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Abstract: Using estimated leaf unfolding data and two types of Normalized Difference 
Vegetation Index (NDVI and NDVI3g) data generated from the Advanced Very High 
Resolution Radiometer (AVHRR) in the deciduous broadleaf forest of northern China 
during 1986 to 2006, we analyzed spatial, temporal and spatiotemporal relationships and 
differences between ground-based growing season beginning (BGS) and NDVI 
(NDVI3g)-retrieved start of season (SOS and SOS3g), and compared effectiveness of NDVI 
and NDVI3g in monitoring BGS. Results show that the spatial series of SOS (SOS3g) 
correlates positively with the spatial series of BGS at all pixels in each year (P < 0.001). 
Meanwhile, the time series of SOS (SOS3g) correlates positively with the time series of 
BGS at more than 65% of all pixels during the study period (P < 0.05). Furthermore, when 
pooling SOS (SOS3g) time series and BGS time series from all pixels, a significant positive 
correlation (P < 0.001) was also detectable between the spatiotemporal series of SOS 
(SOS3g) and BGS. In addition, the spatial, temporal and spatiotemporal differences between 
SOS (SOS3g) and BGS are at acceptable levels overall. Generally speaking, SOS3g is more 
consistent and accurate than SOS in capturing BGS, which suggests that NDVI3g data might 
be more sensitive than NDVI data in monitoring vegetation leaf unfolding. 
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1. Introduction 

Monitoring the vegetation growing season is crucial not only for assessing ecosystem responses to 
climate change [1,2] but also for identifying the carbon-uptake period [3–9] and examining the seasonal 
exchanges of water and energy between land surface and atmosphere [10,11]. So far, there are two types 
of approaches for detecting the vegetation growing season. The conventional phenology approach has 
focused on observing and simulating the ground-based growing season at spatially discrete sites using 
the phenological data of individual plants [12–16]. This kind of approach identifies the individual plant 
growing season at local scales but may not represent the growing season of plant communities at regional 
scales. By contrast, the land surface phenology approach determines the satellite-derived growing season 
retrieved from various vegetation index data, such as the Normalized Difference Vegetation Index data 
from the Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging 
Spectroradiometer (MODIS) [17–28] over broad and continuous geographic coverage. Because metrics 
and thresholds of vegetation indices may not directly correspond to conventional, ground-based 
phenological events, but rather provide indicators of vegetation dynamics [19], a detailed comparison of 
these satellite measures with ground-based phenological events is needed [29–33]. However, validation 
of remote sensing retrievals is an important but difficult task because of spatial scale differences, 
temporal resolution of the observations, and quality of the field measurements [32,33]. In recent years, some 
studies have been carried out to compare satellite-derived onset and offset of greenness with surface 
phenological stages of individual plants at selected locations, and found relatively consistent spatiotemporal 
variations between ground-based and satellite-derived growing season beginning and end dates [32–35]. 
Nevertheless, this kind of validation of land surface phenology might be limited by a lack of in situ datasets 
collected across ecosystems at spatial scales commensurate with satellite data [31,33,36–42]. Substantial 
validation is therefore possible by upscaling intensive field phenology measurements to vegetation 
community and landscape scales [42]. On the basis of above considerations, we established gridded 
spatial datasets of growing season beginning dates year-by-year by extrapolating leaf unfolding (LU) 
dates of indicator tree species from the stations of model fitting to all pixels within the research region 
using station-specific spatial phenology models [16] and gridded daily temperature data in each year. In 
this way, we obtained a ground-based phenology dataset at spatial scales commensurate with the 
satellite-derived phenology dataset, so that the pixel to pixel comparison can be implemented. Both 
AVHRR Normalized Difference Vegetation Index (NDVI) data and AVHRR third generation 
Normalized Difference Vegetation Index (NDVI3g) data were used for this research. The main objective 
was to compare performance of the satellite-derived start of season (SOS) from AVHRR NDVI and 
NDVI3g in monitoring ground-based growing season beginning (BGS) based on spatial and temporal 
correlation analysis and error estimates. 
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2. Materials and Methods 

2.1. Study Area and Plant Species Selection 

Many studies have shown that performance of land surface phenology in monitoring ground 
vegetation phenology depends significantly on selected vegetation types [26,32,43–46]. Since seasonal 
feature change of the temperate deciduous broadleaf forest (TDBF) is remarkable in the Northern 
Hemisphere, we selected the TDBF areas in northern China to analyze the relationship between the 
ground observed phenological stage and remotely sensed deciduous canopy development. In order to 
obtain real and precise vegetation information, we used land cover dataset to determine spatial ranges of 
the TDBF as the study areas (Figure 1). 

