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Abstract: Many remote sensing applications are devoted to the agricultural sector. 
Representative case studies are presented in the special issue “Advances in Remote 
Sensing of Agriculture”. To complement the examples published within the special issue, a 
few main applications with regional to global focus were selected for this review, where 
remote sensing contributions are traditionally strong. The selected applications are put in 
the context of the global challenges the agricultural sector is facing: minimizing the 
environmental impact, while increasing production and productivity. Five different 
applications have been selected, which are illustrated and described: (1) biomass and yield 
estimation, (2) vegetation vigor and drought stress monitoring, (3) assessment of crop 
phenological development, (4) crop acreage estimation and cropland mapping and 
(5) mapping of disturbances and land use/land cover (LULC) changes. Many other 
applications exist, such as precision agriculture and irrigation management (see other 
special issues of this journal), but were not included to keep the paper concise. The paper 
starts with an overview of the main agricultural challenges. This section is followed by a 
brief overview of existing operational monitoring systems. Finally, in the main part of the 
paper, the mentioned applications are described and illustrated. The review concludes with 
some key recommendations. 

Keywords: yield gap identification; environmental conservation; land sparing; yield 
estimation; cropland identification; vegetation vigor; drought monitoring; crop phenology; 
change detection; noise removal  
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1. Introduction 

Remote sensing techniques are widely used in agriculture and agronomy. The use of remote sensing 
is necessary, as the monitoring of agricultural activities faces special problems not common to other 
economic sectors [1]. First of all, agricultural production follows strong seasonal patterns related to the 
biological lifecycle of crops. The production depends secondly on the physical landscape (e.g., soil 
type), as well as climatic driving variables and agricultural management practices. All variables are 
highly variable in space and time. Moreover, as productivity can change within short time periods, due 
to unfavorable growing conditions, agricultural monitoring systems need to be timely. This is even more 
important, as many items are perishable. Thus, as pointed out by the Food and Agriculture Organization 
(FAO) (2011) [1], the need for timeliness is a major factor underlying agricultural statistics and 
associated monitoring systems—information is worth little if it becomes available too late. 

Remote sensing can significantly contribute to providing a timely and accurate picture of the 
agricultural sector, as it is very suitable for gathering information over large areas with high revisit 
frequency. The present paper summarizes the main remote sensing applications, with a focus on 
regional to global applications. It provides arguments for enhancing investments in agricultural 
monitoring systems. It follows the strong conviction that a close monitoring of agricultural production 
systems is necessary, as agriculture must strongly increase its production for feeding the nine-billion 
people predicted by mid-century. This increase in production must be achieved while minimizing the 
environmental impact of agriculture. Achieving this goal is difficult, as agriculture must cope with 
climate change and compete with land users not involved in food production (e.g., biofuel production, 
urban expansion, etc.). The necessary changes and transitions have to be monitored closely to provide 
decision makers with feedback on their policies and investments. 

This review aims to provide an overview of recent remote sensing developments in terms of 
regional and global applications for agriculture. To illustrate the urgent need for an enhanced 
monitoring capacity, the paper is structured as follows. In the first part (Section 2), the great challenges 
agriculture faces are presented and illustrated. Reference is made to excellent publications of  
Foley et al. (2011) [2], Tilman et al. (2011) [3] and Mueller et al. (2012) [4]. The interested reader is 
also invited to take a look at [5] where Johnathan Foley provides excellent reasons for increasing 
investments in the agricultural sector.  

Existing operational large-scale agricultural monitoring systems are briefly described in Section 3, 
summarizing work of Becker-Reshef et al. (2010) [6]. Finally, in the third (and main) part of the paper 
(Section 4), an overview is given of important remote sensing applications within the agricultural 
sector. The focus is on regional to global information needs. Five main topics were chosen to illustrate 
the high potential of information derived from remote sensing. In doing so, strong reference is made to 
the work of Kastens et al. (2005) [7], Zhang et al. (2005) [8], Balint et al. (2011) [9], Galford et al. 
(2008) [10], Wardlow et al. (2007) [11], Sakamoto et al. (2005) [12] and Verbesselt et al. (2010) [13]. 
The five selected applications are: (1) biomass and yield estimation, (2) vegetation vigor and drought 
stress monitoring, (3) assessment of crop phenological development, (4) crop acreage estimation and 
cropland mapping and (5) mapping of disturbances and land use/land cover changes. The need for (6) 
noise removal and filtering techniques is also highlighted as an important pre-processing step.  
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As the estimation of biomass and yield is also covered in detail by Rembold et al. (this issue) [34], 
the sub-section of biomass and yield estimation only focuses on the ‘yield correlation masking’ [7]. 
Interesting applications of remote sensing, such as precision agriculture (variable-rate 
technology) [14,15] and water-related applications (e.g., retrieval of actual evapotranspiration) are not 
covered. For the latter, a special issue on crop water use estimation is currently prepared, with J. 
Kjaersgaard being guest editor. In 2010, a special issue was published in this journal about global 
croplands (guest editor: P. Thenkabail). 

2. Agriculture in a Global Context 

2.1. Global Food Demand 

As demonstrated [3], on a global scale, per capita food demand is closely related to per capita GDP 
(Figure 1). For example, people in the richest countries (group A—example US) consume roughly 
8,000 kcal·day−1 compared to an average consumption of 4,000 kcal·day−1 for people in group C and D 
(Brazil and Indonesia, respectively). Taking this into account and assuming that the Gross Domestic 
Product (GDP) and global population will continue to increase in the future, the past trend of strongly 
increasing food demand is expected to last for 3–4 decades. Tilman et al. (2011) [3] project that per 
capita demand for crops (caloric and/or protein) will double between 2005 and 2050. The strongest 
increases (in absolute values) are predicted within economic groups C to E (Figure 2(D)). The 
predictions are based on forecasts of per capita real income in 2050 (Figure 2(B)) and by a projected 
2.3 billion person increase in global population (Figure 2(A)). The predictions within each economic 
group also take into account shifts in food demand and quality with increased per capita real GDP and 
assume that GDP increases by 2.5% annually between 2000 and 2050. 

