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Abstract: The analysis of a series of five normalized difference vegetation index (NDVI) 

images produced information about a Labrador (Canada) portion of the tundra-taiga 

interface. The twenty-five year observation period ranges from 1983 to 2008. The series 

composed of Landsat, SPOT and ASTER images, provided insight into regional scale 

characteristics of the tundra-taiga interface that is usually monitored from coarse resolution 

images. The image set was analyzed by considering an ordinal classification of the NDVI 

to account for the cumulative effect of differences of near-infrared spectral resolutions, the 

temperature anomalies, and atmospheric conditions. An increasing trend of the median 

values in the low, intermediate and high NDVI classes is clearly marked while accounting 

for variations attributed to cross-sensor radiometry, phenology and atmospheric 

disturbances. An encroachment of the forest on the tundra for the whole study area was 

estimated at 0 to 60 m, depending on the period of observation, as calculated by the 

difference between the median retreat and advance of an estimated location of the tree line. 

In small sections, advances and retreats of up to 320 m are reported for the most recent 

four- and seven-year periods of observations.  

Keywords: ASTER; Canada; Labrador; Landsat; multisensor; multitemporal; Normalized 

Difference Vegetation Index (NDVI); Subarctic; tree line; tundra-taiga interface; SPOT  
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1. Background and Rationale 

Vegetation cover mapping and monitoring are essential components of knowledge acquisition on the 

impact of climate changes on Arctic tundra ecosystems [1], part of which is the tundra-taiga interface 

(TTI), or tree line. Satellite and airborne Normalized Difference Vegetation Index (NDVI) images 

provide green biomass distribution information in proximity to, and north of, the tree line [2–6]. 

Increased NDVI values for the tundra are mainly related to shrub growth especially with low leaf area 

indices [7] or fractional area coverage below 40% [8]. Vegetation indices and thermal images are also 

valuable inputs to climate change-related atmosphere constituent and air-temperature models [9–15].  

Multitemporal vegetation index images of northern regions can effectively be built in continental 

scale mosaics [13,16–19] or regional scale time series [20]. However, baseline vegetation maps must 

consider variable scales, or spatial resolutions, in order to benefit from multi-disciplinary data 

integration that helps better understand ecosystems. Continental scale Advanced Very High Resolution 

Radiometer (AVHRR) image-based NDVI values may be calibrated with other, higher spatial 

resolution images, such as those obtained from Landsat, the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and the Satellite pour l’Observation de la Terre (SPOT) [21–23]. The 

sensor’s matching passbands allow consistent red and near-infrared spectral information to be 

extracted [19,24–26], to which the NDVI is based [27].  

The relationships of vegetation distribution with environmental factors such as soil moisture [5], 

permafrost depth [3], seasonal temperature [10,13,14,28,29], atmospheric carbon dioxide [9], 

geomorphology [6] and land cover [30] are investigated from a wide range of spatial resolutions. 

Generally, for these studies, the vegetation data come from high temporal resolution (daily to weekly) 

and coarse spatial resolution (1 km to 1 deg.) AVHRR images, while synchronous environmental data 

are collected from medium to high spatial resolution images, maps or field data. On the other hand, 

higher spatial resolution images provide information necessary to understand structural components of 

the TTI, such as tree islands, functional plant type heterogeneity and forest annual encroachment rate, 

which is of the order of a few to tens of meters [1,31–33].  

Regional scale investigations in Northern Canada [30], Northern Alaska [20,28,34–36], 

Nunavut [22,37], Manitoba [38] and Siberia [39,40] outline the importance of medium (about 30 m) to 

high (about 4 m) spatial resolution images for vegetation distribution and related climate change 

studies; while recent work by [41] shows the benefit of cross-sensor data-based monitoring for  

socio-ecological studies in the Arctic. However, regional scale vegetation distribution and time series 

are lacking for the TTI [42]. 

2. Objective 

This paper presents the changes observed in a TTI from a multisensor NDVI series. The 

spatiotemporal variations are assessed through the comparison of five multispectral medium resolution 

images recorded between 1983 and 2008 for an area of the Mealy Mountains, Labrador, Canada. The 

analyses aim at producing NDVI images that show the green biomass distribution and changes, while 

considering the impact of atmospheric and cross-sensor inconsistencies. In addition, the multitemporal 
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dataset help describe the spatial characteristics of the areas where the NDVI categories stayed the same 

over time. Finally, the classified NDVI images are used to derive an estimated tree line position. 

3. Study Area and Data 

The study area is located in the Mealy Mountains of Labrador, Canada, approximately 30 km off 

the south shore of Lake Melville and 100 km east-northeast of Happy Valley-Goose Bay (Figure 1). 

The study area covered by the image series is square-shaped, centered at 53.60°N and 58.83°W and is 

bound by the (373,440 mE, 5,935,343 mN) to (383,670 mE, 5,945,573 mN) coordinates of the 

Universal Transverse Mercator (UTM) Zone 21-North. 

Figure 1. Location map of the study site in the Mealy Mountains, Labrador, Canada. 

 

A southwest-northeast oriented glacial valley shaped by the Laurentian Ice Sheet [43,44] dominates 

the landscape. Southeast facing slopes and a maximum terrain elevation of about 1,100 m occupy the 

northwest portion of the study area, while the lowest elevation at the valley floor is about 500 m. 

The Mealy Mountains is part of the most southerly representation of the High Subarctic Tundra 

ecoregion [45]. A combination of factors such as low to moderate amounts of annual precipitation, a 

short growing season, cold temperatures throughout the year and acidic soils control this isolated portion 

of the ecoregion. A black spruce (Picea mariana Mill. B.S.P.)-dominated open canopy occupies the 

lower valley slopes and river terraces. The forest also consists of white spruce (Picea glauca [Moench.] 

Voss), balsam fir (Abies balsamea L. Mill), and larch (Larix laricina [DuRoi] K). Dwarf birch (Betula 

grandulosa [Minchx.]) and mountain alder (Alnus crispa [DuRoi]) cover most of the understory and 

forest gaps. Dwarf birch, sparse tree islands and krummoltz patches grow at higher elevations. Lichens 

(Cladonia spp., Cladina spp., and Cetraria spp.) are found throughout the forest understory, as well as at 

higher elevations where low lying evergreen shrubs and rocky ground also occur [46,47]. 

The TTI is interchangeably named tundra-taiga boundary, ecotone, zone or interface [48,49]. For 

this study, the TTI is defined as the transition zone between tundra-dominated and taiga-dominated 

land covers. 

The study area is of interest to the inter-disciplinary project ‘Present processes, past changes, 

spatiotemporal dynamics (PPS) Arctic Canada’, an International Polar Year initiative. In this context, 
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the aim of the remote sensing application is to contribute to a research effort in studying the effects of 

climate change on the tree line at Arctic sites around the globe. 

Field data were collected in July, 2008 for the research program on the ‘Impact of climate change 

on alpine habitats and treeline’ [50], which is part of the PPS Arctic Canada initiative. The protocol for 

low Arctic or semi-Arctic tundra sites [1] was applied where data were collected in a cluster of five  

1-m
2
 quadrats distributed within 63 randomly-designated 30 × 30 m

2
 sampling areas. Four of the five 

quadrats are located in each cardinal direction at a distance of 10 m from the center of the sampling 

areas, while the fifth plot is randomly selected [1]. The percent cover for the five quadrats was 

compiled to reveal a dominating land cover in each sampled area, where photosynthesis producing tree 

species (spruce, fir, alder or birch) at least 2.5-m tall were interpreted as taiga, while moss, shrubs or 

rock were categorized as tundra. The UTM Zone 21-North geographic coordinates of the center of the 

30 × 30 m
2
 areas allowed locating them on the georeferenced remote sensing images (see Section 6.1.1). 

