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AO Arctic Oscillation  
AVHRR Advanced Very High Resolution Radiometers  
BELMANIP Benchmark Land Multisite Analysis and Intercomparison of Products  
BNU Beijing Normal University 
BU Boston University 
CFs Canonical Factors  
CMIP5 Coupled Model Intercomparison Project 5  
CRU Climatic Research Unit 
CYCLOPES Carbon Cycle and Change in Land Observational Products from an Ensemble of Satellites 
ENSO EI Niño-Southern Oscillation 
EOS Earth Observing System  
ESM Earth System Models  
FFNN Feed-Forward Neural Network  
FPAR Fraction of Photosynthetically Active Radiation absorbed by vegetation 
GIMMS Global Inventory Modeling and Mapping Studies  
IGBP International Geosphere Biosphere Programme 
JFM January to March  
LAI Leaf Area Index  
MODIS Moderate Resolution Imaging Spectroradiometer  
mTSF modified Temporal Spatial Filter 
NASA National Aeronautics and Space Administration 
NDVI Normalized Difference Vegetation Index 
NDVI3g Normalized Difference Vegetation Index-third generation 
NEX Earth Exchange  
NOAA National Oceanic and Atmospheric Administration 
PCs Principal Components  
RMSE Root Mean Square Error 
SON-1 September to November of the preceding year  
SPOT Système Pour l’Observation de la Terre 
TSF Temporal Spatial Filter  

S1. Field LAI Measurements 

The field LAI measurements from different field campaigns were used for validation of the LAI3g 
product (Figure 2). The references related to description of site characteristics are provided in Table 
A4 of [40]. Detailed methodologies and documentation of field campaigns are available online: 
http://mercury.ornl.gov/ornldaac/ and http://lpvs.gsfc.nasa.gov/lai_in--tercomp.php. 

S2. Earth System Model LAI Simulations 

We used LAI simulated by 18 Earth System Models (Figure 7). These new simulations were 
performed in support of the IPCC Fifth Assessment Report and are referred to as Coupled Model 
Intercomparison Project phase-5 (CMIP5) [77]. We used monthly-mean model outputs for the last 24 
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years of the 20th century simulations (1982–2005) because of the overlap with the satellite-based 
LAI3g product. Information about models used in this study is given in Table S1.  

S3. CYCLOPES LAI and FPAR Products 

We used CYCLOPES LAI and FPAR data from 1999 to 2007 [66] in our study. The GIMMS and 
CYCLOPES products were composited to a monthly timescale. Monthly CYCLOPES products were 
spatially aggregated to 1/12 degree spatial resolution of GIMMS products using a bi-cubic resampling 
technique. To perform reasonable comparisons, the monthly data were averaged over the period 1999 
to 2007. This also significantly reduced residual atmospheric corruptions effects. The comparative 
analysis reported in the manuscript is based on these values. It should be noted that only data from  
“L-valid” and “F-valid” pixels (definition in Section S6.1) was used in all the analyses. 

CYLOPES products from a select Benchmark Land Multisite Analysis and Intercomparison of 
Products (BELMANIP) benchmark network of sites [67] were used in the local-scale comparison 
study. The land cover type of BELMANIP sites was defined using the ECOCLIMAP [S1], which 
classifies the vegetated surface into seven broad vegetation types. 

S4. Climatic Research Unit (CRU) Climate Data 

The CRU Time-Series (TS) 3.10.01 temperature and precipitation from the University of East 
Anglia, UK, for the period January 1982 to December 2009 were used in this study. The data sets 
provide monthly mean temperature and monthly total precipitation for the whole global at 0.5° by 0.5° 
spatial resolution. Detailed methodologies and documentation of CRU TS 3.10.01 are available online: 
http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_1256223773328276. 

