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Abstract: Understanding the impact of vegetation mixture and misclassification on leaf area 
index (LAI) estimation is crucial for algorithm development and the application community. 
Using the MODIS standard land cover and LAI products, global LAI climatologies and 
statistics were obtained for both pure and mixed pixels to evaluate the effects of biome 
mixture on LAI estimation. Misclassification between crops and shrubs does not generally 
translate into large LAI errors (<0.37 or 27.0%), partly due to their relatively lower LAI 
values. Biome misclassification generally leads to an LAI overestimation for savanna, but an 
underestimation for forests. The largest errors caused by misclassification are also found for 
savanna (0.51), followed by evergreen needleleaf forests (0.44) and broadleaf forests (~0.31). 
Comparison with MODIS uncertainty indicators show that biome misclassification is a major 
factor contributing to LAI uncertainties for savanna, while for forests, the main uncertainties 
may be introduced by algorithm deficits, especially in summer. The LAI climatologies for 
pure pixels are recommended for land surface modeling studies. Future studies should focus 
on improving the biome classification for savanna systems and refinement of the retrieval 
algorithms for forest biomes. 

Keywords: leaf area index (LAI); uncertainty; land cover; biome type; subpixel mixture; 
biome misclassification; MODIS 
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1. Introduction 

Leaf area index (LAI) quantifies the amount of live green leaves in the canopy per unit of ground 
surface. It is an important parameter in various vegetation ecosystem and land surface process 
models [1]. Global LAI products have been operationally provided through several satellite remote 
sensing projects, such as MODIS [2,3], CYCLOPES [4] and GLOBCARBON [5,6]. Understanding 
the uncertainties of these products is critical in order to assimilate LAI into the ecosystem and land 
surface models [1,7]. Product uncertainty information can be categorized into two types, theoretical 
and physical [8]. Theoretical uncertainties are caused by uncertainties in the input data and model 
imperfections and are usually estimated and reported in the quantitative quality indicators 
(QQIs) [4,9,10]. Physical uncertainties are derived through comparison with values representing the 
ground truth—field measurements or estimations from higher-resolution imagery. In practice, both 
uncertainties are used as complementary indicators of product quality [1].  

Previous studies have identified three key sources of LAI uncertainties [11–13]: (1) uncertainties in the 
input data; (2) model uncertainties and problems of ill-posed retrieval; and (3) errors in the ancillary 
information (e.g., land cover type). Many studies have discussed LAI uncertainties introduced by the input 
reflectance, e.g., [12,14] and imperfect modeling, e.g., [2,3,5,9]. However, few studies have addressed the 
question of uncertainties in land cover products and their impact on LAI uncertainties [15,16].  

Land cover information is commonly used to parameterize canopy radiative transfer models or 
models that require land cover stratification, such as MODIS [3], GLOBCARBON [5] and 
ECOCLIMAP [17]. Errors in classifying land cover type may thus propagate into LAI uncertainties 
during the parameter retrieval process. Given the modest accuracy of current global land cover products 
(overall accuracy 60%–80%) [18,19], understanding the impact of land cover misclassification on LAI 
estimation is fundamental to improving LAI retrieval from remote sensing imagery.  

Previous studies of the effect of land cover misclassification on LAI estimation have adopted either 
a deterministic or a statistical approach. The deterministic approach simulates the physical radiative 
transfer processes within vegetation canopies that depend on land cover type. The relationship between 
misclassification and LAI uncertainty can be explored using numerical experiments and trial-and-error 
methods [20]. Depending on the LAI estimation methods used, biome misclassification may lead to 
incorrect selection of look-up tables, inappropriate radiative transfer models and/or estimation 
algorithms [16,20,21]. The statistical approach directly explores the relationship between the input 
biome classification map and the resulting LAI uncertainty, which avoids the usually complex 
radiative transfer simulation and parameter retrieval processes. The effects of biome misclassification 
can be evaluated through the retrieval index, mean LAI and the histogram of the retrieved LAI 
distribution [9,22]. Despite its simplicity, few studies have been conducted systematically using this 
approach on a global scale. 