The remote sensing image collection is aimed to include matching medium spatial resolution data 

from the red and near-infrared spectral bands, from the longest possible multisensor time series, 

recorded during the vegetation-growing season. These bands are essential to capture the vegetation 

spectral signature required for computing the NDVI for each year (t) (Equation (1)) [51,52]. Also, the 

image selection was based on the combination of best possible synchronicity, or near anniversary date, 

and lowest cloud cover as catalogued by [53,54] and as inspected visually, respectively.  

NDVI t = (near infrared t − red t)/(near infrared t + red t) (1) 

The series includes five images recorded from different earth observation satellite platforms over a 

25-year period. The acquisition of the Landsat (L)-4 Multispectral Scanner (MSS), L-5 Thematic 

Mapper (TM) and L-7 Enhanced TM+ (ETM+) images of 1983, 1992 and 2001, respectively, was 

followed by a 2005 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

image and a 2008 SPOT-5 High Resolution Visible and Infrared (HRVIR) image. The different 

sensors were used because of a lack of imagery from common sensors. From the earliest image 

available for the study area, which was recorded in 1983, the image set was gathered to represent each 

decade, until 2008, when field data was collected. The ETM+ orbital path missed covering of a small 

portion, approximately 10%, in the northwest corner of the study area where some of the highest 

terrain elevations occur.  

All images but the MSS, which is 6-bit, are in 8-bit quantization level. The spatial resolution is 

another varying figure of merit across the multisensor image set as it ranges from 80 m with MSS to 

10 m with HRVIR (Table 1) [26,55,56]. 

Table 1. Red and near-infrared spectral band ranges, and nominal spatial resolution of images. 

Image Red  Near-Infrared Spatial Resolution 

MSS 603–696 nm 701–813 nm 60 × 80 m2 

TM 626–693 nm 776–904 nm 30 × 30 m2 

ETM+ 631–692 nm 772–898 nm 30 × 30 m2 

ASTER 630–690 nm 760–860 nm 15 × 15 m2 

HRVIR 610–680 nm 790–890 nm 10 × 10 m2 
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4. NDVI Interpretation 

The forest canopy fraction and vegetation chlorophyll content can have a significant impact on the 

NDVI values recorded for the TTI. The forest spectral response is a result of a combination of the 

reflectance and transmission of the tree canopy and the background reflectance [57]. However, the 

differing vegetation chlorophyll content of black spruce and larch tree species, as well as that of moss 

and sedge ground cover species cause the NDVI values not to be solely dependent on canopy 

greenness [57]. Spectral signatures recorded for the TTI are for land covers that may range from 

treeless tundra, including exposed rock, to an open forest cover, the taiga, with a canopy closure of 

about 25%; with this transition, the proportional composition of herbs, lichen, and bare soil is reduced 

to the benefit of trees and shrubs [23].  

Larch, dwarf birch and graminoid species spread out into the tundra as a response to climate warming 

at northern latitudes and higher terrain elevations [32,58]. The remote sensing derived NDVI is an 

effective estimation of larch productivity [59] and leaf area index [60]. It was shown by [61] that most of 

the variance in TM and HRV simulated NDVI values for a region of Alaska is the effect of the 

photosynthetic biomass fraction in tundra tussock. The presence of deciduous shrub foliage such as 

willow and birch, or live graminoids and forbs considerably increase NDVI values [20,22,35]. These can 

rise to above 0.75 for tundra with shrub, or other photosynthetic biomass content, while they typically 

range between 0.50 and 0.75 for mossy tussock, non-shrub tundra ensembles’ [6,35,40,61]. Also, [62] 

report peak NDVI values on the order of 0.45 to 0.55 for Alaska’s moist acidic tundra (subzone E). 

Evergreen shrub phytomass is not significantly correlated with NDVI values [35], neither are arctic 

landscapes dominated by moss, lichen and other low- or non-photosynthetic biomass [35,38,61]. 

Conversely, [63] and [64] report visible and near-infrared reflectance signatures for low-chlorophyll 

moss and lichens that are influenced by the chlorophyll content and other pigmentation.  

5. Expected Cross-Sensor NDVI Differences 

Three main issues are expected to affect the ability to monitor NDVI-related vegetation changes 

over the period of observation. First, the spectral passband differences across sensors, second, the 

seasonal temperature cycle, and third, the atmospheric conditions.  

5.1. Across Sensor Spectral Passbands 

The red and near-infrared spectral bands are similar across all sensors except for those of the L-4 

MSS, which are wider. Particularly, the MSS’s near-infrared sensitivity extends into the visible band 

and thus includes the vegetation ‘red edge.’ This implies that lower reflectance values may yield lower 

NDVI values. The TM, ETM
+
, ASTER and HRVIR infrared bands were designed to only record the 

vegetation’s high reflectance values [17,65]. In their work, [24] further examined the relationships 

between AVHRR and MODIS spectral responses for green vegetation. They found that for high NDVI 

values, which represent higher green biomass, the ratio calculated from the AVHRR on NOAA-14 

(720 to 1,000 nm near-infrared band) could be 7% lower as compared to that from MODIS (841 to 

876 nm near-infrared band). NDVI calculated from TM, ETM
+
, and AVHRR may differ by up to 2%, 

while these can depart from the MSS-derived NDVI by 5% [66]. 
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5.2. Seasonal Temperature-Related NDVI Phenology 

The MSS image was acquired the earliest in the growing season and the TM image, the latest. All 

five images were acquired at least five weeks after the onset of the growing season as indicated by the 

date when the sum of degree-days above 0 °C reached 300 °C [32] (Table 2). The sum of degree-days 

is the highest for the ETM+. However, the NDVI phenology is more favorable for the HRVIR image 

to yield values higher than those from the TM, ETM+, and ASTER images, which were recorded at 

later dates in the season when the normal temperatures are below 10 °C (Figure 2). 

Table 2. Date of image acquisition, date when the sum of degree-days above 0 °C (SD0 °C) 

reached 300 °C, and SD0 °C before image acquisition date (BI). 

Image Image Date SD0°C ≥ 300 °C Date SD0 °C (BI) 

MSS 07/24/1983 June 18 849 °C 

TM 09/26/1992 June 21 1,491 °C 

ETM+ 09/20/2001 June 05 1,742 °C 

ASTER 09/13/2005 June 14 1,692 °C 

HRVIR 08/30/2008 June 07 1,320 °C 

The MSS image is unique in that it was acquired during the period of summer temperature maxima. 

The highest seasonal NDVI values are expected about 10 days to two weeks after the peak seasonal 

temperature had occurred, and then a gradual decrease of the vegetation index follows, consequent 

with the temperature change [13,67,68]. As a result, the green biomass may not have reached its full 

potential at the time the MSS image was recorded (see ‘MSS’ on Figure 2); nevertheless it may have 

been fuller than when the other images were recorded. The seasonal phenology would have caused the 

MSS derived NDVI values to be higher than those from HRVIR, followed by those from the other 

three September images. 

Figure 2. Image acquisition dates plotted on the climatic average daily temperatures 

recorded at the Goose A weather station. 
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An evocative approach to assess the NDVI data continuity is by examining temperature anomalies 

(daily-to-normal temperature difference) on short time periods (of 10 to 40 days) that precede the 

image acquisition [13]. For all five years, temperature anomalies are of the order of ±1 to 2 °C, over a 

40-day period before the image acquisition dates (Table 3). A unique situation among the dataset is 

that over a 10-day period preceding the HRVIR, the temperature anomaly reached +4.1 °C. The 

smaller temperature anomalies may have caused NDVI variations of about 5%, most likely positive, 

for the tree line transition location of the study area, while the large short-term temperature anomaly 

could have caused a seasonal NDVI fluctuation of up to 10% [13]. 

Table 3. Temperature anomalies for 10-, 20-, 30- and 40-day periods (lag) preceding each 

image acquisition. 