S5. Remote Sensing Data 

S5.1. AVHRR GIMMS NDVI3g  

The latest version, third generation, of the GIMMS NDVI data set (NDVI3g) generated from 
AVHRR sensors onboard a series of NOAA satellites (NOAA 7, 9, 11, 14, 16, 17 and 18) was used in 
this study. The NDVI3g data set has a spatial resolution of 1/12 degree. The maximum NDVI value 
during a 15 day period is used to represent each 15 day interval because atmospheric corruption of 
measured radiances decreases the magnitude of NDVI. This compositing scheme results in two 
maximum-value NDVI composites per month. The entire available NDVI3g record—July 1981 to 
December 2011—was used in this study. Only positive NDVI values were used to eliminate snow and 
other contaminated data (e.g., pixels with large inland water bodies) from all analyses.  

S5.2. MODIS Land Cover Map 

The MODIS land cover classification product (MCD12C1) identifies 17 IGBP land covers [47]. 
They include 11 classes of natural vegetation, 3 classes of developed and mosaicked land, and 3 
classes of non-vegetated land. The latest version of the MODIS land cover map at 5600m resolution 
was used in our analyses. 
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S5.3. MODIS BNU LAI 

The MODIS BNU LAI data set was created by post-processing the standard Collection 5 Terra 
MODIS LAI product (MOD15A2) [47]. An integrated two-step method was developed to generate the 
improved LAI data sets. First, a modified temporal spatial filter (mTSF), based on a TSF method 
developed by [S2,S3], was used to gap-fill the LAI product and screen out low-quality data using 
quality control flags and fill-value information. Second, the TIMESAT Savitzky-Golay filter [S4] was 
applied to generate the improved MODIS BNU LAI data set [47].  

S5.4. MODIS BU FPAR 

The MODIS BU FPAR data set was developed by post-processing the standard Collection 5 Terra 
MODIS FPAR product (MOD15A2) through a two-step process [48]: (1) A 1 × 1 km2 8-day FPAR 
pixel was considered valid when (a) data is of good quality or (b) Clouds are absent. (2) As the 8-day 
LAI aerosol flag fails to distinguish between average and high aerosol loadings nor reports use of 
climatological aerosol values, valid 8-day values were averaged to produce 16-day FPAR values 
whose validity is determined using the 1 × 1 km2 16-day VI quality flags corresponding to cloud and 
aerosol flags: (a) VI data is produced, (b) VI usefulness is between 0 and 11, and (c) Clouds are absent. 
Valid 1 × 1 km2 16-day FPAR values were averaged to obtain monthly FPAR values.  Finally, valid  
1 × 1 km2 monthly values were aggregated to 8 × 8 km2 spatial resolution. 

S6. Data Preprocessing 

AVHRR GIMMS NDVI3g, Terra MODIS BNU LAI and Terra MODIS BU FPAR are the three 
key input data sets for generating GIMMS LAI3g and FPAR3g data sets. The temporal coverage of the 
three input data sets are July 1981 to December 2011, February 2000 to December 2010 and February 
2000 to December 2009, respectively. The common period of these data sets is therefore February 
2000 to December 2009. The following preprocessing of the three key input data sets during the 
common period was implemented.  

The native temporal frequency of AVHRR GIMMS NDVI3g, MODIS BNU LAI and MODIS BU 
FPAR are 15-day, 8-day and monthly, respectively. Data sets with different temporal frequencies are 
difficult to utilize in a Feed Forward Neural Network (FFNN) model. Therefore, we composited 
AVHRR GIMMS NDVI3g and MODIS BNU LAI to a monthly timescale. This has the added 
advantage of further reducing any residual atmospheric corruption in the data sets. 

All the remote sensing data sets (Table S2) are in the same projection system (Geographic Lat/Lon, 
WGS84). However, the spatial resolutions of the data sets are different. It is critical to resample the 
data to have the same spatial resolution for each of the key input data sets because the FFNN model is 
based on a pixel-level training process. Therefore, we resampled the data sets listed in Table S2 to the 
same spatial resolution as the NDVI3g data set (2,160 rows × 4,320 columns with a pixel size of 0.083 
degree). The “nearest neighbor” algorithm was used for resampling the MODIS land cover map, while 
the bi-cubic resampling was used for all the other data sets. 