In this context, the focus of this paper is to explore the effect of biome misclassification on MODIS 
LAI estimation using a noval statistical approach. The MODIS products contain both collocated land 
cover and LAI products and were thus explored in this study. A confusion matrix was constructed to 
investigate the correspondence between biome misclassification and LAI uncertainties. Global LAI 
climatologies were compared for pure and mixed pixels to explore the impact of different biome 
misclassification on LAI errors. 
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2. Data and Methods 

2.1. MODIS LAI and Land Cover Products 

The 8-day synergistic LAI (MCD15 C5, 1 km) and land cover (MCD12Q1 C5, 500 m) combined 
products from the TERRA and AQUA platforms for 2003–2009 were available from the NASA WIST 
(Warehouse Inventory Search Tool) website (WIST, Available online: http://wist.echo.nasa.gov 
(accessed on 1 March 2012)). The MODIS LAI retrieval algorithm is based on the inversion of a 3D 
radiative transfer model that simulates radiation absorption and scattering in vegetation 
canopies [2,23,24]. The main algorithm employs a look-up table (LUT) method that searches for LAIs 
for specific solar and view zenith angles, observed bidirectional reflectance factors (BRFs) at certain 
spectral bands and biome type. The output is the LAI mean value averaged over all acceptable 
solutions. The standard deviation (LaiStdDev) serves as a measure of accuracy and is provided as a 
product QQI. The current Collection 5 LAI products use eight biome types as a priori information to 

constrain the vegetation structural and optical parameter space: (1) grasses and cereal crops, (2) shrubs, 
(3) broadleaf crops, (4) savanna, (5) deciduous broadleaf forest (DBF), (6) evergreen broadleaf forest 
(EBF), (7) deciduous needleleaf forest (DNF) and (8) evergreen needleleaf forest (ENF) [13].  

MODIS global land cover products are generated utilizing a supervised classification method that 
exploits a global training database obtained from high-resolution imagery in association with ancillary 
data [18]. The classification algorithm requires spectral and temporal information from MODIS nadir 
BRDF-adjusted reflectance (NBAR) bands 1−7, supplemented by the enhanced vegetation index 
(EVI), and the MODIS land surface temperature (LST) is required to obtain the land cover types and 
phenology information. Several classification schemes are adopted, principally, the International 
Geosphere Biosphere Program (IGBP) (Type 1), the University of Maryland (UMD) (Type 2) and 
LAI/FAPR biomes (Type 3). In the IGBP classification scheme, in addition to the primary types, an 
alternative secondary type was assigned for each pixel when the confidence in the primary type is not 
high [25]. Pixels with no secondary label were considered unequivocal with high confidence [25]. The 
paired primary and secondary land cover types make it possible to study the potential LAI uncertainty 
caused by biome misclassification. In this study, ‘misclassification’ represents both subpixel mixture 
and biome misclassification. 

2.2. Data Analysis  

The uncertainty of LAI retrieval resulting from biome misclassification was analyzed on the basis 
of the primary and secondary land cover types. For ease of analysis, the Type 3 MODIS LAI/Fraction 
of Absorbed Photosynthetically Active Radiation (FPAR) eight biome types were used in the 
confusion matrix and subsequent analysis. Since the secondary types are only provided in the Type 1 
IGBP scheme, they were converted to the Type 3 MODIS LAI/FPAR biome types in the confusion 
matrix and subsequent analysis [18]. Figures 1 and 2 show the global primary and secondary land 
cover types, respectively, in the Type 3 classification system in 2003. The secondary biome type 
indicates a potential vegetation mixture or a misclassification contributing to LAI uncertainties. For the 
secondary biome types, land cover types included in the Type 1, but with no equivalent Type 3 class, 
were not included in the analysis in order to minimize the discrepancies between different 
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classification schemes. These types include the mixed forest, permanent wetlands and cropland/natural 
vegetation mosaic (white in Figure 2). Pixels with high confidence (pink in Figure 2) and of identical 
primary and secondary type were regarded as representing ‘pure’ biome types with minimal biome 
mixing or misclassification. Otherwise, the pixels were regarded as ‘mixed’ or ‘misclassified’—both 
terms are used interchangeably in the text. Assuming that the secondary type mainly indicated biome 
misclassification, a confusion matrix was constructed to investigate the impact of such 
misclassification on LAI uncertainties. We consider the primary biome type as the actual class and the 
secondary type as the predicted class in the confusion matrix. LAI uncertainty was calculated as the 
differences between the predicted and actual vegetation LAIs (Equation (1)): 