Image 10-day lag 20-day lag 30-day lag 40-day lag 

MSS −1.0 °C 0.8 °C 0.1 °C 0.9 °C 

TM 1.1 °C 2.0 °C 0.2 °C −0.2 °C 

ETM+ 0.3 °C 0.3 °C 1.0 °C 1.0 °C 

ASTER 0.8 °C 1.9 °C 0.2 °C 0.2 °C 

HRVIR 4.1 °C 2.2 °C 1.3 °C 2.3 °C 

5.3. Atmospheric Conditions 

The cloud cover and cloud shadow were identified and masked following the procedure described 

in Section 6.1.2. The clouds caused 46% and 13% of the study area imaged by TM and ASTER, 

respectively, to be lost. The MSS and ETM+ are cloud free, while clouds cover only 6% of the HRVIR 

image (Figure 3). Cumulatively, clouds and their shadows obscure 53% (46% over land, 7% over 

water) of the study area. 

Figure 3. Data completeness. Blue: area with data; Medium grey: off image-path (2001 

only); Black: cloud and cloud-shadow. 

 

The NDVI values from ASTER may have been more affected than the four other images by 

atmospheric water vapor absorption in the near-infrared band. The atmospheric humidity recorded 

from the Goose A weather station [69] at the time the images were acquired range between 33% and 

43% for all images, except for the ASTER, which was recorded as the atmospheric humidity reached 

73%. The effect of water vapor is to reduce the NDVI value, especially in the higher end of its 

dynamic range [24]. 
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The across-image NDVI differences due to variations of the atmospheric optical thickness are 

considered negligible as the weather station reports equal values of visibility during all image 

acquisitions. However, the visibility that was recorded is 24.1 km, approximately corresponds to an 

aerosol optical thickness of 0.2 of clear sky [70]. This would have caused the NDVI values above 

about 0.4 to be underestimated (see Figure 5 in [70]). 

6. Image Analysis 

The image analysis included preprocessing and extraction of information about the TTI. The 

preprocessing considered first, a geometric correction that brought all five images to a common 

reference system, spatial resolution and study area coverage. Second, cloud and water masks were 

produced, which served as constraint layers for only the cloud-free land portion to be considered in 

further analyses. Third, atmospheric corrections and cross-sensor calibrations were intended to 

generate a consistent image dataset.  

Information extraction consisted of computing and classifying the NDVI images. Then, the spatial 

structure of a three-class scheme was examined across the multitemporal dataset. Finally, a linear-form 

representation of the TTI was derived and its change of position was assessed. 

6.1. Preprocessing 

6.1.1. Geometric Corrections  

An image-to-image geometric correction of the 1983, 1992, 2005 and 2008 data to the 2001- ETM+ 

orthoimage (UTM Zone 21-North and North American Datum (NAD) 1983) took the multitemporal 

set to a 30 m pixel size, which complies with the current remote sensing image analysis protocol for 

mapping Canada’s arctic vegetation [1].  

The TM, ASTER and HRVIR images’ initial spatial resolutions are the same or finer than that of 

the reference ETM
+
 image (Table 1). The nearest neighbour interpolation was applied for those images 

with which the ground control points could be located based on visual interpretation of similar 

brightness values in corresponding spectral bands. However, the MSS image spatial resolution was 

much coarser than that of the output matrix. In order to produce a gradual transition from the input to 

the output resolution, the path-projected MSS pixels were expanded upon by a factor of four in row 

and column directions, to a 20 m pixel size, and the bilinear interpolation resampling function was 

applied. The pixel replication facilitated the relative location (i.e., ‘middle’ or ‘edges’) of ground 

control points within the same-brightness values areas corresponding to the initial 80 m image units.  

The number of ground control points for each image is 16 for the 1992, 2005 and 2008 images and 

12 for the 1983 image. GCPs included small islands and lake shorelines with unique profiles, as 

anthropogenic features such as road intersections, were not present in any of the images. The GCPs 

were uniformly selected throughout each image. Each resulting geo-corrected image has a total  

root-mean-square error equivalent to less than a half of their initial spatial resolution (37, 15, 3, and 

7 m for MSS, TM, ASTER and HRVIR, respectively).  
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6.1.2. Cloud, Cloud Shadow, and Water Masks 

The 1983 MSS image served as the cloud-free image standard for the discrimination of clouds and 

cloud shadows on the 1992, 2005 and 2008 images. The image ratio change detection analysis [71,72] 

consisted of applying a two-date red spectral band image ratio of the cloud-free image to the  

cloud-affected image. The overlay operation enhanced the clouds and their shadow. On the  

cloud-enhanced image histogram, the lowest and highest values characterize the cloud shadows and 

clouds, respectively. Once classified, these areas were expanded upon with a five-pixel buffer. This 

buffer width was chosen because it included thinner clouds that were identified by visual inspection of 

the images, but that had not been included in the automatically classified clouds category. 

NDVI images are relevant only to the land portion of the image, therefore justifying the application 

of a water mask. The near-infrared band bimodal histogram, which displays distinctive distributions 

for water and land [73], is classified with reference to the threshold reflectance value that recorded the 

lowest histogram frequency between the water and land values.  

The clouds, cloud shadows and water mask were integrated through image overlay to each image of 

the set and, separately, a cumulative ‘no data’ mask was applied to the images.  

6.1.3. Atmospheric Corrections and Radiometric Cross-Calibrations 

Continuity of NDVI values ideally relies on sensor pairwise cross-calibration of the individual 

bands reflectance values, which may vary in relation to the land cover [25,65]. The radiometric 

preprocessing included, first, a calibration of the individual images and spectral bands to the  

‘at-satellite apparent reflectance’ value, with the integration of a Rayleigh scattering path radiance 

equivalent (i.e., dark-pixel subtraction) correction. Second, a multitemporal cross-calibration adjusted 

the reflectance values of corresponding spectral bands across the five images. Both calibrations 

methods were used in order to minimize the potential errors due, on the one hand, to atmospheric 

moisture conditions that affected the images and that would not have been all accounted for in a path 

radiance equivalent correction, and on the other hand, the difficulty to find a calibration points (same 

land cover) in images that were collected over a period of 25 years and varying cloud covers. 

The radiance calibration values for the three Landsat images were documented by [26] while the 

HRVIR parameters were contained in the image metadata. No calibration parameters accompanied the 

ASTER image, therefore, in this case, the individual spectral band calibration was omitted and the raw 

image was input to the cross-calibration. The individual spectral band calibration incorporated 

atmospheric corrections based on the dark object subtraction method to minimize the effect of 

Rayleigh scattering [74]. The image histogram non-zero minimum brightness values (BV) provided 

the haze equivalent estimates. 

The multitemporal relative correction, or cross-calibration, aimed to normalize to a reference image, 

the at-satellite apparent reflectance of its corresponding spectral band. The 2001-ETM
+
 image served 

as the reference image due to the cloud-free conditions during which it was acquired. In addition, the 

ETM
+
 red and near-infrared passbands are best matched to the corresponding bands of the other 

images in the dataset. The calibration is based on regression equations obtained from 31 points, each 

chosen to represent a pseudo-invariant feature (PIF) [75] throughout the study area. PIFs for this 
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particular area included barren surfaces and deep water bodies, as these features are shown to have 

little variation in spectral reflectance across the multitemporal dataset. The spectral characteristics of a 

PIF must be consistent between the reference image and the image being calibrated. An example of the 

linear regression graph between the ETM+ image and the SPOT image is presented in Figure 4. 

Figure 4. Linear graph of the red and infrared reflectance of the pseudo-invariant features. 

This example is for the HRVIR to ETM
+
 calibration. 

 

A linear regression of the 2001 and each of the other four image sets is calculated from the PIFs, 

from which the cross-calibration equations are derived. For each, the independent variable of the 

regression is the image to be calibrated. The dependent variable is the 2001 corresponding spectral 

band. The regression equation (Equation (2)), y-intercept (A0) and slope (A1) provide the necessary 

information to compute from each multitemporal image (INPyear) a calibrated image that highly 

correlates with the 2001 reference image (CALyear). Table 4 reports the cross-calibration equation 

parameters and coefficient of determination values.  