Figure 1. Annual dependence of per capita demand for crop calories on per capita real 
Gross Domestic Product (GDP) for each of the economic groups A–G [3]. 
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Figure 2. (A) Global population, (B) per capita Gross Domestic Product (GDP), (C) per 
capita demand for crop calories and (D) global demand for crop calories in 2005 (black) 
and projected 2050 increases (white; percent increases above bars). Nations were assigned 
to economic groups A–G based on their rankings per capita GDP (average for 2000–2007). 
Group A had the highest and group G had the lowest per capita GDP ((A–C): [3];  
(D): own calculations). 

 

Based on this and other forecasts, most agronomists and international food organizations, such as 
the FAO, agree that food production must grow substantially for meeting the world’s future food 
security and sustainability needs. At the same time, agriculture’s environmental footprint must shrink 
dramatically (Figure 3) [2,16,17]. Hence, in the coming decades, a crucial challenge for humanity will 
be meeting future food demands without undermining further the integrity of the Earth’s 
environmental systems [4]. The necessary transformation will have to take place in times of climate 
change, adding supplementary difficulties [18]. For example, it is expected that temperature and 
precipitation patterns will change in the next decades, with more frequent extreme meteorological 
conditions [17,19]. This transition should be monitored at various temporal and spatial scales. 

2.2. Environmental Impacts of Agriculture and Future Pathways for Increasing Agricultural Production 

Agriculture and natural resources are both under strong pressure. The main drivers are population 
growth, increasing consumption of calorie- and meat-intensive diets and an increasing use of cropland 
for bioenergy production [2,20–22]. The negative impacts of current agriculture are manifold and can 
be related to either agricultural expansion or intensification [2,3]: 

• biodiversity is threatened by land clearing and habitat fragmentation [23];  
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• greenhouse gas (GHG) emissions from land clearing, crop production and fertilization 
contribute already to 1/3 of global GHG emissions [24];  

• global nitrogen and phosphorus cycles have been disrupted, with impacts on water quality, 
aquatic ecosystems and marine fisheries [25,26]; 

• freshwater resources are depleted, as nearly 80 percent of freshwater currently used by 
humans is for irrigation [27–29]. 

The most harmful environmental impacts of agriculture are shown in the lower part of Figure 3. 
The ‘−’ sign indicates that a reduction of the respective impact is necessary. 

The environmental impacts of doubling global crop production will depend on how increased 
production is achieved [2,3]. Production could be increased by agricultural extensification or 
intensification. Extensification implies clearing additional land for crop production. Intensification, on 
the other hand, achieves higher yields through increased inputs, improved agronomic practices (e.g., 
drop irrigation), improved crop varieties and other innovations. Papers [30–33] demonstrate how 
remote sensing can contribute to the mapping of land under agricultural production. The review paper 
of Rembold et al. (this issue) [34] provides an overview of remote sensing techniques for yield 
mapping. The reconstruction of past land use systems is exemplified in [35,36]. 

According to [3], the ‘land sparing trajectory’ (i.e., intensification) is the preferred solution, as 
closing the yield gap would minimize both land clearing and greenhouse gas (GHG) emissions, 
compared to a continuation of current practices (‘past trend trajectory’). The yield gap is here defined 
as the difference between realized productivity and the best that can be achieved using current genetic 
material. The land sparing trajectory could meet the 2050 projected global crop demand, while clearing 
“only” 0.2 billion ha of land globally (compared to 1.0 billion ha) and producing global GHG 
emissions of “just” 1 Gt·yr−1 (instead of 3 Gt·yr−1).  

Figure 3. Environmental (bottom) and food security goals (top). The signs after the 
different items indicate if an increase is necessary (+), respectively, or a reduction (−)  
(adapted from [2]). 

 

Foley et al. (2011) [2] demonstrate that tremendous progress could be made by halting agricultural 
expansion, closing yield gaps on underperforming lands, increasing cropping efficiency, shifting diets 
and reducing waste. Together, these five strategies could double food production, while greatly 
reducing the environmental impacts of agriculture. Similar conclusions are drawn by Godfray et al. 
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(2010) [17], who promote a “multifaceted and linked global strategy” to ensure sustainable and 
equitable food security. 

Current yield gaps were quantified by [3,4], amongst others. They demonstrate that current yield 
differences among nations are large (Figure 4). In 2005, for example, caloric yields (per ha) for Group 
A nations (e.g., USA) were 138% greater than for Group E (e.g., Vietnam) and 37% greater than for 
Groups B (e.g., Argentina), C (e.g., Brazil) and D (e.g., Indonesia). Compared to the poorest countries 
(e.g., Kenya and Sierra Leone, belonging to Groups F and G, respectively), yield gaps were even 
higher (e.g., 308%). This analysis—incorporating the effects of climate and soils on yields—suggests 
that agricultural intensification would greatly reduce these yield gaps, provide a more equitable food 
supply and greatly decrease the GHG emissions and species extinctions that otherwise would result 
from land clearing and agricultural expansion. The necessary transformation process has to be 
initiated, taking social and societal issues into account. 

Figure 4. Average yield gaps for major cereal crops, maize, wheat and rice [4]. 

 

This view is also shared by Foley et al. (2011) [2]. Their analysis shows that many nations have a 
high potential for closing yield gaps (Figure 5(A)). In some countries, additional calories could be 
produced by allocating a higher fraction of the cropland to growing food crops (crops that are directly 
consumed by people) instead of using this land for animal feed, bioenergy crops and fibers, etc. 
(Figure 5(B)).  