LAI Uncertainty = LAImixed − LAIpure (1)

where LAImixed and LAIpure are the average LAI values for the mixed (predicted) and pure (actual) 
pixels, respectively. LAI uncertainties were then examined by comparing their climatologies for all 
biomes. The misclassification induced errors (MIEs) were further compared with the theoretical 
uncertainties reported in MODIS LAI QQIs. Our goals to calculate the global LAI climatology were to 
obtain an overview of the LAI uncertainties and their performances against the MODIS LAI QQIs. 
Only LAI values retrieved from the main algorithm and ‘good quality’ land cover data based on the 
quality assessment layer were analyzed in this study. Considering the yearly land cover variation, the 
collocated LAI and land cover data from 2003 to 2009 were used for the calculation. 

Figure 1. Global distribution of the primary biome types based on the MODIS Leaf Area 
Index (LAI)/Fraction of Absorbed Photosynthetically Active Radiation (FPAR) (Type 3) 
classification system. Data from the MODIS (MCD12Q1 C5) land cover product in  
2003 (1 km). 
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Figure 2. Global distribution of the secondary biome types based on the MODIS 
LAI/FPAR (Type 3) classification system. Data converted from the MODIS (MCD12Q1 
C5) International Geosphere Biosphere Program (IGBP) (Type 1) classification system  
(1 km, 2003). Pink pixels show the primary biome types with high confidence. White areas 
are IGBP classes (e.g., mixed forest) with no equivalent MODIS LAI/FPAR classes. 

 

3. Results 

3.1. Misclassification between Different Biome Types  

Table 1 shows the statistics of the primary and secondary biome types. Pure pixels are located on 
the diagonal cells, and all others are considered mixed pixels. The last row shows the percentage of 
pure pixels over the globe. The table reveals that secondary biome types are common and correspond 
reasonably to the primary types. The total percentage of high confidence (HC) pixels is only 0.92% 
over the globe. Overall, only 28.74% are pure pixels, leaving most (71.26%) as mixed pixels. Grasses, 
crops, shrubs and savannas are easily confused with each other, but unlikely to be misclassified as 
forests. For example, grasses/cereal crops (35.69%) and broadleaf crops (36.94%) are likely to be 
confused with savannas, but only 6.15% of savannas are mistaken for deciduous broadleaf forest. 
Because of the mixed composition of trees and grasses, 49.37% of savannas, higher than all other 
biome types, are classified as pure pixels.  

Of the forest biomes in Table 1, deciduous broadleaf forest contains the highest percentage of pure 
pixels (26.72%). However, all forest types are often confused with one another. For example, 
evergreen broadleaf forest is easily mistaken for deciduous broadleaf forest (10.64%) and vice versa 
(8.96%), and evergreen needleleaf forest is often mistaken for deciduous needleleaf forest (16.21%). 
Deciduous broadleaf forests are very likely to be misclassified as deciduous needleleaf forests 
(16.69%), and deciduous needleleaf forests are also likely to be misclassified as deciduous broadleaf 
forests (12.21%). Forest biomes are likely to be misclassified as shrubs (>21%) or savanna (>16%) 
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(Table 1). It is rarely possible to obtain pure pixels for evergreen broadleaf forest (3.87%), because of 
their confusion with shrubs (25.09%) and savanna (31.72%). Deciduous needleleaf forests are most 
likely to be misclassified as shrubs (33.84%) and savanna (30.96%). 