Figure 1. Distribution of the temperate deciduous broadleaf forest areas in northern China. 

 

The TDBF is a dominant forest vegetation type in northern China, which is distributed mainly in 
mountainous areas (Figure 1). The plant community is composed of heliophilous broadleaf trees and 
shrubs with remarkable seasonality, including Quercus, Betula, Carpinus, Ulmus, Celtis, Acer, Populus, 
Malus, etc. [47]. In order to establish an in situ dataset of spring phenology across the TDBF, we 
selected four dominant tree species to represent the local plant community. The selected tree species 
include Salix matsudana (Hankow Willow), Populus simonii (Simon Poplar), Ulmus pumila (Siberian 
Elm) and Prunus armeniaca (Common Apricot) that are all native deciduous trees and grow widely in 
temperate northern China. In this study, we defined mean LU beginning dates of the four dominant tree 
species as ground-based BGS of local plant community. 

2.2. Phenological Data 

The LU data during 1986 to 2006 were acquired from the China Meteorological Administration 
(CMA). The CMA network is the largest phenological observation system in China and came into 
operation in 1980 [48]. Observation contents include phenophases from 28 common species of woody 
plants, one common species of herbaceous plant, and 11 common species of animals [49]. Among the 
observed woody plants, the number of stations and the recorded data for the four tree species are much 
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more than other species. According the observation criteria [49], LU beginning was identified when a 
few leaves are fully spreading in spring. It should be noted that because time series lengths of LU 
beginning data are not identical among stations and species, the number of stations for LU modeling is 
different for the four tree species, namely, 77 stations for Salix matsudana, 61 stations for Populus 
simonii, 72 stations for Ulmus pumila, and 40 stations for Prunus armeniaca, which are located in 
temperate northern China (Figure 2). 

Figure 2. Distribution of phenological stations and time series length of leaf unfolding data 
for the four tree species. 

 

2.3. Climate Data 

Daily mean air temperature data at 343 stations in temperate northern China from 1986 to 2006 were 
acquired from the China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/). In order 
to establish in situ dataset of LU beginning over a continuous geographic coverage, we used climate data 
interpolation package ANUSPLIN 4.2 [50] and Digital Elevation Model (DEM) data derived from the 
US Geological Survey to interpolate the daily mean air temperature into 8 km × 8 km grids over the 
deciduous broadleaf forest areas. Based on the gridded daily mean temperature dataset and daily 
temperature-based spatial phenology models [16], we estimated LU beginning dates of the four tree 
species at each grid and in each year. 

2.4. Satellite Data and Data Processing 

Two types of NDVI datasets generated from AVHRR sensor by Global Inventory Monitoring and 
Modeling System (GMMIS) [51] were used in this study. The available NDVI data are from July 1981 to 
December 2006 with the spatial resolution of 8 km and temporal interval of 15 days. So far, the AVHRR 



Remote Sens. 2013, 5 849 
 
NDVI is the most widely used data source for monitoring vegetation dynamics over large geographical 
coverage during the past two decades [22,26,28,52,53]. The AVHRR NDVI3g dataset was also 
developed under the framework of GIMMS project. The spatial resolution and temporal interval of the 
AVHRR NDVI3g dataset are similar to AVHRR NDVI but the time series length is prolonged to 
December 2011. AVHRR NDVI3g was carefully assembled from different AVHRR sensors and 
accounted for several deleterious effects, such as calibration loss, orbit drift, volcanic eruption. 

Land cover data used in this study is the Global Land Cover Classification collection (GLCC) 
generated by the University of Maryland [54]. The GLCC product utilized the taxa method proposed by 
the International Geosphere-Biosphere Program (IGBP) and was validated by Landsat Thematic Mapper 
(TM) images [55]. Imagery acquired from the AVHRR satellites between 1981 and 1994 was analyzed 
to distinguish fourteen land cover classes. Since this product is available at 8 km pixel resolutions, it is 
suitable for defining land cover types in our study. 