Strong differences exist in the use of cropland for crop production allocated to human food 
(Figure 5(C)). [2] find that, globally, only 62% of crop production is for human food, versus 35% to 
animal feed and 3% (with an increasing trend) for bioenergy and other industrial products. Whereas 
Africa and Asia allocate typically over 80% of their cropland to food crops, North America and 
Europe devote only about 40% to direct food production; in the upper Midwestern US, less than 25%. 
Although animal feed produces human food indirectly (e.g., meat and dairy products), efficiency is 
much less. The whole system is still very dynamic [30,37]. The paper of Udelhoven et al. (this 
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issue) [38] exemplifies how remote sensing can be used to map the bioenergy potential of maize crops. 
Rangeland identification and monitoring is, for example, described in [39]. 

Figure 5. (A) Additional calories that could be produced by closing current yield gaps of 
crops; (B) increased food supply (in calories) by shifting crops to 100% human food and 
away from current mix of uses; and (C) fraction of cropland that is allocated in 2000 to 
growing food crops (crops that are directly consumed by people) versus all other crop uses, 
including animal feed and bioenergy crops [2] 
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Mueller et al. [4] find that, globally, large production increases (45% to 70% for most crops) are 
possible from closing yield gaps to 100% of attainable yields (Figure 4). Required changes in 
management practices that are needed to close yield gaps vary considerably by region (Figure 6). At 
the same time, Mueller et al. [4] find that there are large opportunities to reduce the environmental 
impact of agriculture by eliminating nutrient overuse, while still allowing an approximately 30% 
increase in production of major cereals (e.g., maize, wheat and rice). They conclude that meeting the 
food security and sustainability challenges of the coming decades is possible, but will require 
considerable changes in nutrient and water management. The papers [14,15,36] of this issue illustrate 
how remote sensing can be used in pest, water and nitrogen management (see also [40–42]). Because 
of its strong link to crop status and yield potential, leaf area index (LAI) mapping is another valuable 
remote sensing contribution. The papers of Gowda et al. (this issue) [43], Vuolo et al. (this issue) [44] 
and Shen et al. (this issue) [45] illustrate this important application. Yield mapping for different crops 
is further exemplified in papers [30–32,34,46,47] of this issue. 

Figure 6. Management factors limiting yield-gap closure to 75% of attainable yields for 
maize [4]. 

 

2.3. Evidence-Based Decision Making 

Of course, agricultural policies have to take into account many other aspects not discussed here 
(e.g., social and economic factors, international policies, strategic considerations). However, whatever 
decision is taken, it should be evidence-based (i.e., well-grounded and based on reliable 
information) [48]. Probably the best way for gaining unbiased information over large areas is through 
satellite-based remote sensing. For this reason, world-wide investments in this area are necessary. 
Monitoring systems are needed to inform policy makers and stakeholders about the state of the 
agricultural sector and the pathway that led to the current situation. Information is also critical for 
impact assessment. Together, this would facilitate risk reduction and would lead to optimized 
statistical analyses at a range of scales, enabling a timely and accurate national to sub-national 
agricultural statistical reporting. The papers of Zhang et al. (this issue) [37], Edlinger et al. (this 
issue) [36] and Atzberger & Rembold (this issue) [35] show how remote sensing can be used to map 
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past conditions. This permits, for example, gaining evidence regarding the effects of (agricultural) 
policies on land use. 

A timely, comprehensive, transparent, accurate and unbiased agricultural monitoring system also 
prevents excessive market speculation and resulting price spikes [49]. As the poorest people are 
generally the most affected by rising food prices, the social component of an effective monitoring 
system becomes visible. We all should feel ashamed that still one billion people are chronically 
malnourished (UN, 2001) [50]. The paper of Becker-Reshef et al. (2009) [51] details the Group on 
Earth Observations (GEO) initiative aiming to support the building of a global monitoring capacity for 
food security. 

Remote sensing data can greatly contribute to the monitoring task by providing timely, synoptic, 
cost efficient and repetitive information about the status of the Earth’s surface [52]. The data recorded 
by current remote sensing satellites can be used to assess the two components of crop production [53]: 
yield [30–32,34,46,54] and acreage [10,37]. In addition, crop phenological information [12,55], stress 
situations [14,34,56] and disturbances [13,57] can be detected. Amongst other things, the retrieved 
information permits decision makers to better anticipate the effects of (disastrous) climatic events 
(predicted to increase in strength and frequency) and to get an objective and unbiased spatial picture 
over large areas (for risk assessment). By putting the current situation in an historical context, an 
agricultural monitoring system permits better understanding of the possible effects of climate change 
(for preparedness and mitigation) and identification of areas with the highest yield potential. As 
discussed above, closing this yield gap is one of the top priorities in the upcoming decades [2,3]. With 
upcoming new sensors, such as the European Sentinel and Proba-V satellites, data provision will be 
further facilitated. However, sensor inter-calibration is still an important issue, as illustrated in Yin et 
al. (this issue) [58] and Meroni et al. [59]. 

3. Existing Operational Large-Scale Agricultural Monitoring Systems 

Agriculture monitoring is not a new concern. In fact, the basics of geometry and land surveying 
were developed in ancient Egypt [60]. The aim was assessing cultivated areas affected by water level 
fluctuations of the River Nile, with the purposes of taxation and for preventing famine. Today, a 
regional to global agricultural intelligence is needed to respond to various societal needs. For example, 
national and international agricultural policies, global agricultural trade and organizations dealing with 
food security issues heavily depend on reliable and timely crop production information [6].  

Agricultural monitoring systems should be able to provide timely information on crop production, 
status and yield in a standardized and regular manner at the (sub)regional to the national level. 
Estimates should be provided as early as possible during the growing season(s) and updated 
periodically through the season until harvest. Based on the information provided, stakeholders are 
enabled to take early decisions and identify geographically the areas with large variation in production 
and productivity. The system should provide homogeneous and interchangeable data sets with 
statistically valid precision and accuracy. Probably, only (satellite) remote sensing—combined with 
sophisticated modeling tools—can provide such information in a timely manner, over large areas, in 
sufficient spatial detail and with reasonable costs [61]. 