Table 1. MODIS primary biome types and the percentage of each collocated secondary 
biome types from 2003–2009. The last row shows the percentage of pure pixels (diagonal) 
over the globe. The HC (high confidence) column shows the percentage of high confidence 
pixels for each primary biome type. The last column shows the percentage of each primary 
biome type over the globe. EBF, DBF, ENF and DNF stand for evergreen broadleaf forest, 
deciduous broadleaf forest, evergreen needleleaf forest and deciduous needleleaf forest, 
respectively. 

↓Primary Biome Type 

Secondary Biome Type   

Grasses/ 

Cereal Crops 
Shrubs 

Broadleaf 

Crops 
Savanna EBF DBF ENF DNF HC (%) % 

Grasses/cereal crops 16.74  31.44  14.96  35.69  0.19  0.53  0.16  0.28  0.02  22.90 

Shrubs 20.16  40.54  4.94  30.79  0.22  1.73  0.15  1.42  0.05  21.7 

Broadleaf crops 19.35  19.74  19.04  36.94  0.55  2.52  0.30  1.08  0.48  9.42 

Savanna 12.22  19.24  7.04  49.37  1.65  6.15  1.06  3.27  0.00  21.17 

EBF 8.75  25.09  5.69  31.72  3.87  10.64 2.15  4.16  7.93  10.61 

DBF 2.93  22.58  1.03  16.90  8.96  26.72 4.14  16.69  0.05  5.83 

ENF 3.00  21.56  1.01  19.24  10.88 15.94 11.98  16.21  0.19  6.43 

DNF 2.42  33.84  0.82  30.96  5.29  12.21 3.52  10.75  0.19  1.94 

Pure pixels (%) 3.83 8.79 1.79 10.45 0.41 1.56 0.77 0.21 0.92 28.74 

3.2. Misclassification Induced LAI Errors (MIEs) 

Table 2 shows the LAI mean values for both the pure and mixed pixels and the variability in LAI 
values induced by potential vegetation mixture and misclassification. The table provides an insight into 
the extent to which the confusion between two biome types affects LAI retrievals. The impact of 
biome misclassification varies between biome types. The bias due to the misclassification of 
grasses/cereal crops ranges from −0.29 (−51.8%) for shrubs to 0.14 (25.0%) for broadleaf crops. The 
misclassification of shrubs as savanna leads to an overestimation of up to 60%. By contrast, the 
misclassification of broadleaf crops as shrubs underestimates the LAI by 0.37 (−27.0%). 
Misclassification of savannas as any of the herbaceous types overestimates the LAI (>0.57), with the 
greatest bias being 0.84 (100.0%) for broadleaf crops.  

Forests, especially evergreen forests, are easily misclassified as shrubs or savannas. Significant 
underestimation of LAI is observed when evergreen broadleaf forest (0.67, −16.1%) or evergreen 
needleleaf forest (0.62, −31.2%) is mixed with shrubs. The mixture with savanna leads to the largest 
underestimation (0.87, −43.7%) for evergreen needleleaf forest. The large errors related to shrubs and 
savanna for the evergreen forests could be due to the selection of wrong LUTs [26]. Evergreen broadleaf 
forest can be confused with deciduous broadleaf forest, which causes an underestimation of LAI up to 
0.41 (−9.8%). However, misidentifying deciduous broadleaf forest as evergreen broadleaf forest has 
nearly no effect on LAI values (0.03, −1.4%). Overall, confusion between broadleaf forest and needleleaf 
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forest generally leads to an LAI underestimation. Confusion between evergreen and deciduous needleleaf 
forests causes an underestimation of about 0.24 (−12.1%). When evergreen needleleaf forest is 
misclassified as broadleaf forest, the underestimation is up to 0.23 (−11.6%). Misclassification of 
deciduous needleleaf forest as broadleaf forest slightly affects LAI values (0.07, −4.2%). 

Table 2. (a) Confusion matrix for LAI mean values for pure (bold) and mixed pixels and 
(b) the relative LAI errors induced by biome misclassification. Statistics based on data 
from 2003−2009. Mean values for mixed pixels are significantly different from those of the 
pure pixels (t-test, p < 0.001). Relative errors are calculated relative to the diagonal pure 
values. The cells in brackets indicate a smaller number of pixels (<5%) from Table 1. 