With regard to data processing, first, we used the Savitzky-Golay filter to smooth the original NDVI 
time series so that abnormal high and low values could be eliminated [56]. Then, we selected midpoint 
model [22] to extract the satellite-derived start of season at each pixel and in each year. Here, the start of 
season derived from AVHRR NDVI dataset was denoted as SOS, while the start of season derived from 
AVHRR NDVI3g dataset was denoted as SOS3g. According to ranges of observed LU dates of 
dominant tree species in northern China, we eliminated the abnormal SOS and SOS3g data outside the 
period of 50–180 day of year (DOY). 

2.5. Daily Temperature-Based Spatial Phenology Model 

The basic hypothesis is that the station-to-station variation of a phenological event occurrence date 
over an area is mainly influenced by station-to-station variation of daily mean temperature within a 
particular length period (LP) of days during and before its occurrence over the area. In order to 
determine the LP during which the station-to-station variation of daily mean temperature affects 
station-to-station variation of the phenological occurrence date most remarkably in a year, we first 
calculated the number of days between the earliest and latest date in spatial series of the phenological 
occurrence dates across the stations in the year, calling this the basic LP (bLP). Then, we computed the 
daily mean temperature spatial series at the stations in the year during the bLP plus a moving LP (mLP) 
prior to the earliest date in spatial series of the phenological occurrence date by step length of one day, 
namely, during bLP + 1 day, bLP + 2 days, bLP + 3 days, etc. Thus, the LP is defined as follows: 

LP bLP mLP= +  (1)

Further, we calculated correlation coefficients between spatial series of the phenological occurrence 
date and spatial series of daily mean temperature during different LPs (bLP + 1 day, bLP + 2 days, 
bLP + 3 days, etc.) at the stations in the year. Finally, we obtained the optimum LP with the largest 
correlation coefficient between spatial series of the phenological occurrence date and spatial series of 
daily mean temperature in the year [16]. 

Based on the species-specific daily mean temperature within the optimum LP in each year, we 
established daily mean temperature-based spatial LU regression models for the four tree species and in 
each year. External validation showed that the daily mean temperature-based spatial LU regression 
models have a strong spatial extrapolation capability to LU dates of the four tree species at external 
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stations. Since these models allowed simulation and prediction of yearly spatial patterns of LU dates on 
the basis of yearly spatial patterns of LP temperatures, we substituted the species-specific LP 
temperatures at all 8 km × 8 km grids within the deciduous broadleaf forest areas in each year into the 
corresponding yearly spatial LU models of the four tree species, respectively, and obtained gridded 
ground-based LU dates of the four tree species in each year. Then we calculated mean LU dates of the 
four tree species at each grid and in each year as the ground-based LU dataset. Figure 3 shows 
procedures of daily mean temperature-based spatial LU simulation and extrapolation. 

Figure 3. Flow-diagram of daily mean temperature-based spatial LU simulation and extrapolation. 

 
2.6. Error Estimate 

In order to estimate the difference between satellite-derived SOS (SOS3g) and ground-based BGS, 
we used two criteria: the mean error (ME) between SOS (SOS3g) and BGS, and the mean absolute error 
(MAE) between SOS (SOS3g) and BGS. They were calculated by the following formula: 
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where SOSi is the satellite-derived start of season (DOY) in year i or at pixel i; BGSi is the ground-based 
beginning of the growing season (DOY) in year i or at pixel i; n is the number of years for estimating the 
difference between SOS (SOS3g) and BGS time series or the number of pixels for estimating the 
difference between SOS (SOS3g) and BGS spatial series. 
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3. Results 

3.1. Spatial Relationship between Satellite-Derived SOS (SOS3g) and Ground-Based BGS 

Generally speaking, mean BGS, SOS and SOS3g show a similar spatial pattern with an obviously 
latitudinal progression from south (earlier) to north (later) over 1986 to 2006. In addition, an 
approximately longitudinal progression can also be detected from east (earlier) to west (later) in the 
eastern part of northern China. The spatial differences in BGS, SOS and SOS3g were from 90 DOY (the 
end of March) to 170 DOY (early June) (Figure 4).  

Figure 4. Spatial pattern of mean BGS (growing season beginning), SOS (start of season) 
and SOS3g over 1986 to 2006 in the deciduous broadleaf forest of northern China. (a) BGS; 
(b) SOS; (c) SOS3g. 