As outlined in a recent review by Becker-Reshef et al. [6], preliminary research and development 
on satellite monitoring of agriculture started with the Landsat-1 system (ERTS) in the early 1970s. 
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According to the authors, unanticipated severe wheat shortages in Russia drew attention to the 
importance of timely and accurate prediction of world food supplies. As a result, in 1974, the USDA, 
together with NASA and NOAA, initiated the Large Area Crop Inventory Experiment 
(LACIE) [62,63]. The goal of this experiment was to improve domestic and international crop 
forecasting methods [64]. With enhancements that became available from the NOAA AVHRR sensor 
(Advanced Very High Resolution Radiometer), allowing for daily global monitoring, the AgRISTARS 
(Agriculture and Resource Inventory Surveys Through Aerospace Remote Sensing) program was 
initiated in the early 1980s [6]. Through the research conducted in these NASA-USDA joint programs, 
the considerable potential for use of remotely sensed information for monitoring and management of 
agricultural lands was identified. One of the most recent efforts that NASA and the USDA Foreign 
Agricultural Service (FAS) have initiated is the Global Agricultural Monitoring (GLAM) Project [6,51]. 
The GLAM project focuses on applying data from NASA’s MODIS (Moderate Resolution Imaging 
Spectroradiometer) instrument to feed FAS Decision Support System (DSS) needs [65]. 

Besides the USDA (FAS) GLAM system, there are currently several other regional to global 
operational agricultural monitoring systems providing critical agricultural information at a range of 
scales [6,53,66]: 

• the USAID Famine Early Warning System (FEWS-NET) [67]  
• the UN Food and Agriculture Organization (FAO) Global Information and Early Warning 

System (GIEWS) [68];  
• JRC’s Monitoring Agricultural ResourceS (MARS) action of the European Commission in 

Ispra (Italy) with two different topics: agricultural production estimates of EU countries 
(Agri4Cast [69]) and food security assessments in food insecure countries (FoodSec) [70]; 

• the European Union Global Monitoring of Food Security (GMFS) program [71] 
• the Crop Watch Program at the Institute of Remote Sensing Applications (IRSA) of the 

Chinese Academy of Sciences (CAS) [72]. 

However, the USDA FAS with its GLAM system is currently the only provider of regular, timely, 
objective crop production forecasts at a global scale. This unique capability is in part afforded by the 
USDA’s partnership with NASA, providing global coverage of Earth observation data, as well as 
analysis tools for crop condition monitoring and production assessment at the global scale [6]. The 
GLAM project is also playing a leadership role in the Group on Earth Observations (GEO) agricultural 
monitoring component AG-07-03. GEO itself is part of GEOSS (Global Earth Observation System of 
Systems), providing decision-support tools to a wide variety of users. Recently, the GEOGLAM 
initiative was created integrating GLAM into GEOSS [73]. 

At high revisit frequency, the Earth’s land surface can currently only be covered by coarse/medium 
resolution sensors, such as MODIS. Consequently, a monitoring system must heavily rely on time 
series provided by such sensors. With the upcoming Sentinel’s 2 and 3 (to be launched by the end of 
2014) and Proba-V sensors [74] a new era of Earth observation will be entered. First of all, data 
availability at coarse/medium resolution will increase (e.g., Sentinel 3 providing data at 300 m ground 
sample distance (GSD) and Proba-V at 100 m). Even more exciting, Sentinel-2 will provide 10–30 m 
data at five-day revisit intervals. The Venus sensor will be launched in 2014 with 12 spectral bands (5 
m ground resolution) and a two-day’s revisiting time. The hyperspectral HyspIRI will be launched 
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between 2013 and 2016 with a spectral resolution of 10 nm, 19-day’s revisiting time and a spatial 
resolution of 60 m. The Landsat data continuity mission (LDCM) is planned for launch very soon. The 
free data will also include two thermal bands for energy balance calculations. Together, this will open 
new opportunities for crop monitoring. The community should prepare now for this new data sources. 
Urgently needed are, for example, robust pre-processing and filtering chains [75]. Furthermore,  
inter-calibration issues must be solved [58]. 

4. Remote Sensing of Agricultural Resources  

Already in the early 80s, it was shown by Tucker and co-workers that green vegetation can be 
monitored through its spectral reflectance properties [76,77]. Today, a large range of satellite sensors 
provide us regularly with data covering a wide spectral range (from optical through microwave). Data 
are acquired from various orbits and in different spatial and temporal resolutions. For deriving the 
sought information, a large number of spectral analysis tools have been developed. Besides the spectral 
signature, useful information can also be retrieved by analyzing the temporal signature 
(e.g., [11,52,78–82]) and directional reflectance properties of vegetation (e.g., [83–86]). Further useful 
information can also be retrieved from the spatial arrangement of the pixels, i.e., the texture of the 
image, even at coarse resolution [87]. 

4.1. Biomass and Yield 

In the early 80s, Tucker and co-workers [76,77] found that arithmetic combinations of vegetation 
reflectances in the red and near infrared (so called “vegetation indices” or VI) are particularly useful 
for vegetation characterization. For example, the well known NDVI (Normalized Difference 
Vegetation Index) was already proposed in 1978 by Deering. The index became, subsequently, the 
most popular indicator for studying vegetation health and crop production. The success of the NDVI 
stems from its close relation to the canopy Leaf Area Index (LAI) and fAPAR (fraction of Absorbed 
Photosynthetically Active Radiation) [88,89]. Due to its almost linear relation with fAPAR, the NDVI 
can be readily used as an indirect measure of primary productivity. In Rembold et al. (this issue) [34], 
a comprehensive overview is provided regarding biomass and yield mapping approaches. Different 
methods are discussed, ranging from simple regression equations, to the use of more complex crop 
growth models [90]. For this reason, the present section focuses only on the so-called ‘yield correlation 
masking’. Strong reference is made to the excellent publication of Kastens et al. [7]. It has also to be 
noted that time integration analysis generally increases the prediction accuracy, as, for example, 
presented in this special issue ([32,46]).  