The following Sections describe in detail the data preprocessing steps. The data were first composited 
and then resampled to prevent errors due to resampling being transferred to the compositing process.  
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S6.1. Definition of Valid Pixels 

Typical NDVI values range between −0.2 and 0.1 for snow, inland water bodies, deserts, and 
exposed soils, and increase from about 0.1 to over 0.9 for increasing amounts of vegetation [44]. Thus, 
we define the valid range for NDVI in our study as 0.1 to 1. Pixels with NDVI value in this range are 
defined as valid NDVI pixels. Similarly, we define the valid range for LAI as 0.05 to 7 and for FPAR 
as 0.05 to 1. Only pixels that have valid NDVI, LAI, and FPAR values were used in this study. The 
following groups of valid pixels are relevant to our study: (a) pixels with valid NDVI values (N-valid 
pixels), (b) pixels with valid LAI values (L-valid pixels), (c) pixels with valid FPAR values (F-valid 
pixels), (d) pixels with valid NDVI values and valid LAI values (NL-valid pixels) and (e) pixels with 
valid NDVI values and valid FPAR values (NF-valid pixels). Obviously, there will be other valid 
combinations, e.g. NLF-valid pixels, i.e., pixels with valid NDVI values, valid LAI values and valid 
FPAR values and LF-valid pixels, i.e., pixels with valid LAI values and valid FPAR values. However, 
these combinations are not relevant because they are not used in our study. Type (a) pixels were used 
in the process of generating GIMMS LAI3g and FPAR3g. Type (b) and (c) pixels were used in 
preprocessing of MODIS BNU LAI and MODIS BU FPAR, respectively. Type (d) and (e) pixels were 
used in the process of training the FFNN models. 

S6.2. Creation of Multi-Year Average Monthly AVHRR GIMMS NDVI3g 

We preprocessed the NDVI3g in three steps: (a) generated monthly data by averaging the 15-day 
composites for each month and (b) further averaged these over the same months during the common 
period (February 2000 to December 2009). No resampling was needed as 1/12 degree is the benchmark 
spatial resolution of all the data sets. It should be noted that only “N-valid pixels” (Section S6.1) were 
used in the preprocessing. 

S6.3. Creation of Multi-Year Average Monthly MODIS BNU LAI 

A four-step compositing method was used to create monthly MODIS BNU LAI: (a) composite the 
8-day data to 15-day using an accurate date-weighted compositing method, (b) composite the 15-day 
data to monthly values by averaging the two 15-day composites in each month, (c) evaluate multi-year 
average monthly MODIS BNU LAI data set by averaging the monthly composites during the common 
period, February 2000 to December 2009, and (d) resample the resulting 1km data to 1/12 degree. It 
should be noted that only “L-valid pixels” (Section S6.1) were used in the four steps. The following is 
a more detailed explanation of step one. 

Figure S1 is an illustration of how we calculated the weight for each 8-day composite. We separated 
the date line into three parts using four points. “B” and “D” are the start and end days of the half month, 
“A” is the date seven days before “B”, “C” is the date seven days before “D”. The native temporal 
resolution of MODIS BNU LAI is 8 days. The starting dates of MODIS BNU LAI in a year are:  ݏ݁ݐܽܦ ൌ 1: 8: 361 (S1)

For non-leap years, we obtain the bi-weekly break points as in Table S3. For leap years, we obtain 
the bi-weekly break points as in Table S4. Data with starting dates before “A” or later than “D” are not 
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taken into account in estimating the LAI for the 15-day period in question. Different weights are assigned 
to data with starting dates (Equation (S1)) in the range of [A, B), [B, C], and (C, D] separately:  