CAL year = A0 + A1 INP year (2) 

Table 4. Multitemporal regression intercept (A0) and slope (A1), coefficient of 

determination (R
2
), and standard error (SE) of estimate values for the red and near-infrared 

(NIR) spectral band calibration of the 1983-MSS, 1992-TM, 2005-ASTER and 2008-HRVIR 

images to the 2001-ETM+ image. 

Image Band A0 A1 R² SE 

MSS 
Red 0.0336 1.8439 0.698 0.0230 

NIR 0.0332 2.1318 0.757 0.0384 

TM 
Red 0.0385 0.6249 0.642 0.0160 

NIR 0.0505 0.7053 0.661 0.0307 

ASTER 
Red −0.0416 0.0026 0.649 0.0248 

NIR −0.0453 0.0043 0.823 0.0328 

HRVIR 
Red 0.0041 0.4944 0.938 0.0104 

NIR 0.0072 0.8789 0.933 0.0202 
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6.2. Information Extraction 

6.2.1. Vegetation Index Image Calculation, Classification, and Validation 

The NDVI computed from the near-infrared and red calibrated images of each year (Equation (1)), 

provided a representation of the green vegetation cover distribution. A red reflectance decrease and an 

infrared reflectance increase translate into an increased NDVI. 

The NDVI images were classified into ordinal categories that represented the vegetation cover 

while incorporating the anomalies identified to the sensors’ spectrometry, atmospheric conditions and 

to the vegetation phenology throughout the multitemporal dataset. The areas for which data are 

cumulatively available on all five images (cloud-, cloud shadow-free and in-image path) were used to 

set the NDVI classification boundaries. The positive NDVI values were grouped into three categories 

based on quartile distributions. The interquartile values (middle 50%) of each year-distribution were 

grouped in the class ‘intermediate’. The values included in the lowest and highest quartile ranges were 

assigned to the ‘low’ and ‘high’ NDVI classes, respectively.  

The ecological significance of the NDVI classes was evaluated using the Fisher’s exact probability 

test [76]. The null hypothesis is of no difference in the ‘low’ and ‘high’ NDVI categories considering 

the field data representing ‘tundra’ and ‘taiga’ land cover types as defined in Section 3 for which field 

data were available. 

6.2.2. NDVI Spatial Distribution and Within Class Variation 

Information about the horizontal distribution of the TTI was extracted by overlay of the five image 

set to identify the areas that are, on at least four of the five images, repeatedly in one of the three 

NDVI classes. This analysis caused patterns of consistent low, intermediate and high vegetation 

indices to emerge. 

The within-class median NDVI value for each of the three consistent NDVI categories was 

computed. The results of this analysis are represented and put in context of the errors that were 

attributed to spectral resolution and short-term temperature anomalies. 

6.2.3. Estimating the Location of the Tree Line 

Tentatively, the intermediate NDVI class represents a transition class between the taiga and the 

tundra land cover classes. This class is expressed as the TTI, i.e., where the tundra and taiga 

environment interact. The transition from taiga to tundra is gradual because it occurs along a sizable 

distance that forms a corridor-shaped area. The TTI, as represented by the intermediate NDVI class, 

cannot be monitored based on the information that we have extracted and interpreted from the dataset 

because it is spatially fragmented (Table 5). For example, the maximum area size for continuous 

intermediate NDVI patches is 7 ha, with a median size of 1 ha which correspond to only a few TM or 

MSS pixels. In addition, the field data were collection protocol focused land cover description within 

30 × 30 m
2
 sampling areas. Therefore, it is practical to further this study by estimating a ‘tree line’ 

halfway between the low NDVI and high NDVI classes which were validated using field data 
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collected for tundra and taiga land cover types, respectively. This tree line was estimated to help assess 

the magnitude of changes.  

Table 5. Area and variability of area of x-and-y connected patches consistently classified 

as low, intermediate and high NDVI over the 25-year monitoring period. 

NDVI Median Interquartile Range Minimum Maximum 

Low 44 ha 5–122 ha 1 ha 149 ha 

Intermediate 1 ha 1–3 ha 1 ha 7 ha 

High 6 ha 3–15 ha 1 ha 39 ha 

The tree line estimation process flowchart is presented on Figure 5. The area perimeter of low and 

high NDVI served as anchor to calculate the radiating Euclidean distance and to automatically identify 

the pixels that are halfway between them, at which location an ‘estimated’ tree line is drawn. The 

halfway distance was identified by subtraction overlay where the output image value of zero was 

assigned to pixels situated where the distance calculated from the low NDVI is equal to the distance 

from the high NDVI.  

Figure 5. Process flowchart used to extract the estimated tree line as a linear form feature. 

 

Then, contingency analyses of the 1983-2001-2008 and the 2001-2005-2008 image sets brought out 

long- and short-term changes, respectively. The tree line was estimated on each image without 

considering the water, cloud and cloud shadow categories. The 1992 image was excluded from this 

analysis because of the impeding cloud cover.  

With each image set, the distance was automatically calculated from the tree line on the earliest image 

date (1983 or 2001) to the displaced tree line segments on the second and third images (2001 and 2008, 
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or 2005 and 2008). The displacement distances were calculated by overlay of the estimated tree  

line-migrated segment image and a distance gradient from the earliest date’s estimated tree line image.  

7. Results 

Table 6 presents the descriptive statistics of the five NDVI images. Relatively low mean and 

maximum NDVI values emerged from the 1983 MSS and the 1992 TM data. The NDVI values 

calculated from the 2008 HRVIR image are the highest, with an average value of 0.60. It is about 0.05 

to 0.20 higher than that of the average NDVI computed from the other images.  

The quartile distribution-based NDVI classes are listed in Table 7 and the most consistently 

classified areas are displayed on Figure 6; a consistent area is where same one of the three NDVI class 

is present on at least four of the five images. Areas where the low and high NDVI remained similar 

over the 25-year period have the largest and most variable unit sizes (Table 5). Conversely, the 

intermediate NDVI category is highly fragmented into parcels that are of the order of 1 to 3 ha in size.  

Table 6. Minimum, maximum, average, and standard deviation (SD) of the positive NDVI 

values for each image. 

Image Minimum Maximum Average SD 

MSS 0.03 0.69 0.43 0.09 

TM 0.02 0.62 0.40 0.06 

ETM+ 0.05 0.95 0.56 0.11 

ASTER 0.04 0.79 0.49 0.11 

HRVIR 0.05 0.87 0.60 0.11 

Table 7. Quartile distribution-based low, intermediate, and high NDVI class boundaries 

for each image. 

Image Low Intermediate High 

MSS >0 to 0.39 >0.39 to 0.49 >0.49 to 1.00 

TM >0 to 0.37 >0.37 to 0.45 >0.45 to 1.00 

ETM+ >0 to 0.49 >0.49 to 0.63 >0.63 to 1.00 

ASTER >0 to 0.41 >0.41 to 0.57 >0.57 to 1.00 

HRVIR >0 to 0.53 >0.53 to 0.69 >0.69 to 1.00 

The within-class median NDVI value computed for each of the three consistent NDVI categories 

show an increasing trend from 1983 to 2008 (Figure 7). During this period, the median values for the 

low, intermediate and high NDVI classes increased by 42%, 39%, and 34%, respectively. These 

changes are robust to the estimated errors due to a wider passband on the 1983 image (7%) and  

short-term temperature anomalies (5% for all images and 10% for the 2008 image). 

Table 8 presents the contingency tables and the Fisher’s exact test results. The null hypothesis was 

rejected for all five images, meaning a significant association (α = 0.05) between the classes that 

describe the lowest and highest NDVI values and the field-observed vegetation cover. Given the NDVI 

values involved that were documented in the literature (see Section 4) [6,35,40,61,62] and the Fisher’s 
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test results, the low, intermediate, and high NDVI classes were matched with the tundra, TTI, and taiga 

land cover types, respectively. 

Figure 6. Areas classified as low, intermediate and high NDVI on at least four of the five 

images years. The class ‘variable NDVI’ is for areas that were not consistently (on less 

than four images) assigned to a same class from image to image. 