(a) Mean LAI values 

↓Primary 

Biome Type 

Secondary Biome Type 

Grasses/ 

Cereal Crops 
Shrubs 

Broadleaf 

Crops 
Savanna EBF DBF ENF DNF 

Grasses/cereal crops 0.56  0.27  0.70  0.39  (1.29)  (0.94)  (0.93)  (0.91)  

Shrubs 0.41  0.29  (0.78)  0.46  (1.03)  (0.83) (1.04)  (0.81)  

Broadleaf crops 1.29  1.00  1.37  1.10  (1.34)  (1.21)  (1.23)  (1.18)  

Savanna 1.41  1.63  1.68  0.84  (1.91)  2.18  (1.25)  (1.99)  

EBF 4.02  3.50  4.48  3.97  (4.17)  3.76  (3.09)  (3.08)  

DBF (1.91)  2.07  (1.97)  2.07  2.14  2.17  (2.18)  2.04  

ENF (0.72)  1.37  (0.72)  1.12  1.86  1.76  1.99  1.75  

DNF (1.33)  1.52  (1.12)  1.51  1.60  1.64  (1.54)  1.67  

(b) Relative errors 

Grasses/cereal crops 0.0  −51.8  25.0  −30.4  (130.4) (67.9)  (66.1)  (62.5)  

Shrubs 41.4  0.0  (169.0)  58.6  (255.2) (186.2)  (258.6)  (179.3) 

Broadleaf crops −5.8  −27.0  0.0  −19.7  (−2.2)  (−11.7)  (−10.2)  (−13.9) 

Savanna 67.9  94.1  100.0  0.00  (127.4) 159.5  (48.8)  (136.9) 

EBF −3.6  −16.1  7.4  −4.8  (0.0)  −9.8  (−25.9)  (−26.1) 

DBF (−12.0)  −4.6  (−9.2)  −4.6  −1.4  0.0  (0.5)  −6.0  

ENF (−63.8)  −31.2  (−63.8)  −43.7  −6.5  −11.6  0.0  −12.1  

DNF (−20.4)  −9.0  (−32.9)  −9.6  −4.2  −1.8  (−7.8)  0.0  

3.3. LAI Climatologies for Pure and Mixed Pixels 

Figure 3 illustrates the global LAI climatologies for both pure and mixed pixels in different months. 
For each primary biome type, the climatologies show similar temporal profiles and seasonal variations. 
Seasonally, except for savanna, the deviations between pure and mixed LAI values are generally 
higher in summer than in winter. For grasses/cereal crops and broadleaf crops, misclassification of 
these two biomes as any other types produces LAI deviations less than 0.70. Similarly, the 
overestimation of LAI for shrubs is also small (~0.19). The greatest effect of subpixel mixture on LAI 
estimation is for savanna, for which the mixed LAI values are consistently higher than those of the 
pure pixels, ranging from about 0.41 (37.3%) when misclassified as grasses/cereal crops in August to 
1.69 (178.0%) as deciduous broadleaf forest in November. 
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3.4. Comparison of MIEs and MODIS LAI Uncertainty Indicators 

Table 3 illustrates the monthly average of MIEs calculated from the pure and mixed profiles in Figure 3 
with Equation (1). The last column shows the average of the absolute errors from Equation (1). Biome 
misclassification generally leads to an LAI overestimation for savanna (0.51), but an underestimation for 
forests (0.08−0.44). Misclassification of woody biomes (≥0.19) generally causes higher errors than those 
for herbaceous types (≤0.16). The largest errors caused by misclassification are found for savanna (0.51), 
followed by evergreen needleleaf forest (0.44) and broadleaf forests (~0.31). 

