762°N). The 

upper panel shows the original Normalized Difference Vegetation Index (NDVI) time 

series with its mean value (red line). The next panels show the estimated trend,  

inter-annual variability (IAV) (i.e., annual anomalies), seasonality (i.e., mean seasonal 

cycle) and short-term variability (remainder component), respectively. The sum of mean, 

trend, IAV, seasonal and remainder component equals the original time series. 
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(4) In the next step, the range of the seasonal cycle was estimated. The mean, the trend component 

and the annual anomalies were subtracted from the original time series to calculate a detrended, 

centered and for annual anomalies adjusted time series. Based on this time series the seasonal cycle 

was estimated as the mean seasonal cycle and the range was computed. 

(5) In the last step, the standard deviation and the range of the short-term anomalies were computed. 

Short-term anomalies were computed by subtracting the mean, the trend component, the annual 

anomalies and the mean seasonal cycle from the original time series. The result is the remainder time 

series component. The standard deviation of the remainder time series component is a measure of 

short-term variability.  

All the described time series properties were estimated on the full NDVI dataset including all 

observations (i.e., including snow-affected observations). Hence, we could generate a wide range of 

gap free surrogate time series. This procedure was applied for all NDVI time series of Alaska to 

estimate spatial and statistical distributions of the mean NDVI, the overall trend slope, the inter-annual 

variability as the standard deviation of the annual anomalies, the range of the seasonal cycle and the 

short-term variability as the standard deviation of the remainder time series (Figure 2).  

Figure 2. Spatial and statistical distributions of NDVI time series properties in Alaska and 

time series components of the simulated NDVI time series. The left panel shows from top 

to bottom maps of the following time series properties: mean annual NDVI, slope of the 

annual trend (ȹNDVI/year), standard deviation of the inter-annual variability (iav), range 

of the seasonal cycle (seas), and the standard deviation of the remainder component (rem). 

The middle panel shows the statistical distribution of these properties, respectively. The 

right panel shows examples of the respective surrogate time series components. 
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Figure 2. Cont. 

 

2.4.2. Surrogate Time Series and Factorial Experiment 

Surrogate time series were simulated based on addition of different time series components that 

were estimated from observed time series properties: 

ttttt RSITmy ++++=  (4) 

where m is the mean, T is the trend component value, I the inter-annual variability component value, S 

the seasonal component and R the remainder component at time step t. As the estimated values of T 

and I have an annual temporal resolution, they were repeated for each time step t of the same year 

(forming a step function) to create the simulated monthly time series. The mean was taken from the 

mean of the observed distribution of average NDVI. We selected only one mean value for all surrogate 

time series because differences in mean are expressed by the intercept of the linear regression models 

and will not affect the trend estimate. For each of the other components, different levels were used to 

create surrogate time series:  

(1) Trend: Time series with strong and weak positive, strong and weak negative and without a trend 

were created. Different magnitudes of trend slopes were derived from the 1% percentile of the 

observed distribution of trend slopes (strong decrease), 25% percentile (weak decrease), median (no 

trend), 75% percentile (weak increase) and 99% percentile (strong increase), respectively. 

(2) Inter-annual variability: Time series with low, medium and high inter-annual variability were 

created based on normal-distributed random values with zero mean and a standard deviation according 

to the 1%, 50% and 99% percentiles of the observed distribution of the standard deviation of annual 

anomalies. Values outside the observed ranges of inter-annual variability were set to the minimum or 

maximum of the observed distribution, respectively. 

(3) Seasonality: Seasonal cycles based on a harmonic model with low, medium, and high 

amplitudes were created according to the observed 1%, 50% and 99% percentiles of the distribution of 

seasonal ranges.  
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(4) Short-term variability: Different levels of short-term variability were created based on normal-

distributed random values with zero mean and a standard deviation according to the 1%, 50% and 99% 

percentiles of the observed distribution of the standard deviation of remainder time series values. 

Figure 3. Examples of simulated time series with different components of trend, IAV, 

seasonal and remainder referring to the simulated trend, inter-annual variability, seasonal 

and remainder time series components, respectively. The sum of these time series 

components gives the total simulated surrogate NDVI time series (upper panel). Left: time 

series with one breakpoint and gradual change (e.g., caused by gradual changes in 

environmental conditions), no trend in the first segment and decreasing trend in the second 

segment, medium inter-annual variability, medium seasonality and medium short-term 

variability. Right: Time series with one breakpoint and abrupt change (e.g., caused by a 

few years with exceptional favourable growing conditions), increasing trend in first 

segment and decreasing trend in second segment, high inter-annual variability, medium 

seasonality and low short-term variability.  

 

To introduce trend changes in these surrogate time series, trend components with one and two 

breakpoints as well as gradual or abrupt changes were created. In case of one breakpoint, the break was 

introduced 120 months after the beginning of the time series and in case of two breakpoints after 107 

and 215 months, respectively. That means one time series can have one to three time series segments 

with a length of 360 months (30 years) in case of no breakpoint, 120 and 241 months in case of one 

breakpoint, respectively, and 107, 107 and 146 months in case of two breakpoints, respectively. The 

type of trend change was considered as an additional factor, whereby gradual change and abrupt 

changes were distinguished. A gradual change is a change between two trend segments, for which the 

last value of the trend component in the first segment equals the first value of the following trend 