ቐ ሺ݅ሻݓ ൌ 8 െ ሾܤ െ ݀ሺ݅ሻሿ ݀ሺ݅ሻ א ሾܣ, ሺ݅ሻݓሻܤ ൌ 8 ݀ሺ݅ሻ א ሾܤ, ሺ݅ሻݓሿܥ ൌ ܦ െ ݀ሺ݅ሻ ൅ 1 ݀ሺ݅ሻ א ሺܥ, ሿ (S2)ܦ

Here ݓሺ݅ሻ and ݀ሺ݅ሻ are the assigned weight and date of 8-day composite ݅, respectively. Assuming that 
there are nc composites in the range of [A, D], we use the following method to create the LAI 
composite, pixel-by-pixel, for the 15-day period:  

ଵହିௗ௔௬ሺܿሻܫܣܮ ൌ ෍ ௗ௔௬ሺ݅ሻି଼ܫܣܮ · ሺ݅ሻ௡೎ݓ
௜ୀଵ ෍ ሺ݅ሻ௡೎ݓ

௜ୀଵ൙  (S3)

Here LAIଵହିௗ௔௬ሺܿሻ is the LAI value of the pixel for the cth 15-day composite, ܫ଼ܣܮ ିௗ௔௬ሺ݅ሻ is the LAI 
value of the pixel of 8-day composite ݅, and ݓሺ݅ሻ is the corresponding weight (Equation (S2)), ݊௖ is the 
number of 8-day composites that fall in the date range of cth 15-day composite. Equation (S3) was used 
to create the 15-day MODIS BNU LAI composites during the period February 2000 to December 2009.  

S6.4. Creation of multi-year average monthly MODIS BU FPAR 

The only required preprocessing is multi-year averaging and resampling as the native temporal 
frequency of MODIS BU FPAR is monthly. First, the data are averaged over the corresponding 
months during the common period February 2000 to December 2009. The resulting data are then 
resampled to the common spatial resolution (1/12 degree). Only “F-valid pixels” (Section S6.1) are 
taken into account. 

S7. Feed Forward Back-Propagation Neural Network (FFNN) 

S7.1. Preparation of Training Data 

A four-step data processing was performed to create more training data for each month. The 
following description uses LAI as an example—the processing for FPAR is identical.  

(1) Set a window size as M × N: M is the number of rows; N is the number of columns. The total 
pixel number in the window is M × N. 

(2) Create a table with five columns: NDVI, land cover, latitude, longitude and LAI. The table will 
be used to record the entries for each window in Step (1). 

(3) For each pixel in the window: 

a. Tag vegetated (land covers shown in Table S5) “NL-valid pixels” (Section S6.1) as “valid”.  
b. Count the total number of pixels for each land cover. 
c. Set a threshold t. If the number of valid pixels of a particular land cover is greater than M × N × 

t, calculate the mean NDVI value and mean LAI value.  
d. Calculate the central latitude and longitude for the window. 
e. Record these variables in the table created in Step (2) above. 
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(4) Move the window across the entire global land surface and repeat the calculations described in 
Step (3). 

Here is an example for Step (3). Assume that there are four land covers in a window but only three 
of which are vegetated land covers: class A, class B and class C (Figure S2). We denote the vegetated 
“NL-valid pixels” (Section S6.1) as valid. We then count the number of valid pixels for each land 
cover class. If we set the threshold value of t as 0.2, then only Class A and Class B will be taken into 
account. Then, we calculate their mean NDVI and mean LAI. Further we calculate the central latitude 
and central longitude of this window.  

We create a table for each month of the year using the process described above. Thus, twelve tables 
(LAI tables) were created to train the FFNN models for generating LAI3g product. Similarly, another 
twelve tables (FPAR tables) were created to train the FFNN models for generating the FPAR3g 
product. In our study, window size was set to 10 × 10 pixels and the threshold t was set to 0.1. 