One obstacle to successful modeling and prediction of crop yields using remotely sensed imagery is 
the identification of image masks [7]. Image masking involves restricting an analysis to a subset of a 
region’s pixels, rather than using all of the pixels in the scene. Cropland masking, where all 
sufficiently cropped pixels are included in the mask regardless of crop type, has been shown to 
generally improve crop yield forecasting ability. [91], for example, used three years of AVHRR NDVI 
imagery to assess spring wheat yields in North and South Dakota in the US. They concluded that the 
most promising way to improve the use of AVHRR NDVI for estimating crop yields at regional scales 
would be to use better crop masks. This was also confirmed by [92]. They used a 10-year, bi-weekly 
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AVHRR data set to forecast corn yields in the US state of Iowa. They found that the most accurate 
forecasts of crop yield were made using accumulated NDVI and a cropland mask. Similarly, [93] 
found that application of cropland masks improved relationships between NDVI and final yield in four 
Mediterranean countries. Vancutsem et al. (this issue) [94] illustrate the difficulties encountered when 
harmonizing and combining existing land cover maps. 

For crop yield forecasting, the ideal approach would be to use crop-specific masks. This would 
allow one to consider only NDVI information pertaining to the crop of interest. However, when such 
masking is applied to multiple years of imagery, several difficulties are encountered [6]. A major 
problem relates to the widespread practice of crop rotation. In areas with crop rotation, a single  
crop-specific mask would not be appropriate. Instead, year-specific masks are needed. Identifying a 
particular crop in the year to be forecasted presents even greater difficulties, as only incomplete 
growing season NDVI information is available. This is especially true early in the season, when the 
crop has low biomass and does not produce a large NDVI response. Moreover, with medium/coarse 
resolution (about 25–100 ha/pixel) imagery, identifying mono-cropped pixels is not always feasible. 
This is particularly true in low-producing regions and in regions with sparse crop distribution. The 
unmixing of medium/coarse resolution data for a specific crop is challenging, as demonstrated by 
Atzberger and Rembold (this issue) [35]. The combined use of high resolution and medium resolution 
data for crop area estimation is further demonstrated by Zhang et al. (this issue) [37]. 

A more feasible alternative to crop-specific masking is cropland masking, which refers to using 
pixels dominated by ‘arable land’. The above mentioned studies [91–93] used this approach. Cropland 
masks usually are derived from existing land use/land cover maps. If relatively small amounts of land 
in a study area have been taken out of or put into agricultural crop production during a study period, a 
single mask can be obtained and applied to all years of data. Albeit simpler to realize compared to 
crop-specific masking (i.e., one mask per crop type and year), it has to be considered that all 
agricultural crops are now lumped in the general class of ‘cropland’. Thus, crop-specific growth 
patterns are neglected. 

To overcome the shortcomings related to cropland masking and crop-specific masking,  
Kastens et al. [7] proposed a new masking technique, called yield-correlation masking. The main idea 
behind this concept is that all vegetation in a region integrates the season’s cumulative growing 
conditions in some fashion. The vegetation response to growing conditions may even be more 
indicative of a crop’s yield potential than the crop itself. Hence, in the yield-masking approach, all 
pixels are considered for use in crop yield prediction. In practical terms, yield-correlation masking 
generates a unique mask for each NDVI variable and each pair of crop “x” region. The technique is 
initiated by correlating each of the historical, pixel-level NDVI variable values with the region’s final 
yield history. The highest correlating pixels are retained for further processing and evaluation of the 
variable at hand. Figure 7 shows a diagram outlining this process for a single NDVI layer. 

Though computationally more intensive, the yield-correlation masking technique overcomes the 
major problems afflicting crop-specific masking and cropland masking [6]. Unlike these approaches, 
yield-correlation masking readily can be applied to low-producing regions and regions possessing 
sparse crop distribution. Also, since yield-correlation masks are not constrained to include pixels 
dominated by cropland, they are not necessarily hindered by the weak and insensitive NDVI responses 
exhibited by crops early in their respective growing seasons. Furthermore, once the issue of identifying 
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are used, like the annual rainfall amount. However, sometimes even a few weeks of unfavorable 
climate conditions induce already serious plant stress. Hence, simple rainfall anomalies are not well 
suited for real-time monitoring purposes.  

A suitable drought index should combine information about precipitation, temperature and soil 
moisture strength and persistence. Such an index was, for example, conceived by [9] and termed 
Combined Drought Index (CDI).  

In the CDI approach, drought (or vegetation stress) is conceived as a combination of:  

• a precipitation component, which considers rainfall deficits and persistence of dryness; 
• a temperature component, which considers temperature excesses and persistence of  

high temperatures; 
• a soil moisture component, which considers soil moisture deficits and persistence of dry  

soil conditions. 

Because of the limited availability of soil moisture observations at 1-km resolution or better, [9] 
propose to approximate the soil moisture component by NDVI deficits and deficit persistence. The 
three individual drought indices PDI (Precipitation Drought Index), TDI (Temperature Drought Index) 
and VDI (Vegetation Drought Index—as a substitute for the Soil Moisture Drought Index)—are 
combined as a weighted sum to yield the CDI (Equation 1): 

miVDImiTDImiPDImi VDIwTDIwPDIwCDI ,,,, *** ++=  (1)

By definition, CDI = 1.0 represents average weather conditions. If the CDI is greater than 1.0, it 
represents wetter than average; if it is below 1.0, it represents dryer than average conditions. Drought 
severity categories may be fitted to geographic locations and/or plant types. Another advantage of this 
index is that it allows for flexible weightings (wPDI, wTDI and wVDI) of the three individual components. 