Table 3. Monthly average of the misclassification induced LAI errors (MIEs) for the eight 
primary biome types (2003−2009). The mean absolute errors (MAEs) are calculated from 
the average of the absolute monthly errors. 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average MAEs 

Grasses/ 

cereal crops 
−0.02  −0.01  −0.01  −0.02  −0.07 −0.13 −0.16 −0.11 −0.07 −0.05 −0.03  −0.04  −0.06  0.06  

Shrubs 0.11  0.12  0.13  0.17  0.19  0.14  0.10  0.13  0.14  0.15  0.11  0.10  0.13  0.13  

Broadleaf crops −0.08  −0.06  −0.07  −0.14  −0.21 −0.17 −0.15 −0.21 −0.29 −0.28 −0.17  −0.11  −0.16  0.16  

Savanna 0.57  0.58  0.55  0.54  0.48  0.42  0.41  0.39  0.37  0.46  0.66  0.64  0.51  0.51  

EBF −0.39  −0.43  −0.33  −0.25  −0.44 −0.50 −0.17 0.22  0.24  −0.14 −0.20  −0.43  −0.24  0.31  

DBF 0.33  0.29  0.24  0.03  −0.45 −0.54 −0.46 −0.42 −0.43 −0.07 0.19  0.34  −0.08  0.32  

ENF −0.38  −0.28  −0.26  −0.33  −0.54 −0.56 −0.29 −0.63 −0.56 −0.30 −0.42  −0.67  −0.44  0.44  

DNF 0.17  −0.03  −0.04  −0.07  −0.21 −0.47 −0.29 −0.41 −0.24 −0.04 0.03  0.25  −0.11  0.19  

To acquire a better understanding of both quality indicators, the uncertainties induced by 
misclassification are compared with those reported in QQIs (Figure 4). QQIs mainly reflect 
uncertainties induced by the retrieval algorithms and the input reflectance, because the retrieval 
algorithm is applied for each biome type separately. In this figure, the misclassification induced errors 
(MIEs) are represented with the absolute differences between the pure and mixed profiles in Figure 3. 
MIEs and QQIs are generally small (<0.20) and consistent for grasses/cereal crops, shrubs and 
broadleaf crops. This signifies that biome misclassification and algorithm limitations contribute evenly 
to LAI uncertainties for these biome types. For savanna, the MIEs (0.51) are significantly higher than 
those of QQIs (0.20). This reveals that biome misclassification is a major factor contributing to LAI 
uncertainties for savanna. This contrasts with earlier analyses with a deterministic approach claiming 
that MIEs do not exceed uncertainties in the model, e.g., [21]. The discrepancies are partly due to the 
different sensor (MISR) and study area (Africa) explored in [21]. For forest biomes, MIEs are 
generally smaller than QQIs for most of the season, indicating the robustness of the MODIS LAI 
algorithm to forest misclassification. Slightly higher MIEs can only be observed in winter when the 
LAI values and, hence, QQIs are usually lower. For needleleaf forests, the lower MIEs (<0.30) in 
comparison to QQIs (0.75~0.85) in July indicate that, other than biome misclassification, the 
uncertainties may be largely introduced by algorithm deficits in summer. 
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between these two biomes does not cause large errors (<0.30), which is consistent with deterministic 
findings from earlier LAI collections [21,30,31]. 

The primary classification confusion is related to savanna and forest. The ambiguity between 
savanna and forest properties has been reported in other studies [18,32]. The main source of 
classification error has been attributed to the continuum of fractional cover and canopy 
structure [30,32]. These issues, as shown in the present study, result in an overestimation of LAI 
values consistently exceeding 0.37 for savanna. Misclassification of forest as any other biome type, 
however, generates an underestimation in LAI retrievals, especially for evergreen needleleaf forest 
(Table 3). Better characterization of the savanna biome [33] and refinements of the LAI algorithms for 
woody vegetation [34] may help address some of these concerns. 

While other forest biomes have shown to be relatively robust to land cover uncertainties, evergreen 
needleleaf forest LAI exhibits the highest sensitivity to biome misclassification. This is related to the 
similarity of the top-of-canopy reflectances of needleleaf forests with a low ground cover and a bright 
(green) understory [21]. Our earlier local studies have shown that misclassification of needleleaf forest 
leads to an underestimation of LAI, whereas misclassification of broadleaf forest leads to an 
overestimation [20]. These local trends were confirmed for needleleaf forests globally in the present 
study. The discrepancies for broadleaf forests are attributable to differences in the Type 1 and Type 3 
MODIS classification systems and the small study area in [20].  