S7.2. Training the FFNN Model 

Artificial neural networks (ANN) have been used in a diverse range of research fields [S5–S10]. 
ANNs have the ability to reveal unknown relationships underlying the data and require no initial 
assumptions. A neural network consists of: (1) the transfer model of a single neuron, (2) the 
topological connections between these simple neurons, and (3) the weight or strengths of each 
connection between the neurons. 

A widely used neural network named Feed Forward Neural Network (FFNN) generally consists of 
three layers: input layer, hidden layer and output layer. The neurons are connected from one layer to 
the next but not within the same layer. Signals always flow from the input layer to the hidden layer and 
from the hidden layer to the output layer through the unidirectional connections. FFNN can 
approximate any continuous function to an arbitrary precision [S11]. However, a problem called  
over-fitting might occur during neural network training process. However, there is little or no chance 
of over-fitting if the number of training data is much larger than the number of parameters in the neural 
network, which is the case in our study. 

In this study, we built a FFNN model with three layers: input layer, hidden layer and output layer 
(Figure S3). The numbers of neurons of input layer and output layer are four and one. The four 
neurons in the input layer transfer the signals from the input vectors (GIMMS NDVI3g, land cover, 
window-center latitude and window-center longitude) to the hidden layer. The one neuron in the output 
layer receives the signals sent by the hidden layer and predicts LAI3g (or, FPAR3g). Unlike the input 
layer and the output layer, we cannot arbitrarily determine the number of neurons in the hidden layer. 
Generally, larger numbers of neurons in the hidden layer give the network more flexibility. However, 
too many neurons in the hidden layer requires more computational resources and may cause the 
problem of over-fitting. Through iteration, we decided to create a hidden layer with eleven neurons.  

To prevent over-fitting and test the performance of the FFNN, the training data set was split into 
three sets: 70% as training data, 15% as validation data and 15% as test data. The network was trained 
with training data until its performance began to decrease on the validation data, which means that 
generalization has peaked. The test data provided a completely independent test of network 
generalization. The performance function to evaluate the network training process is mean square error 
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which is the average squared error between the network outputs and the target outputs [S12]. Ten 
networks with different initial values were trained independently. The network providing the best 
performance was selected as the final FFNN model that was used for generating GIMMS LAI3g and 
FPAR3g data sets.  

Following the above training process, we trained 12 FFNN models for generating LAI3g using the 
tables prepared in Section S7.1. Similarly, we also trained 12 FFNN models for generating FPAR3g 
data set. 

S8. Analysis of the Impact of Mount Pinatubo Eruption and NOAA 11 Orbital Drift on 
Identifying Dominant Modes of Interannual Variability 

The impact of Mount Pinatubo eruption in mid-1991 and significant orbit loss of NOAA 11 is 
clearly visible in the time series in Figure 1, especially in the tropics and in the forested regions of the 
globe. This section intends to analyze the impact of Mount Pinatubo eruption and orbit loss of NOAA 
11 on identifying dominant modes of interannual variability in Section 3.4. There are two ways to 
further investigate the problem: (1) performing the CCA analysis with the time series that affected by 
the Mount Pinatubo eruption and NOAA 11 orbital drift (1989 to 1994), and (2) performing the CCA 
analysis with the full time series except for the period of Mount Pinatubo eruption and NOAA 11 
orbital drift. However, the first method may provide unreliable results because the six-year time series 
(1989 to 1994) is too short to perform statistical analysis. Thus, we used the second method to 
investigate the potential effects of the disturbances. The LAI3g and FPAR3g for the period that NOAA 
11 satellite provides the GIMMS NDVI3g data and Mount Pinatubo erupted (January1989 to 
December 1994) were truncated. We combined the data sets in two discontinuous periods (January 
1982 to December 1988 and January 1995 to December 2009) to obtain a new time series that are not 
affected by Mount Pinatubo eruption and satellite orbital drift. 