Maps of CDI for the 2010–2011 drought period in the Greater Horn of Africa (GHA) are shown in 
Figure 8(A). A temporal profile is shown in Figure 8(B) for Belet Weyne in Somalia together with 
previous strong drought periods in 2000 and 2006. In the future, such information should help 
international organizations, such as the UN and FAO, to declare famine early enough to prevent 
human losses. Regarding the 2010–2011 drought, famine was declared by the UN only in July 2011. 

4.3. Crop Phenological Development 

The phenological dynamics of terrestrial ecosystems reflect the response of the Earth’s biosphere to 
inter- and intra-annual dynamics of the Earth’s climate and hydrologic regimes [98]. Remotely sensed 
satellite data possess significant potential for monitoring vegetation dynamics, due to their synoptic 
coverage and frequent temporal sampling. This enables the monitoring of simple phenological events, 
such as the start and peak of vegetation growth, both in natural ecosystems and in agricultural 
landscapes (Figure 9). 
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Figure 8. Application of the combined drought index (CDI) for the Greater Horn of 
Africa [97]. (A) Maps depicting the situation in 2010–2011. (B) Time profile of CDI from 
1999 to 2012 for Belet Weyne (Somalia). 

 
(A) 

 
(B) 
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To determine the timing of vegetation green-up and senescence from remotely sensed VI time 
series, a number of different approaches have been developed. Following Beck et al., (2006) [105], the 
different methods can be grouped in two categories: 

• methods estimating the timing of single phenological events [106–108]; 
• methods modeling the entire time series using a mathematical function [109,110]. 

Approaches belonging to the first group include: 

• the use of specific NDVI thresholds [107,111];  
• the detection of the largest NDVI increase between two consecutive observations [112];  
• and backward-looking moving averages [106].  

More recently, [98] used the rate of change in the curvature of a locally fitted logistic model to 
identify phenological transition dates. Specifically, transition dates correspond to the times at which 
the rate of change in curvature in the VI data exhibits local minima or maxima. These dates indicate 
when the annual cycle transitions from one approximately linear stage to another. 

Methods for analyzing entire time series include: 

• principle component analysis [113];  
• Fourier analysis [114,99];  
• harmonic analysis [115];  
• wavelet decomposition [12,116];  
• and curve fitting [98,105,117].  

Modeling VI time series as such has the advantage of conserving a maximum amount of 
information in the VI data, while reducing the dimensionality of the data [117]. Therefore, in addition 
to the phenological dates, other parameters can be estimated from the models output [105]. However, 
such methods are difficult to apply for large regions and generally do not account for ecosystems 
characterized by multiple growth cycles (e.g., double- or triple-cropping systems, semiarid systems 
with multiple rainy seasons, etc.). This was demonstrated, for example, recently by Atkinson et al. [99] 
over India. 

The traditional Fourier transform, for example, expects periodicity in the data not always given 
(e.g., in the case of land use change). Additionally, application of Fourier transforms often reveals 
spurious oscillations [118]. This happens frequently when many harmonics have to be combined for 
fitting non-trivial temporal patterns (e.g., related to double/triple cropping).  

Non-stationary data with irregular temporal shapes is better handled by the wavelet transform [10]. 
In agricultural applications, a wavelet-smoothed time series can be used to identify the start of the 
growing season and the time of harvest with relatively low errors (±2 weeks [12]). Wavelet analysis is 
capable of handling the range of agricultural patterns that occur through time, as well as the spatial 
heterogeneity of fields that result from precipitation and management decisions, because the transform 
is localized in time and frequency. 

Curve fitting using pre-defined functions (e.g., double logistic) is another approach modeling the 
entire time series [105]. A fitted curve simplifies the parameterization necessary for identification of 
metrics, such as start of season. In addition, data gaps are easily handled. A drawback of curve-fitting 
approaches is that a priori information is necessary to inform the algorithm about the number of 
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cropping seasons within a 12-month period and the probable location of vegetation peaks [117]. A 
large number of additional temporal features can be extracted using software like TimeStats 
(Udelhoven, 2011) [119]. 

4.4. Crop Acreage Estimation and Cropland Mapping 

Cropland areas are often characterized by a diverse mosaic of LULC types that change over various 
spatial and temporal scales in response to different management practices and agricultural policies 
(e.g., [35,120–123]). As a result, detailed regional-scale cropping patterns need to be mapped on a 
repetitive basis [11,124]. Such information is also necessary to better understand the role and response 
of regional cropping practices in relation to various environmental issues (e.g., climate change, 
groundwater depletion, soil erosion) that potentially threaten the long-term sustainability of major 
agricultural producing areas [10]. Of course, for each growing season, the acreage of the different 
crops must be known for accurate production estimates [69,125–127]. The excellent work of  
Wardlow et al. (2007) [11] provides a valuable discussion of different approaches. Below is a 
summary of this work. 

Remotely sensed data from satellite-based sensors have proven useful for large-area LULC 
characterization due to their synoptic and repeat coverage. Considerable progress has been made 
classifying LULC patterns using multispectral, high resolution Landsat TM data as a primary 
input [128]. Advances in LULC classification have also been made at national to global scales using 
multi-temporal, coarse resolution data (1 and 8 km) from NOAA-AVHRR [129]. The high temporal 
resolution of satellite time-series data allows land cover types to be discriminated based on their 
unique phenological (seasonal) characteristics [82,130]. However, few of these mapping efforts have 
classified detailed, crop-related LULC patterns, particularly at the annual time step required to reflect 
common agricultural LULC changes [11]. On the contrary, existing LULC maps often reveal strong 
differences, making harmonization attempts necessary [94]. 