 

Figure 7. Median NDVI value in the five quartile-based classifications. The values 

reported are for the area of matching classes on at least four of the five images of the time 

series. The error bars express the estimated variations due to the spectral resolution and 

short-term temperature anomalies. A grey line marks the linear trend for each class.  
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Table 8. Co-occurrence of sampled field observations with image’s low, intermediate (Int.) 

and high NDVI categories, and no data due to cloud and cloud shadow. Fisher’s exact 

probabilities results provided at the bottom right are for 2 × 2 tables of ‘tundra’ and ‘taiga’ 

field data vs. ‘low’ and ‘high’ NDVI image classes, respectively. 

1983-MSS Tundra Taiga 1992-TM Tundra Taiga 

Low 23 4 Low 18 1 

Int. 14 8 Int. 17 11 

High 3 11 High 1 9 

Cloud 0 0 Cloud 4 2 

2001-ETM
+
 Tundra Taiga 2005-ASTER Tundra Taiga 

Low 26 1 Low 16 2 

Int. 14 16 Int. 16 13 

High 0 6 High 3 5 

Cloud 0 0 Cloud 5 3 

2008-HRVIR Tundra Taiga  

Fisher’s 2-tail probability 

MSS, TM ETM+: <0.0001 

ASTER: 0.0138 

HRVIR: 0.0418 

Low 22 4 

Int. 15 15 

High 3 4 

Cloud 0 0 

Figure 8. Long-term multitemporal composite of the tree line estimated from the 1983, 

2001 and 2008 images, with the high 1983 NDVI overlaid as green grid. 
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The multitemporal image on Figure 8 illustrates the 1983 to 2008 changes. Lines of different 

colours represent the tree line location at different dates and the black line indicates that no change 

occurred over the period of observation. For visual reference, the green-gridded feature in the 

southeast portion of the image is the area of high NDVI for 1983, which is the initial date of the  

three- image series. 

Segments of a few kilometers in length of the estimated tree line keep a steady position with 

changes that do not exceed 90 m over the period of observation. At other locations it is unstable as it 

alternatively records advances and retreats, as well as displaying steady advances or retreats. At 

locations in the southeast portion, in the low lands of the study area, the estimated tree line makes 

advances of the order of 200 to 300 m when comparing the 1983 and the 2008 images. Also in this 

area, the estimated 1983-tree line showed several discontinuities (evidenced by a multitude of circling 

tree line segments) that were filled-in as represented on the 2001 and 2008 images. 

The multitemporal image on Figure 9 illustrates the 2001 to 2008 changes. It is constructed and 

interpreted in the same manner as Figure 8 except for that the green gridded area represents the 2001 

high NDVI class. As observed on the long-term multitemporal image, segments of few kilometers of 

the estimated tree line have remained stable between 2001 and 2008. In the center area of the image, 

noticeable advances from high to low NDVI are recorded, especially for the last portion of the time 

series, between 2005 and 2008.  

Figure 9. Short-term multitemporal composite of the tree line estimated from the 2001, 

2005 and 2008 images, with the high 2001 NDVI overlaid as green grid. 
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Table 9 reports an overall advance-to-retreat net difference of no more than the equivalent of one 

pixel (30 m) in the position of tree line segments for the two long-term image sequences. During the 

shorter period of observation that follows, from 2001 to 2008, a 60 m change is recorded. The highest 

estimated tree line migration distances correspond with an advance. 

Table 9. Distance median value and interquartile range of advanced and retreated segments 

of the boundary from low to high NDVI values for different time periods. 

Time Period Change Median Distance Interquartile Range 

25 yr:1983–2008 
Advance 90 m 70–150 m 

Retreat 90 m 70–130 m 

18 yr:1983–2001 
Advance 120 m 80–190 m 

Retreat 90 m 70–160 m 

7 yr:2001–2008 
Advance 150 m 80–320 m 

Retreat 90 m 70–150 m 

4 yr:2001–2005 
Advance 120 m 80–270 m 

Retreat 110 m 70–280 m 

Changes of the tree line estimated at halfway between the low and high NDVI classes, indicate a 

net progression of 10 to 60 m over the different periods of time. Locally, the variations are much larger 

than the image’s spatial resolution. The tree line segments that are subject to gradual migration or 

retreat depart by up to 320 m from the estimated position of the 1983 or 2001 tree line. The most stable 

portions of the tree line, which have not shown change of more than 90 m, are of the order of 3 to 4 km 

in length (Figures 8 and 9).  

The clouds are not shown on the composite images because the tree line location is estimated from 

the low and high NDVI class patches, through this process any other class would not be considered. 

The 1983 image is cloud free, as well as the 1992 image. The clouds on the 2008 image do not 

interfere because they are in the southeast corner of the study area (Figure 3) and away from the 

transition zone. Small clouds may have affected the 2005 estimated tree line on the short-term change 

image by spatially interrupting the distribution and producing smaller patches of low and high NDVI 

from which the tree line was calculated.  

8. Discussion 

Changes in green biomass, represented through the NDVI, and its spatial distribution were mapped 

from a multitemporal image series acquired by five different sensors. The analysis resulted with 

ordinal NDVI categories that incorporate the variations due to acquisition asynchrony caused by the 

seasonal temperature anomalies and cross-sensor spectral inconsistencies. The quartile-based NDVI 

classes are representative of land covers found near the tundra-taiga interface. Throughout the 25-year 

period of observation, all three classes display an increase of the trend in NDVI values. These are of 

the order of 40%. In addition, an estimated tree line was derived, which allowed to illustrate and 

quantify long- and short-term changes in the landscape.  

Some of the sources of NDVI anomalies reviewed in Section 5 may have affected the dataset. In 

particular, lower NDVI values in the 1983 image may be attributed to the different infrared passband 
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on the MSS sensor. The TM-derived NDVI image displays the smallest coefficient of variation as well 

as the lowest average value. These may have been caused by a lower level of incident radiation due to 

extensive cloud coverage during the 1992 image acquisition. Yet, the low and high NDVI categories 

were tied with the field-recorded land cover descriptions.  

The highest NDVI values calculated from the 2008 HRVIR may have been caused by the  

short-term temperature anomalies prior to the image acquisition date. Nevertheless, the phenological 

state at the time of the MSS image was recorded, one month earlier in mid-July, also works in favor of 

a greener land cover. This might explain on the long-term change image that some portions of the 

estimated tree line have receded.  

An important issue of multitemporal image analysis is that the validation of historical images, 

which are these images that were recorded before one engages in a monitoring study, have no 

coincident field data or very little if fortuitously it was collected for other purposes. The Fisher’s test 

results reported in Table 8 are all significant and there is no apparent unbalance of the distribution of 

the observations in the contingency tables for the different images, including that of coincident HRVIR 

image. This is an indication that the field data were collected in area where no important change had 

occurred. In addition, the contingency tables reveal a mix of tundra and taiga field observations in the 

intermediate NDVI category; because of this it is anticipated that this class gives a correct representation 

of the TTI on the image. Noticeably, this area contains a larger proportion of tundra samples in 1983 (14 

of 22 observations, or 64%) and 1992 (61%), while a more even representation of tundra and taiga field 

records are found in the intermediate NDVI class on the 2001, 2005 and 2008 images. 

The categories of low and high NDVI occur in patches that have dimensions that are much larger 

than the dataset’s coarsest resolution (that of MSS with 80 × 80 m
2
 or 0.64 ha pixel size). Also, more 

than half the parcels forming the transition zone (intermediate NDVI class) have sizes of about 1 ha. 

Therefore, as expected, the MSS spatial resolution is inappropriate for monitoring the progression of 

features such as tree islands and encroachments that are found at the boundary and within the TTI. For 

this purpose, neither is appropriate the TM image 30 m resolution, with about 11 pixels per ha.  