The Mount Pinatubo eruption and orbital drift mainly affected the tropical region between 1989 and 
1994 (Figure 1). We can hardly detect any strong suspicious coincidence with the orbital drift of the 
NOAA 11 satellite in other regions. Thus, we decided to do this analysis for the latitude band −40°S to 
40°N. From Section 3.4 in the Manuscript we know the 1st CCA factor from our products and 
precipitation is strongly correlated with NINO3 index. Also, we can see there were several noticeable 
ENSO events (the shadings) during the excluded period. It is very likely that we may get lower 
correlation coefficients if we drop this period. However, if the new coefficients are greater than the 
coefficients in Figure 6(c) and Figure S9(c), we can conclude that the Mount Pinatubo eruption and 
orbital drift of NOAA 11 did influence the CCA analysis in Section 3.4 and the Mount Pinatubo 
eruption and orbital drift effects cannot be well explained by the ENSO events during that period. 
Thus, we decided to do the CCA analysis of the truncated LAI3g/FPAR3g and precipitation data 
records and calculate the correlation between the 1st CCA factor and NINO3 index. 

We performed the CCA analysis between the truncated LAI3g and FPAR3g and precipitation, and 
evaluated the correlation between the 1st CCA factor and NINO3 index in the latitude band −40°S to 
40°N. The results are shown in Figure S10. Comparing Figure S10(a) and Figure 6(c), the correlation 
coefficient between precipitation CF1 and NINO3 (SON-1) increased slightly (0.53 vs. 0.50). The 
correlation coefficient between LAI CF1 and NINO3 (SON-1) similarly increased slightly (0.52 vs. 



 
 

 

0
C
C

in
th

S

0.48). Comp
CF1 and NIN
CF1 and NIN

Thus, we
nfluence the
he ENSO ev

S10. Figure

Figure
data to
and en

Figure
in a su
Class C
valid d

Figure
FFNN
output
are inp

paring Figu
NO3 (SON
NO3 (SON-
e may conc
e CCA anal
vents during

es S1–S10 

e S1. Meth
o a bi-month
nd day of th

e S2. Schem
ub-image. A
C are IGBP
data are show

e S3. Struct
N consists of
t layer. GIM
put paramete

ure S10(b) 
-1) increase
-1) increase
clude that t
lysis in Sec
g that perio

hod to calcu
hly LAI com
e month, A 

matic illustra
Assume that 
P land cover
wn as “Ο” a

ture of the F
f a four-neur

MMS NDVI3
ers. The out

and Figure
ed slightly (
ed more (0.5
the Mount 

ction 3.4 and
d. However

ulate the w
mposite as d
and C are 7

ation of how
there are fo
s considered
and pixels w

Feed Forwa
ron input lay
3g, MODIS
tput of the F

 S9(c), the 
(0.51 vs. 0.4
57 vs. 0.45)
Pinatubo e

d that the or
r, the magni

eight while
described in
7 days laggi

w to calculat
our land cov
d in this stu

with invalid 

ard Neural N
yer, an elev
 IGBP land 

FFNN is the 

correlation
44). The cor
. 
eruption an
rbital drift e
itude of the

e compositin
n Section S6
ing B and D

te mean valu
vers in the w
udy, Class D
data are sho

Network (FF
ven-neuron h

covers, pix
predicted L

n coefficien
rrelation co

nd orbital d
effects cann
se effects re

ng 8-day M
6.3. B and D

D. 

ues of NDV
window: Cla
D is non-veg
own as “×”. 

 

FNN) used 
hidden layer
xel latitude a
LAI (or FPA

nt between 
efficient be

drift of NOA
not be well 
emains unkn

MODIS BN
D are the st

 

VI, LAI, and
ass A, Class

getated. Pixe

in this stud
r and a one-
and pixel lon
AR) value.  

 

precipitatio
etween FPA

AA 11 doe
explained b
nown.  

NU LAI 
tart day 

d FPAR 
s B and 
els with 

dy. The 
-neuron 
ngitude 

9 

on 
AR 

es 
by 



 10 
 

 

Figure S4. Comparison of monthly FPAR values from CYCLOPES and FPAR3g data sets 
for four broad vegetation classes (forests (a), other woody vegetation (b), herbaceous 
vegetation (c) and cropland/natural vegetation mosaics) for the period 1999 to 2007. These 
classes are groups of IGBP land cover types as per Table S5.  