The development of a regional-scale crop mapping and monitoring protocol is challenging, because it 
requires remotely sensed data that have wide geographic coverage, high temporal resolution, adequate 
spatial resolution relative to the grain of the landscape (i.e., typical field size) and minimal cost. Remotely 
sensed data from traditional sources, such as Landsat and AVHRR, have some of these characteristics, but 
are limited for such a protocol, due to their spatial resolution, temporal resolution, availability and/or cost. 
Compared to (1–8 km) AVHRR data, MODIS offers an opportunity for detailed, large-area LULC 
characterization by providing global coverage with daily revisit frequency and intermediate spatial 
resolution (250 m) [52]. The dataset is available at no cost, including 16-day composites of NDVI and 
enhanced vegetation index (EVI) updated every eight days. Several studies have already successfully 
demonstrated the potential of these data for detailed LULC characterization in an  
agricultural setting [11,79].  

Wardlow et al. [11], for example, concluded that MODIS time-series at 250 m ground resolution 
had sufficient temporal and radiometric resolution to discriminate major crop types and crop-related 
land use practices in Kansas, US. For each crop, a unique multi-temporal VI profile was detected that 
was consistent with the known crop phenology. Most crop classes were separable at some point during 
the growing season based on their phenology-driven differences expressed in the VI data. Even 
regional intra-class variations were detected, reflecting the climate and planting date gradient in the 
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study area. They also found that MODIS’s 250 m spatial resolution was an appropriate scale at which 
to map the general cropping patterns of the US Central Great Plains. For coffee monitoring, Bernardes 
et al. (this issue) [30] found MODIS data also very suitable. MODIS data was also found promising 
for crop area extraction by Zhang et al. (this issue) [37]. 

4.5. Disturbances and Land Use/Land Cover Changes 

Monitoring the time and location of land-cover changes is important for establishing links between 
policy decisions, regulatory actions and subsequent land-use activities, as outlined by Galford et al. 
(2008) [10]. Regional shifts in land-cover and land-use have numerous consequences relevant to both 
environment and agriculture, including changes in nutrient cycles, water quality and biodiversity. 
Determining the physical and temporal patterns of agricultural extensification or expansion and 
intensification is the first step in understanding their implications, for example, for long-term crop 
production and environmental, agricultural and economic sustainability [10]. 

Traditionally, either pre- or post-classification change detection methods were applied to monitor 
land-cover changes. Both approaches reveal serious drawbacks (reviewed in [131]). For example, 
according to [10], factors that limit the application of post-classification change detection techniques 
can include cost, consistency and propagation of errors [132]. Drawbacks of pre-classification 
techniques, such as Principle Component Analysis (PCA) [133] or Change Vector Analysis 
(CVA) [134], relate in large parts to phenology-induced errors [132]. For example, plants undergo 
intra-annual cycles related to their growth and development patterns. During different stages of 
vegetation growth, plant structures and associated pigment assemblages can vary significantly. Thus, 
the same vegetation type can appear significantly different and different types similar, at various stages 
during intra-annual growth cycles. A fine-tuning of change thresholds is thus necessary to separate 
‘real’ changes from ‘natural’ variations. Besides these problems, Foody (2010) [135] points out the 
importance of ground truthing. The papers [33,35–37] of this special issue provide examples on how to 
use remote sensing data for reconstructing past land use patterns at the landscape level. 

To move towards threshold-independent change detection, trajectory-based change detection 
methods have been proposed taking implicitly the temporal signature into account [136–139]. As 
outlined by [13], these supervised approaches require the definition of the change trajectory specific 
for the type of change to be detected and the spectral data to be analyzed. The trajectory-based change 
detection method thus only works well if the observed spectral trajectory matches one of the 
hypothesized trajectories.  

As traditional change detection methods are often not capable of detecting land cover changes 
within a time series that are heavily influenced by seasonal climatic variations, Verbesselt et al. 
(2010) [13] developed a generic change detection approach, labeled BFAST (Breaks For Additive 
Seasonal and Trend). BFAST integrates the decomposition of a time series into trend, seasonal and 
remainder components with methods for detecting change within the time series (Figure 10). BFAST 
iteratively estimates the time and number of changes and characterizes change by its magnitude and 
direction. Detecting changes within the trend and seasonal components of a time series enables the 
classification of different types of changes. For example, changes occurring in the trend component 
often indicate disturbances (e.g., fires, insect attacks), while changes occurring in the seasonal 
component indicate phenological changes (e.g., change in land cover type) [13].  
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Figure 10. Example of BFAST application within a pine plantation (Australia) [13]. The 
fitted seasonal and trend components are shown, as well as the remaining “noise”. Three 
abrupt changes are detected in the trend component (in red). To aid comparisons of data 
ranges, solid bars are shown on the right hand side of the plots, indicating the same VI range. 

 

The use of MODIS data within disturbance approaches, such as BFAST, is particularly attractive, 
due to the cost-free data and the very low cost associated with data processing. These advantages are in 
sharp contrast to the traditional Landsat data-based approaches that are comparatively data and 
computationally expensive. The increased temporal resolution of the MODIS NDVI 250 m data has a 
significant advantage over traditional Landsat data for both capturing the actual timing of the change 
event and the subsequent monitoring of the recovery to the next steady state [132]. 