 

In order to precisely assess spatial consistency between SOS (SOS3g) and BGS, we carried out a 
correlation analysis between spatial series of SOS (SOS3g) and BGS year-by-year. Results show that 
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both SOS and SOS3g correlates positively with BGS in each year (P < 0.001). We noted that spatial 
correlation coefficients between SOS3g and BGS are larger than those between SOS and BGS in each 
year, which indicates that spatial patterns of AVHRR NDVI3g-derived SOS may be more consistent 
with spatial patterns of ground-based BGS (Table 1). 

With regard to mean differences between satellite-derived SOS (SOS3g) and ground-based BGS at 
all pixels in each year, the MEs are between −2.8 days (1998) and 6.1 days (1990) for SOS and between 
−6.2 (2004) and 1.9 days (1990) for SOS3g. The absolute values of MEs are less than 5 days in 19 of 21 
years (90%) for both SOS and SOS3g. Meanwhile, the MAEs are between 6.6 (1988) days and 11.0 days 
(2004) for SOS and between 6.0 days (1988) and 10.0 days (2004) for SOS3g. Overall, the MAEs for 
SOS3g are obviously smaller than the MAEs for SOS in all year except 2005. That is, the AVHRR 
NDVI3g-derived SOS may be more similar to the ground-based BGS than the AVHRR NDVI-derived 
SOS (Table 1). 

Table 1. Spatial correlation coefficients (r), mean error (ME) and mean absolute error 
(MAE) between SOS (SOS3g) and BGS at all pixels in each year (n = 3,994). 

Year 
Between SOS and BGS Between SOS3g and BGS 

r ME MAE r ME MAE 
1986 0.46 *** 1.91 8.63 0.64 *** −3.45 7.08 
1987 0.69 *** 2.98 8.43 0.73 *** −2.32 7.87 
1988 0.62 *** 2.77 6.56 0.65 *** −2.34 5.98 
1989 0.41 *** 5.38 10.19 0.52 *** 0.89 7.86 
1990 0.45 *** 6.08 9.56 0.50 *** 1.87 6.97 
1991 0.47 *** 1.04 7.91 0.57 *** −2.97 7.7 
1992 0.47 *** −0.87 8.38 0.58 *** −4.16 7.71 
1993 0.60 *** 1.95 7.35 0.64 *** −1.55 7.16 
1994 0.61 *** 4.17 7.99 0.66 *** 0.73 6.22 
1995 0.61 *** 4.90 9.19 0.65 *** −0.15 7.11 
1996 0.17 *** 1.51 9.67 0.31 *** −2.71 8.29 
1997 0.58 *** 1.57 8.06 0.64 *** −1.61 7.07 
1998 0.50 *** −2.76 10.17 0.58 *** −2.86 8.54 
1999 0.64 *** 2.14 8.68 0.70 *** −2.19 7.69 
2000 0.52 *** 0.25 8.31 0.61 *** −3.34 7.72 
2001 0.54 *** 0.19 9.87 0.60 *** −3.68 9.64 
2002 0.51 *** 1.97 10.44 0.58 *** −2.47 9.69 
2003 0.53 *** 3.14 10.55 0.59 *** −0.98 8.63 
2004 0.59 *** −0.68 11.01 0.74 *** −6.23 10.01 
2005 0.72 *** −1.69 7.86 0.77 *** −5.42 8.09 
2006 0.62 *** 1.66 9.8 0.68 *** −3.49 8.93 

*** P < 0.001. 

3.2. Temporal and Spatiotemporal Relationship between Satellite-Derived SOS (SOS3g) and 
Ground-Based BGS 

A significantly positive correlation (P < 0.05) was found between SOS and BGS at 65.8% of all 
pixels and between SOS3g and BGS at 67.3% of all pixels during 1986 to 2006. Nonsignificant 
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correlation coefficients are mainly located in the south part of the Da Hinggan Ling of northeastern 
China (Figure 5(a,b)). Therefore, the temporal consistency between satellite-derived start of season and 
ground-based beginning of the growing season existed in most parts of northern China and was slightly 
larger between SOS3g and BGS than between SOS and BGS. 

Figure 5. Spatial patterns of temporal correlation coefficients and mean differences between 
SOS (SOS3g) and BGS at each pixel from 1986 to 2006. (a) correlation coefficients between 
SOS and BGS; (b) correlation coefficients between SOS3g and BGS; (c) ME between SOS 
and BGS; (d) ME between SOS3g and BGS; (e) MAE between SOS and BGS; (f) MAE 
between SOS3g and BGS. 