(a) (b) 

(c) (d) 

Figure 5. Comparison of monthly LAI values from CYCLOPES and LAI3g data sets for 
four broad vegetation classes (forests (a), other woody vegetation (b), herbaceous vegetation 
(c) and cropland/natural vegetation mosaics). These classes are groups of IGBP land cover 
types as per Table S5. The plotted data are monthly averages for the years 1999 to 2007.  

(a) (b) 
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Figure S5. Cont. 

(c) (d) 

Figure S6. Comparison of monthly FPAR values from CYCLOPES and FPAR3g data sets for 
four broad vegetation classes (forests (a), other woody vegetation (b), herbaceous vegetation 
(c) and cropland/natural vegetation mosaics). These classes are groups of IGBP land cover 
types as per Table S5. The plotted data are monthly averages for the years 1999 to 2007.  

(a) (b) 

(c) (d) 
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Figure S7. Density scatter plots of monthly FPAR3g and CYCLOPES FPAR for 323 
BELMANIP sites for the time period from 1999 to 2007. The plots show correlation 
between the two products for four broad groups of vegetation which are grouping of the 
IGBP land covers (Table S5). The black dash line is the 1:1 line. The solid black lines are 
regression lines derived from the scatter plot.  

(a) (b) 

(c) (d) 

Figure S8. Statistical evaluation of FPAR3g with temperature in the northern latitudes and 
precipitation in the tropical regions. (a) Statistical analyses between approximate growing 
season (May to September) averages of FPAR3g and surface temperature in the northern 
latitudes (50°N–90°N) for the overlapping period of the two data sets (1982 to 2009). The 
inset in (a) shows temporal variations of standardized anomalies of growing season 
averages of FPAR3g and temperature. (b) Correlation between annual mean FPAR3g and 
annual total precipitation in the tropical latitudes (23°S–23°N).  

(a) (b) 
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Figure S9. Correlations between the standardized time series of the first and second 
canonical factors (CF1 and CF2) of land surface temperature, precipitation and FPAR3g 
with NINO3 and AO indices in the northern (10°N to 90°N) and tropical/extra-tropical 
regions (40°S to 40°N) for the period 1982 to 2009. The standardized September through 
November average NINO3 index time series of the preceding year and the January through 
March average AO index are shown in these plots as black dash lines. 

(a) (b) 

(c) (d) 

Figure S10. Correlations between the standardized time series of the first canonical 
factors (CF1) of precipitation and (a) LAI3g, (b) FPAR3g and NINO3 index in the 
tropical/extra-tropical regions (40°S to 40°N) for the discontinuous periods 1982 to 1988 
and 1995 to 2009. The standardized September through November average NINO3 index 
time series of the preceding year is shown in these plots as black dash lines. 

(a) (b) 
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S11. Tables S1-S5 

Table S1. CMIP5 ESM simulations of LAI used in this article (Figure 7).  

MODELS Source 
Spatial 

Resolution 
(lon × lat) 

BCC-CSM1 
Beijing Climate Center, China Meteorological Administration, 

China 
2.813° × 2.813° 

CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 2.813°× 2.813° 
CCSM4 National Center for Atmospheric Research, United States 1.250° × 0.938° 

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, United States 2.500° × 2.000° 
GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, United States 2.500° × 2.000° 
HadGEM2-CC Met Office Hadley Centre, UK 1.875° × 1.241° 
HadGEM2-ES Met Office Hadley Centre, UK 1.875° × 1.241° 

INMCM4 Institute for Numerical Mathematics, Russia 2.000° × 1.500° 
IPSL-CM5A-LR Institut Pierre Simon Laplace, France 3.750° × 1.875° 
IPSL-CM5A-MR Institut Pierre Simon Laplace, France 2.500° × 1.259° 
IPSL-CM5B-LR Institut Pierre Simon Laplace, France 3.750° × 1.875° 