4.6. Noise-Removal 

The previous five sub-sections outlined some important applications of medium to coarse resolution 
imagery for agricultural applications. The integration of time series of vegetation indices, such as NDVI 
or Enhanced Vegetation Index (EVI), in various modeling frameworks is nowadays facilitated by readily 
available and standardized (in time and space) products [75]. Such global composites have a high 
potential for continuous and real-time updating. However, despite the continuous effort for making these 
products globally available in near real-time (for example, from the online data pool at NASA LP DAAC 
LP DAAC: Land Processes Distributed Active Archive Center), various processing steps are still 
required before complete and efficient integration in any modeling framework is possible [75]. For 
instance, gap filling and data smoothing are routine operations that are not yet automated. Smoothing and 
gap-filling are, however, extremely important pre-processing steps. Even carefully (atmospherically and 
radiometrically) corrected VI data sets (e.g., from MODIS) still contain substantial amounts of 
noise [139] (Figure 11). The various noise components are related to aerosols, to undetected (sub-pixel) 
clouds, as well as to BRDF effects [140]. Data gaps result from prolonged periods of permanent cloud 
cover. Thus, noise reduction is essential before the ‘true’ temporal evolution of the measured VI can be 
extracted from the satellite data for deriving added-value products. 
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In a recent comparative study involving a number of commonly used filters, it was shown that the 
‘Whittaker smoother’ (based on penalized splines) provides robust results for different noise levels and 
different cropping patterns (e.g., single vs. double cropping) [99]. The Whittaker smoother is based on 
penalized least squares. It fits a discrete series to discrete data and penalizes the roughness of the 
smooth curve using a single (continuous) parameter (λ: the smoothing parameter) (Figure 12(A)). In 
this way, it balances reliability of the data and roughness of the fitted data [144]. The filter can easily 
handle weights (i.e., MODIS QA flags) and inter/extrapolates automatically if data points are missing. 
Further details are given in [99,145,146]. A user-friendly GUI for downloading MODIS time series 
smoothed with the Whittaker filter is available at [147].  More detailed information regarding this 
MODIS tool can be found in Vuolo et al. (2012) [75]. The filter is also suitable for smoothing spectral 
signatures, as exemplified in (Figure 12(B)). 

Figure 12. Illustration of the Whittaker smoother based on penalized splines. (A) Filtering, 
inter- and extrapolation of a multi-temporal NDVI profile (Moderate Resolution Imaging 
Spectroradiometer [MODIS]) with different settings of the smoothing parameter;  
(B) filtering of a spectral signature (unpublished). 

 
(A) 

 
(B) 
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5. Conclusions and Recommendations 

The review demonstrates the strong role remote sensing plays within the agricultural sector. The 
remotely provided information is urgently needed for various decision makers. Requests for objective 
information will increase in the future, as a result of the expected changes in the agricultural sector 
(e.g., meeting food requirements and environmental restrictions). For example, for most crops, large 
production increases (between 45 and 70%) are possible from closing yield gaps to 100% of attainable 
yields [4]. Remotely sensed information can help with identifying yield gaps and monitoring related 
agricultural practices. Using ‘yield-correlation masking’, this would even be possible without detailed 
crop masks, provided enough (historical) yield data is available. In parallel, environmentally sensitive 
areas could be identified for protective purposes. The detection of phenological indicators not only 
helps with identifying different land covers and crops (and crop growing conditions), but at the same 
time, provides evidence for ongoing global/climate change. With appropriate pre-processing of time 
series (gap filling and smoothing), phenological indicators, such as start of the growing season, can 
probably be estimated with accuracies of ±7–10 days. Vegetation anomalies related to local 
meteorological conditions (e.g., droughts) can be readily detected from space and combined with other 
data sources to indicate stress affected regions. This information is not only important for 
organizations dealing with food security, but can also helps with identifying a region’s vulnerability to 
(drought) stress. Finally, the detection and monitoring of (permanent) land-cover changes is, for 
example, important for establishing links between policy decisions, regulatory actions and subsequent 
land-use activities [10]. The challenge will be to integrate the above mentioned indicators so that 
complementary information can be derived. Although the described examples were mostly based on 
globally available (medium to coarse resolution) data sets, it is clear that additional information at high 
spatial resolution is available and should be integrated (plus ground sensors) (see for  
example [14,15,38,43–45,47] in this special issue). Thus, besides investments in the agricultural 
sector, the related monitoring components should be strengthened. Elements of the necessary 
monitoring component exist, but should be further integrated and consolidated. 

Similar to the objectives of the GEOGLAM initiative [73], the following recommendations can be 
drawn from the review: 

• Agriculture depends strongly on the timeliness of the provided information. Information is 
worth little if it comes (too) late. Thus, the issue of timeliness should be dealt with in all 
developments; 

• Product developers have only limited access to ground truth information to evaluate their 
products under various environmental settings. International efforts are needed to establish 
such networks of validation sites. This also requires substantial funding by space agencies 
and/or environmental institutions. Interesting attempts are, for example, GeoWiki [148]) and 
JECAM [149]; 

• Space agencies and sensor developers spend huge amounts of money for precise radiometric 
calibration of the deployed instruments. However, these efforts have little positive effect unless 
the much stronger radiometric distortions introduced by the atmosphere are removed. 
Operational implementations of precise atmospheric correction algorithms are mandatory. 
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Instead of relying on (aerosol) climatologies, the algorithms should be fed with local 
atmospheric properties (probably also derived from satellites); 

• In the future, multi-sensor studies will become frequent. Thus, sensor inter-calibration studies 
are urgently needed; 

• Access of data and derived products is sometimes still too complicated. Efforts are necessary to 
permit users to visualize (and possibly download) information products in a very simple way 
(such as realized in Google Earth); 

• Approaches are still very scattered and not always implemented in operational processing 
chains. Funding organizations should facilitate international cooperation, while limiting 
administrative burdens; 

• For potential users, the wide variety of products can be confusing. Efforts are necessary to 
clearly explain the purpose (and limits) of a given product.  

The tremendous increase in the use of Landsat data after 2008 has been demonstrated by  
Wulder et al. (2012) [150]. This was achieved by the decision of the US government and USGS to 
make the Landsat archive available at no costs (same for LDCM). ESA's current image distribution 
policy is a clear example of what should be avoided: tax payers spend billions for space and ground 
segments (for example, the MERIS sensor), but afterwards, hardly anyone uses the (excellent) data, 
because of an antiquated data distribution policy. Generally, data from national and international 
organizations should come free of costs. Such a decision would boost science and (commercial) 
remote sensing applications. 
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