 

Considering mean differences between SOS (SOS3g) and BGS at each pixel during 1986 to 2006, the 
mean MEs are between +10 days and −10 days at 74.3% of all pixels for SOS and 79.4% of all pixels for 
SOS3g. Spatial patterns show that positive MEs were detected mostly in south parts of northern China, 
whereas negative MEs were evident mostly in north parts. Namely, SOS and SOS3g were generally later 
than BGS in south parts but earlier in north parts (Figure 5(c,d)). Moreover, the mean MAEs are less 
than 10 days at 70.6% of all pixels between SOS and BGS and 76% of all pixels between SOS3g and 
BGS. The lowest values of mean MAEs appeared in the Changbai Shan (Figure 5(e,f)). In general, the 
mean differences between SOS3g and BGS are slightly smaller than those between SOS and BGS. 
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Furthermore, the spatiotemporal analysis shows that both SOS and SOS3g correlate positively with 
BGS (P < 0.001), namely, the earlier the BGS at a pixel in a year, the earlier the SOS and SOS3g at the 
pixel in the year. Besides, all observation pairs are concentrated near by the 1:1 diagonal line, which 
indicates that the spatiotemporal variations of SOS (SOS3g) and BGS have consistent characteristics. 
Again, the spatiotemporal correlation coefficient between SOS3g and BGS is larger than that between 
SOS and BGS, while the MAE between SOS3g and BGS are smaller than that between SOS and BGS 
(Figure 6). 

Figure 6. Spatiotemporal correlation coefficients and differences between SOS (SOS3g) and 
BGS at each pixel in each year. (a) between SOS and BGS; (b) between SOS3g and BGS. 

 
4. Discussion 

In this study, gridded LU estimation data of the four tree species were used to validate AVHRR 
NDVI (AVHRR NDVI3g)-retrieved start of season in the deciduous broadleaf forest of northern China 
during 1986 to 2006. Comparing our study with similar validation studies over the past 20 years 
worldwide, spatiotemporal correlation coefficients and MEs between SOS (SOS3g) and BGS in 
northern China fall in the range of those in other regions (Table 2). Nevertheless, our study validated the 
satellite-derived start of season over a broader geographical coverage and longer time series than other 
studies so far.  

Comparing spatial, temporal and spatiotemporal patterns of BGS with those of SOS (SOS3g), we 
found that the SOS3g is more similar to the BGS than the SOS (Table 1, Figures 5 and 6). In order to 
assess sensitivity of NDVI and NDVI3g products in monitoring vegetation LU, we calculated regional 
mean AVHRR NDVI and AVHRR NDVI3g values for each 15-day period during the 1986–2006 period. 
Figure 7(a) shows that the interannual fluctuations of both datasets are consistent but the interannual 
amplitudes of them are obviously different, especially, the peak values of NDVI3g are significantly higher 
than those of NDVI (Figure 7(b)). This implies that NDVI3g data might be more sensitive than NDVI data 
in monitoring vegetation LU. Therefore, the spatial, temporal and spatiotemporal correlation coefficients 
between SOS3g and BGS are larger than those between SOS and BGS. 
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Table 2. Comparison in spatiotemporal validation of satellite-derived spring phenology 
based on different Vegetation Indices and conventional phenological data. 

Reference Type Methods 
Sample 

Size 
Region 

ME 
(days) 

r 

White et al. 
(2009) [32] 

AVHRR Midpoint  USA 3 0.8 * 

Busetto et al. 
(2010) [46] 

MODIS Maximum increase 18 Northern Italy 1.36 
0.93 
*** 

Soudani et al. 
(2008) [57] 

MODIS Maximum increase 124 France 3.5 0.68 * 

Soudani et al. 
(2008) [57] 

MODIS 
Average of onset of increase 

and maximum NDVI 
113 France 20 0.58 * 

Fisher et al. 
(2007) [58] 

MODIS Midpoint 16 USA 2.5 
0.84 
** 

Schwartz et al. 
(1999) [59] 

AVHRR Maximum increase  USA −41.5 
0.623 

** 
White et al. 
(1997) [22] 

AVHRR Midpoint 24 USA 0.2 
0.75 
** 

Beck et al. 
(2007) [60] 