The image analysis revealed increase of the TTI density. The 1983-to-2008 change image 

(Figure 8) indicates in-filling of areas that were not in the high NDVI class in 1983. The in-filled areas 

are shown by the 1983-line (green) forming closed loops that are not duplicated by the other tree lines 

(yellow and red). These patterns take place on the long-term change image only. A similar dynamics, 

whereby changes occurred from sparse to open, and from open to normal stand was reported by [32] 

for the period of 1980 to 2000 in forest-tundra larch forests Ary-Mas, Russia. 

The investigation of the TTI as an area feature that corresponds to the intermediate NDVI category 

must be based on spatial and temporal resolution images that have not been available until just 

recently. Given the 1 ha area formed by intermediate NDVI patches, and considering a 3 × 3 pixel 

array for being able to observe a 1-pixel migration, 30 m is the coarsest spatial resolution appropriate 

for detecting variations within the transition area. In light of this evaluation, the spatial resolution 

prescribed in the protocol for mapping Canada’s arctic vegetation [1] may have to be reconsidered 

when focusing on regional scale observations of the tundra-taiga interface.  

An uneven advance of the tree line is observed from the result of this study. While several segments 

may not have changed at all over the years, some portions have retreated and others display 270 m 

(68 m per year from 2001 to 2005) to 320 m (46 m per year from 2001 to 2008) horizontal progression 
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in the direction of the tundra. These values are lower than the rates of 0.2 to 0.4 km per year stated 

by [48] for Eastern Canada.  

The difference between the advance and retreat median values concludes to a net advance of 9 m 

per year, for the period from 2001 to 2008 (Table 9: 150 m advance less 90 m retreat over a 7 year 

period). This is consistent with the advances of 3 to 11 m per year for the period of 1980–2000 in 

northern Russia [32], but it is much lower than the mean advance of 378 m per year (2.5 km from 2000 

to 2009) reported for the pine forest line in northern Norway [77]. The variations observed for the 

Mealy Mountains study are attributed to site conditions, as seedling in the TTI in Labrador can be 

affected by the soil wetness, wind exposure, temperature [78], seedbed composition [79] and the 

topography [80]. The impact of these factors, individually or in combination, yet has to be investigated 

in relation to the information that was extracted from the satellite images. 

The revisit frequency of visible and near-infrared image systems is in effect reduced due to cloud 

cover and atmospheric moisture degraded signal. Such issues prevent the acquisition of high temporal 

resolution image series that would allow for characterization of the vegetation’s annual phenology and 

to differentiate this from long-term changes. The prospect of using radar image-based vegetation 

mapping [39,81] circumvents this issue by potentially increasing the temporal resolution, while spatial 

resolutions available are finer than the 30 m used in this study. Further work must investigate the 

information that can be extracted from radar images, which is not dependent on the vegetation’s 

photosynthetic activity, as the NDVI is, but on the spatial structure of the components of the tundra 

and taiga environments and of the transition zone separating them. 

9. Conclusion 

This paper presents evidence that the green biomass, represented by the Normalized Difference 

Vegetation Index (NDVI), has increased between 1983 and 2008, and more importantly between 2001 

and 2008, in a portion of the Canadian tundra-taiga interface (TTI). The results of this study are based 

on the analysis of a multisensor NDVI image series that had been recorded using different spectral and 

spatial resolutions, and under variable atmospheric conditions. A cross-sensor calibration and the 

classification of the vegetation index in ordinal classes produced a consistent dataset from which a 

NDVI-inferred biomass overall increasing trend of about 40% was detected. The change in biomass is 

more accentuated for the low NDVI than for the high NDVI category, which rendered an increasing 

trend of 42% and 34%, respectively.  

Spatially, a migration of the taiga environment, represented by high NDVI values, toward the 

tundra occurred. This observation emerged from changes in the location of a tree line derived from the 

classified images. Overall, no significant difference was detected between the tree line estimated from 

the 1983 and the 2008 images, while a net advance of 60 m, or 9 m per year, was observed between 

2001 and 2008. Horizontal migrations of 130 to 320 m were recorded for short segments of the 

estimated tree line during the various periods of observations. 

In characterizing of the TTI as an area, rather than as a linear feature, the research highlighted that it 

has a large spatial variability, represented by the patch size, of the low and high NDVI classes. 

Consequently, the monitoring of the TTI would preferably rely on image spatial resolutions of 20 m 

(25 pixels per ha) or finer.  
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A multisensor image set can successfully be used to monitor the TTI and potentially expand to 

include the latest medium to high spatial resolution multispectral images such as acquired from the 

Landsat-8, QuickBird, and WorldView-2 platforms. As well, further work for the study area of the 

Mealy Mountains, Labrador, addresses the transition from multispectral to radar image for monitoring 

the tundra-taiga interface. 

Acknowledgements  

We acknowledge funding from the Government of Canada Program for International Polar Year as 

part of the project Present processes, Past changes, Spatiotemporal dynamics (PPS) Arctic Canada 

(Karen Harper, Alvin Simms). This project is a product under the IPY core project PPS Arctic as part 

of the International Polar Year 2007–2008, which was sponsored by the International Council for 

Science and the World Meteorological Organisation. This funding contributed to graduate student 

support, the purchase of satellite images and image analysis software licenses. The authors would like 

to thank the anonymous referees for their helpful constructive suggestions. 

References 

1. Chen, W. IPY CiCAT Field Measurement Protocol for Mapping Canada’s Arctic Vegetation, 

Version 4.0; Natural Resources: Ottawa, ON, Canada, 2007. 

2. Walker, D.A.; Auerbach, N.A.; Shippert, M.M. NDVI, biomass, and landscape evolution of 

glaciated terrain in northern Alaska. Polar Rec. 1995, 31, 169–178. 

3. Kelley, A.M.; Epstein, H.E.; Walker, D.A. Role of vegetation and climate in permafrost active 

layer depth in Arctic tundra of Northern Alaska and Canada. J. Glaciol. Geocryol. 2004, 26,  

269–274. 

4. Raynolds, M.K.; Walker, D.A.; Maier, H.A. NDVI patterns and phytomass distribution in the 

circumpolar Arctic. Remote Sens. Env. 2006, 102, 271–281. 

5. Engstrom R.; Hope A.; Kwon H.; Stow, D. The relationship between soil moisture and NDVI 

near Barrow, Alaska. Phys. Geog. 2008, 29, 38–53. 

6. Munger, C.A.; Walker, D.A.; Maier, H.A.; Hamilton, T.D. Spatial Analysis of Glacial Geology, 

Surficial Geomorphology, and Vegetation in the Toolik Lake Region: Relevance to Past and 

Future Land-Cover Changes. In Proceedings of the Ninth International Conference on 

Permafrost, Fairbanks, AK, USA, 28 June–3 July 2008; pp. 1255–1260. 

7. Van Wijk, M.T.; Williams, M. Optical instruments for measuring leaf area index in low 

vegetation: application in Arctic ecosystems. Ecol. Appl. 2005, 15, 1462–1470. 

8. Blok, D.; Schaepman-Strub G.; Bartholomeus, H.; Heijmans M.M.P.D.; Maximov, T.C.; 

Berendse, F. The response of Arctic vegetation to the summer climate: relation between shrub 

cover, NDVI, surface albedo and temperature. Environ. Res. Lett. 2011, 6, 035502. 

9. Stow, D.; Hope, A.; Boyton, W.; Phinn, S.; Walker, D.; Auerbach, N. Satellite-derived vegetation 

index and cover type maps for estimating carbon dioxide flux for Arctic tundra regions. 

Geomorphology 1998, 21, 313–327. 

  



Remote Sens. 2013, 5 1086 

 

10. Walker, D.A.; Epstein, H.E.; Jia, G.J.; Balser, A.; Copass, C.; Edwards, E.J.; Gould, W.A.; 

Hollingsworth, J.; Knudson, J.; Maier, H.A.; et al. Phytomass, LAI, and NDVI in northern 

Alaska: Relationships to summer warmth, soil pH, plant functional types and extrapolation to the 

circumpolar Arctic. J. Geophys. Res. 2003, 108, 8169. 