MIROC-ESM-
CHEM 

Japan Agency for Marine-Earth Science and Technology, Japan; 
Atmosphere and Ocean Research Institute, Japan; 

National Institute for Environmental Studies, Japan 
2.813° × 2.813° 

MIROC-ESM 
Japan Agency for Marine-Earth Science and Technology, Japan; 

Atmosphere and Ocean Research Institute, Japan; 
National Institute for Environmental Studies, Japan 

2.813° × 2.813° 

MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.875°× 1.875° 
MPI-ESM-P Max Planck Institute for Meteorology, Germany 1.875° × 1.875° 

MPI-ESM-MR Max Planck Institute for Meteorology, Germany 1.875° × 1.875° 
NorESM1-M Norwegian Climate Centre, Norway 2.500° × 1.875° 

NorESM1-ME Norwegian Climate Centre, Norway 2.500° × 1.875° 

Table S2. Remote sensing data sets used for generating the GIMMS LAI3g and FPAR3g 
data sets. 

Data Name 
AVHRR GIMMS 

NDVI3g 
MODIS BNU 

LAI 
MODIS BU 

FPAR 
MODIS Land 

Cover 
Area Global Global Global Global 

Projection Lat/Lon Lat/Lon Lat/Lon Lat/Lon 
Spatial 

Resolution 
0.083 degree 1 km 0.072 degree 0.05 degree 

Temporal 
resolution 

15-day 8-day monthly yearly 

Temporal 
Coverage 

Jul 1981– 
Dec 2011 

Feb 2000– 
Dec 2009 

Feb 2000– 
Dec 2010 

2007 

Data Type Int16 Uint8 Unint8 Uint8 
Data Format HDF NETCDF Binary HDF 
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Table S3. Bi-weekly break points for non-leap years. We separate each month into two parts: 
(1) first half of the month, from the 1st to 15th of a month; (2) second half of the month, from 
the 16th to the end of that month. All the break points are presented as Julian days. 

Month 
First Half Month Second Half Month 

Start Day End Day Start Day End Day 
January 1 15 16 31 

February 32 46 47 59 
March 60 74 75 90 
April 91 105 106 120 
May 121 135 136 151 
June 152 166 167 181 
July 182 196 197 212 

August 213 227 228 243 
September 244 258 259 273 

October 274 288 289 304 
November 305 319 320 334 
December 335 349 350 365 

Table S4. Bi-week break points for leap years. We separate each month into two parts: 
(1) first half of the month, from the 1st to 15th of a month; (2) second half of the month, 
from the 16th to the end of that month. All the break points are presented as Julian days. 

Month 
First Half Month Second Half Month 

Start Day End Day Start Day End Day 
January 1 15 16 31 

February 32 46 47 60 
March 61 75 76 91 
April 92 106 107 121 
May 122 136 137 152 
June 153 167 168 182 
July 183 197 198 213 

August 214 228 229 244 
September 245 259 260 274 

October 275 289 290 305 
November 306 320 321 335 
December 336 350 351 366 

Table S5. Cross-walk table from IGBP vegetation classes [50] to 4 broad vegetation 
classes used in some of our analysis. 

IGBP Class Vegetation Names Dominant Classes 
1 Evergreen needleleaf forests

Forests 
2 Evergreen broadleaf forests 
3 Deciduous needleleaf forests
4 Deciduous broadleaf forests
5 Mixed forests 
6 Closed shrublands 

Other woody vegetation 7 Open shrublands 
8 Woody savannas 
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Table S5. Cont. 

IGBP Class Vegetation Names Dominant Classes 
9 Savannas 

Herbaceous vegetation 
10 Grasslands 
12 Croplands 

Cropland/natural vegetation mosaics
14 Cropland/natural vegetation mosaics
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