MODIS Maximum increase 31 
Fennoscandia and the 

Kola peninsula 
 0.7 ** 

Beck et al. 
(2007) [60] 

MODIS Maximum increase 108 
Fennoscandia and the 

Kola peninsula 
 

0.693 
** 

Delbart et al. 
(2006) [61] 

SPOTVEG  21 Siberia 0.55 
0.91 
** 

Delbart et al. 
(2006) [61] 

AVHRR  81 Siberia 0.34 
0.87 
** 

Zhang et al. 
(2006) [36] 

MODIS Inflection points 3 USA 4.7  

This study AVHRR Midpoint 
3,994 × 

21 
China −2.3 

0.61 
*** 

* P < 0.05; ** P < 0.01; *** P < 0.001. 

Figure 7. (a) Interannual variations of regional mean AVHRR NDVI and AVHRR NDVI3g 
and (b) relationships between regional mean AVHRR NDVI and AVHRR NDVI3g from 
1986 to 2006. 

 

As mentioned above, spatial series of SOS (SOS3g) correlate positively with spatial series of BGS in 
each year (P < 0.001). However, spatial correlation coefficients between SOS (SOS3g) and BGS 
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indicate an obviously interannual variation (Table 1), which may be associated with interannual 
variation in the representativeness of mean LU date of the four tree species to green-up date of the local 
plant communities. We assume that the range (days) between the earliest and latest LU dates of the four 
tree species in a year can reflect the time period of green-up process of the local plant communities in the 
year to a certain extent. Therefore, a larger range implies a prolonged green-up process of the local plant 
communities, while a smaller range means a shortened green-up process of the local plant communities. 
Therefore, the uncertainty of mean LU date of the four tree species in representing green-up date of the 
local plant communities might be enhanced in the years with a larger range and reduced in the years with 
a smaller range. According to above consideration, we may expect that the smaller the mean range 
between the earliest and latest LU dates of the four tree species at all pixels in a year, the better the 
representativeness of mean LU date of the four tree species to green-up date of the local plant 
communities in the year, which may induce a larger spatial correlation coefficient between SOS 
(SOS3g) and BGS in the year. Statistical analysis confirmed the above assumption and expectation, 
namely, the yearly spatial correlation coefficients between SOS (SOS3g) and BGS correlate negatively 
with the yearly mean range between the earliest and latest LU dates of the four tree species at all pixels 
from 1986 to 2006. Therefore, the representativeness of mean LU date of dominant tree species to 
green-up date of the local plant communities is an important influencing factor on effectiveness of 
validating satellite-derived start of season (Figure 8). 

Figure 8. Relationship between SOS (SOS3g)-BGS spatial correlation coefficient and the 
mean range of leaf unfolding dates of the four tree species at all pixels from 1986 to 2006. 
(a) between SOS-BGS spatial correlation coefficients and the mean range of leaf unfolding 
dates; (b) between SOS3g-BGS spatial correlation coefficients and the mean range of leaf 
unfolding dates.  

 

5. Conclusions 

This study validated AVHRR NDVI (AVHRR NDVI3g)-retrieved start of season by means of 
gridded mean LU dates of four tree species in the deciduous broadleaf forest of northern China during 
1986 to 2006. The main conclusions are as follows: 
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1. The spatial series of SOS (SOS3g) correlates positively with the spatial series of BGS across 
the research region in each year (P < 0.001). Meanwhile, the time series of SOS (SOS3g) 
correlates positively with the time series of BGS at more than 65% of all pixels during the 
study period (P < 0.05). When pooling SOS (SOS3g) time series and BGS time series from all 
pixels, a significant positive correlation (P < 0.001) was also detected between the 
spatiotemporal series of SOS (SOS3g) and BGS. In addition, the spatial, temporal and 
spatiotemporal differences between SOS (SOS3g) and BGS are at acceptable levels overall. 
Therefore, the NDVI (NDVI3g)-retrieved start of season can effectively capture spatial patterns 
and temporal variations of the ground-based growing season beginning. 

2. The NDVI3g-retrieved start of season is generally more consistent and accurate than the 
NDVI-retrieved start of season in capturing the ground-based growing season beginning. This 
finding suggests that NDVI3g data might be more sensitive than NDVI data in monitoring 
vegetation LU.  

3. The representativeness of mean LU date of dominant tree species to green-up date of the local 
plant communities is an important influencing factor on effectiveness of validating 
satellite-derived start of season. 
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