11. Hope, A.S.; Pence, K.R.; Stow, D.A. NDVI from low altitude aircraft and composited NOAA 

AVHRR data for scaling Arctic ecosystem fluxes. Int. J. Remote Sens. 2004, 25, 4237–4250. 

12. Wang, M.; Overland, J.E. Detecting Arctic climate change using Koppen climate classification. 

Climatic Change 2004, 67, 43–62. 

13. Olthof, I.; Latifovic, R. Short-term response of Arctic vegetation NDVI to temperature anomalies. 

Int. J. Remote Sens. 2007, 28, 4823–4840. 

14. Raynolds, M.K.; Comiso, J.C.; Walker, D.A.; Verbyla, D. Relationship between satellite-derived 

land surface temperatures, Arctic vegetation types, and NDVI. Remote Sens. Environ. 2008, 112, 

1884–1894. 

15. Zhang, K.; Kimball, J.S.; Mu, Q.; Jones, L.A.; Goetz, S.J.; Running, S.W. Satellite based analysis 

of northern ET trends and associated changes in the regional water balance from 1983 to 2005. J. 

Hydrol. 2008, 379, 92–110. 

16. Hansen, M.C.; DeFries, R.S.; Townshend, J.R.; Carroll, G.M.; Dimiceli, C.; Sohlberg, R.A. 

Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS 

vegetation continuous fields algorithm. Earth Interact. 2003, 7, 1–15. 

17. Yoshioka, H.; Miura, T.; Huete, A.R. An isoline-based translation technique of spectral vegetation 

index using EO-1 Hyperion data. IEEE Trans. Geosci. Remote 2003, 41, 1363–1372. 

18. Olthof, I.; Pouliot, D.; Fernandes, R.; Latifovic, R. Landsat-7 ETM
+
 radiometric normalization 

comparison for northern mapping applications. Remote Sens. Environ. 2005, 95, 388–398. 

19. Brown, M.E.; Pinzón, J.E.; Didan, K.; Morisette, J.T.; Tucker, C.J. Evaluation of the consistency 

of long-term NDVI time series derived from AVHRR, SPOT-Vegetation, SeaWiFS, MODIS, and 

Landsat ETM
+
 sensors. IEEE Trans. Geosci. Remote 2006, 44, 1787–1793. 

20. Stow, D.; Petersen, A.; Hope, A.; Engstrom, R.; Coulter, L. Greenness trends of Arctic tundra 

vegetation in the 1990s: Comparison of two NDVI data sets from NOAA AVHRR systems. Int. J. 

Remote Sens. 2007, 28, 4807–4822. 

21. Stow, D.; Daeschner, S.; Boyton, W.; Hope, A. Arctic tundra functional types by classification of 

single-date and AVHRR bi-weekly NDVI composite datasets. Int. J. Remote Sens. 2000, 21, 

1773–1779. 

22. Laidler, G.J.; Treitz, P.M.; Atkinson, D.M. Remote sensing of arctic vegetation: Relations 

between the NDVI, spatial resolution and vegetation cover on Boothia Peninsula, Nunavut. Arctic 

2008, 61, 1–13. 

23. Olthof, I.; Pouliot, D. Treeline vegetation composition and change in Canada’s western Subarctic 

from AVHRR and canopy reflectance modeling. Remote Sens. Environ. 2010, 114, 805–815. 

24. Van Leeuwen, W.J.D.; Orr, B.J.; Marsh, S.E.; Herrmann, S.M. Multi-sensor NDVI data 

continuity: Uncertainties and implications for vegetation monitoring applications. Remote Sens. 

Environ. 2006, 100, 67–81. 



Remote Sens. 2013, 5 1087 

 

25. Teillet, P.M.; Fedosejevs, G.; Thome, K.J.; Barker, J.L. Impacts of spectral band difference 

effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral 

domain. Remote Sens. Environ. 2007, 110, 393–409. 

26. Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration 

coefficients for Landsat MSS, TM, ETM
+
, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 

113, 893–903. 

27. Jordan, C.F. Derivation of leaf area index from quality of light on the forest floor. Ecology 1969, 

50, 663–666.  

28. Hope, A.S.; Engstrom, R.; Stow, D. Relationship between AVHRR surface temperature and 

NDVI in Arctic tundra ecosystems, Int. J. Remote Sens. 2004, 26, 1771–1776. 

29. Narasimhan, R.; Stow, D. Daily MODIS products for analyzing early season vegetation dynamics 

across the North Slope of Alaska. Remote Sens. Environ. 2010, 114, 1251–1262. 

30. Pouliot, D.; Latifovic, R.; Olthof, I. Trend in vegetation NDVI from 1 km AVHRR data over 

Canada for the period 1985–2006. Int. J. Remote Sens. 2009, 30, 149–168. 

31. Scott, P.A.; Hansell, R.I.C. Development of white spruce tree islands in the shrub zone of the 

forest-tundra. Arctic 2000, 55, 238–246. 

32. Kharuk, V.I.; Ranson, K.J.; Im, S.T.; Naurzabaev, M.M. Forest-tundra larch forests and climatic 

trends, Russ. J. Ecol. 2006, 37, 291–298. 

33. Rees, W.G. Characterisation of Arctic treelines by LiDAR and multispectral imagery. Polar Rec. 

2007, 43, 345–352. 

34. Shippert, M.; Walker, D.A.; Auerbach, N.A. Biomass and leaf area index maps derived from 

SPOT images for Toolik Lake and Imnavait Creek area, Alaska. Polar Rec., 1995, 31, 147–154. 

35. Riedel, S.M.; Epstein, H.E.; Walker, D.A. Biotic controls over spectral reflectance of Arctic 

tundra vegetation. Int. J. Remote Sens. 2005, 26, 2391–2405. 

36. Regmi, P.; Grosse, G.; Jones, M.C.; Jones, B.M.; Anthony, K.W. Characterizing post-drainage 

succession in thermokarst lake basins on the Seward Peninsula, Alaska with TerraSAR-X 

backscatter and Landsat-based NDVI data. Remote Sens. 2012, 4, 3741–3765. 

37. Atkinson, D.M.; Treitz, P. Arctic ecological classifications derived from vegetation community 

and satellite spectral data. Remote Sens. 2012, 4, 3948–3971. 

38. Bubier, J.L.; Rock, B.N.; Crill, P.M.. Spectral reflectance measurements of boreal wetland and 

forest mosses. J. Geophys. Res. 1997, 102, 29489–29494.  

39. Ranson, K.J.; Sun, G.; Kharuk, V.I.; Kovacs, K. Assessing tundra-taiga boundary with  

multi-sensor satellite data. Remote Sens. Environ. 2004, 93, 283–295. 

40. Chen, X.; Vierling, L.; Deering, D. A simple and effective radiometric correction method to 

improve landscape change detection across sensors and across time. Remote Sens. Environ. 2005, 

98, 63–79. 

41. Kumpula, T.; Forbes, B.C.; Stammler, F.; Meschtyb, N. Dynamics of a coupled system:  

Multi-Resolution remote sensing in assessing social-ecological responses during 25 years of gas 

field development in Arctic Russia. Remote Sens. 2012, 4, 1046–1068. 

42. Zhang, Y.; Xu, M.; Adams, J.; Wang, X. Can Landsat imagery detect tree line dynamics? Int. J. 

Remote Sens. 2009, 30, 1327–1340. 



Remote Sens. 2013, 5 1088 

 

43. Batterson, M.; Liverman, D. Landscapes of Newfoundland and Labrador Report 95–3; 

Newfoundland and Labrador-Department of Natural Resources: St. John’s, NL, Canada, 1995. 

44. Clark, C.D.; Knight, J.K.; Gray, J.T. Geomorphological reconstruction of the Labrador sector of 

the Laurentide Ice Sheet. Quaternary Sci. Rev. 2000, 19, 1343–1366. 

45. Roberts, B.A.; Simon, N.P.P.; Deering, K.W. The forests and woodlands of Labrador, Canada: 

ecology, distribution and future management. Ecol. Res. 2006, 21, 868–880. 

46. Ryan, A.G. Native Trees and Shrubs of Newfoundland and Labrador; Department of Environment 

and Lands: St. John’s, NL, Canada, 1978. 

47. Munier, A. Seedling Establishment and Climate Change: The Potential for Forest Displacement of 

Alpine Tundra (Mealy Mountains, Labrador, Canada). M.Sc. Thesis, Memorial University, St. 

John’s, NL, Canada, 2006. 

48. Callaghan, T.V.; Crawford, R.M.M.; Eronen, M.; Hofgaard A.; Payette S.; Rees W.G.; Skre O.; 

Sveinbjörnsson B.; Vlassova, T.K.; Werkman, B.R. The dynamics of the tundra-taiga boundary: 

An overview and suggested coordinated and integrated approach to research. Ambio 2002, 12,  

2–5. 

49. Skre, O.; Baxter, R.; Crawford, R.M.M.; Callaghan, T.V.; Fedorkov, A. How will the tundra-taiga 

interface respond to climate change? Ambio 2002, 8, 37–46. 

50. Hermanutz, L. Personal Webpage. Memorial University: St. John’s, NL, Canada, 2011. Available 

online: http://www.mun.ca/biology/lhermanutz/lhermanutz.php (accessed on 10 December 2012). 

51. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. 

Remote Sens. Environ. 1979, 8, 127–150. 

52. Rouse, J.W.; Jr., Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the 

Great Plains with ERTS. In Proceedings of NASA. Goddard Space Flight Center 3nd ERTS-1 

Symposium, Greenbelt, MD, USA, 5–9 March 1974; Volume 1, pp. 309–317. 

53. Natural Resources Canada. Canada Centre for Remote Sensing Earth Observation  

Catalogue—CEOcat. Available online: http://ceocat.ccrs.nrcan.gc.ca/portal/index.html (accessed 

on 10 December 2012). 

54. United States Geological Survey-Earth Explorer. Available online: http://earthexplorer.usgs.gov 

(accessed on 10 December 2012).  

55. Jet Propulsion Laboratory-National Aeronautics and Space Administration. Advanced Space 

Thermal Emission and Reflection Radiometer Instrument Characteristics. Available online: 

asterweb.jpl.nasa.gov/characteristics.asp (accessed on 10 December 2012). 

56. Belgian Science Policy. Satellites and Sensors: Satellite Pour l’Observation de la Terre. 

Available online: http://eoedu.belspo.be/en/satellites/index.htm (accessed on 10 December 2012). 

57. Hall, F.G.; Shimabukuro, Y.E.; Huemmrich, K.F. Remote sensing of forest biophysical structure 

using mixture decomposition and geometric reflectance models. Ecol. Appl. 1995, 5, 993–1013. 

58. Sturm, M.; Racine, C.; Tape, K. Increasing shrub abundance in the Arctic. Nature 2001, 411, 

546–547. 

59. Nakaji, T.; Oguma, H.; Fujinuma, Y. Seasonal changes in the relationship between photochemical 

reflectance index and photosynthetic light use efficiency of Japanese larch needles. Int. J. Remote 

Sens. 2006, 27, 493–509. 



Remote Sens. 2013, 5 1089 

 

60. Kobayashi, H.; Suzuki, R.; Kobayashi, S. Reflectance seasonality and its relation to the canopy 

leaf area index in an eastern Siberian larch forest: Multi-satellite data and radiative transfer 

analyses. Remote Sens. Environ. 2007, 106, 238–252. 

61. Hope, A.S.; Kimball, J.S.; Stow, D.A. The relationship between tussock tundra spectral 

reflectance properties and biomass and vegetation composition. Int. J. Remote Sens. 1993, 14, 

1861–1874. 

62. Jia, G.J.; Epstein, H.E.; Walker, D.A. Spatial heterogeneity of tundra vegetation response to 

recent temperature changes. Global Change Biol. 2006,12, 42–55. 

63. Vogelmann, J.E.; Moss, D.M. Spectral reflectance measurements in the Genus ‘Sphagnum’. 

Remote Sens. Environ. 1993, 45, 273–279. 

64. Rees, W.G.; Tutubalina, O.V.; Golubeva, E.I. Reflectance spectra of Subarctic lichens between 

400 and 2400 nm. Remote Sens. Environ. 2004, 90, 281–292. 

65. Miura, T.; Huete, A.; Yoshioka, H. An empirical investigation of cross-sensor relationships of 

NDVI and red/near-infrared reflectance using EO-1 Hyperion data. Remote Sens. Environ. 2006, 

100, 223–236.  

66. Steven, M.D.; Malthus, T.J.; Baret, F.; Xu, H.; Chopping, M.J. Intercalibration of vegetation 

indices from different sensor systems. Remote Sens. Environ. 2003, 88, 412–422.  

67. Tutubalina, O.V.; Rees, W.G. Vegetation degradation in a permafrost region as seen from space: 

Noril'sk, 1961–1999. Cold Reg. Sci. Technol. 2001, 32, 191–203. 

68. Forbes, B.C.; Fauria, M.M.; Zetterberg, P. Russian Arctic warming and ‘greening’ are closely 

tracked by tundra shrub willows. Global Change Biol. 2010, 16, 1542–1554. 

69. Environment Canada-National Climate Data and Information Archive. Hourly Data Report. 

Available online: http://www.climate.weatheroffice.gc.ca/climateData/canada_e.html (accessed 

on 10 December 2012). 

70. Kaufman, Y.J.; Tanré, D. Strategy for direct and indirect methods for correcting the aerosol effect 

on remote sensing: From AVHRR to EOS-MODIS. Remote Sens. Environ. 1996, 55, 65–79. 

71. Sing, A. Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 

1989, 10, 989–1003. 

72. Mas, J.-F. Monitoring land-cover changes: A comparison of change detection techniques. Int. J. 

Remote Sens. 1999, 20, 139–152. 

73. Work, E.A.; Gilmer, D.S. Utilization of satellite data for inventorying Prairie ponds and lakes. 

Photogramm. Eng. Rem. S. 1976, 42: 685–694. 

74. Chavez, P.S. Image-based atmospheric corrections—Revisited and improved. Photogramm. Eng. 

Rem. S. 1996, 62, 1025–1036. 

75. Heo, J.; Fitzhugh, F.W. A standardized radiometric normalization method for change detection 

using remotely sensed imagery. Photogramm. Eng. Rem. S. 2000, 66, 173–181. 

76. Coshall, J. The Application of Nonparametric Statistical Tests in Geography; The Business 

School: London, UK, 1989. 

77. Hofgaard, A.; Tømmervik, H.; Rees, G; Hanssen, F. Latitudinal forest advance in northernmost 

Norway since the early 20th Century. J. Biogeogr. 2012, doi:10.1111/jbi.12053, p. 12. 



Remote Sens. 2013, 5 1090 

 

78. Munier, A.; Hermanutz, L.; Jacobs J.D.; Lewis, K. The interacting effects of temperature, ground 

disturbance, and herbivory on seedling establishment: Implications for treeline advance with 

climate warming. Plant Ecol. 2010, 210, 19–30. 

79. Wheeler, J.A.; Hermanutz, L.; Marino, P.M. Feathermoss seedbeds facilitate black spruce 

seedling recruitment in the forest-tundra ecotone (Labrador, Canada). Oikos 2011, 120,  

1263–1271. 

80. Payette, S. Contrasted dynamics of northern Labrador tree lines caused by climate change and 

migrational lag. Ecology 2007, 88, 770–780. 

81. Ward, H. Characterizing the Tundra Taiga Interface Using Radarsat-2, Mealy Mountains, 

Labrador. M.Sc. Thesis, Memorial University, St. John’s, NL, Canada, 2012. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