4.2. Future Prospects 

LAI has long been used by the modeling community in land surface modeling studies [15,35,36]. 
Land surface process models use climatology-based LAI values and uncertainties as input. It should be 
noted that, in most land surfaces models, LAI is defined for pure pixels or a mosaic of pure 
vegetations [37,38]. Direct calculation of remote sensing LAI climatology based on the MODIS LAI 
biome types obtains the climatology of mixed biome types. The difference between pure and mixed 
climatologies may cause land surface models to produce incorrect simulations, especially for savanna 
and forest biomes (Figure 3). Improved model parameterization will need to consider the biome 
mixture and assign more realistic climatology values. Table 4 shows the global LAI climatologies 
derived from the pure pixels (2003−2009). The climatologies for pure pixels are useful for land surface 
models that treat pixels as a mosaic of pure vegetation types, e.g., [37]. The prescribed LAI values in 
such land surface models may be updated with the LAI climatologies derived here. 

In this study, pixels with the same primary and secondary biome types were treated as pure pixels; 
others were considered to be a mixture of primary and secondary biome types. The results of this study 
thus depend on the proportion or percentage of the two types in the mix. Confidence in our results will 
be enhanced when data for the proportion of the secondary biome becomes available. Information 
about the fractional vegetation cover (FVC) can be explored to study the impact on LAI retrievals [31]. 
The effects of FVC will be quantified when the full MODIS vegetation continuous field (VCF) 
products (MOD44B), including the percentage of trees, grasses and bare ground, are refined (MODIS 
Land. Available online: http://modis-land.gsfc.nasa.gov/vcc.html (accessed on 1 February 2013)). It is 
expected that the increasing quality of the MODIS land cover products will lead to improved LAI 
retrieval in the future. It is important to note that the sources of uncertainties, such as biome 
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misclassification and retrieval algorithms, are interrelated. Rigorous quantification of the physical 
relationship between these factors and the influence of misclassification on LAI estimation can be 
made with a deterministic approach through the retrieval algorithms.  

Table 4. Global LAI climatologies for the eight biome types derived from pure  
pixels (2003−2009). 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Overall 
Grasses/cereal crops 0.41 0.42  0.40  0.50 0.71 0.86 0.98 0.86 0.71 0.48  0.38  0.41  0.59 

Shrubs 0.27 0.28  0.28  0.27 0.26 0.37 0.61 0.48 0.29 0.25  0.26  0.27  0.32 
Broadleaf crops 1.21 1.21  1.19  1.31 1.43 1.52 1.68 1.71 1.62 1.47  1.31  1.23  1.41 

Savanna 1.07 1.11  1.12  1.12 1.10 1.11 1.12 1.10 1.10 1.05  0.95  0.99  1.08 
EBF 4.65 4.66  4.59  4.52 4.55 4.53 4.52 4.51 4.51 4.50  4.57  4.67  4.57 
DBF 0.75 0.76  0.84  1.42 2.99 3.95 3.93 3.78 3.11 1.61  0.95  0.81  2.08 
ENF 1.16 1.06  1.04  1.31 2.02 3.01 3.16 3.20 2.15 1.30  1.25  1.51  1.85 
DNF 0.45 0.50  0.45  0.57 1.18 3.18 3.64 3.04 1.12 0.55  0.48  0.58  1.31 

5. Conclusions 

Through an analysis of global MODIS products, this study has quantified the LAI discrepancies 
induced by potential subpixel mixture and biome misclassification. The statistics show that 28.74% of 
LAI products are for pure pixels and the other 71.26% are retrieved as mixed biome types. When 
misclassification between distinct biome types occurs, it does not generally translate into strong 
disagreement in LAI retrievals. Misclassification between herbaceous types has minimal impact on 
LAI retrievals (<0.37 or 27.0%). Biome misclassification generally leads to an LAI overestimation for 
savanna, but an underestimation for forests. The largest errors caused by misclassification are found 
for savanna (0.51), followed by evergreen needleleaf forest (0.44) and broadleaf forests (~0.31). 
Biome misclassification is a major factor contributing to LAI uncertainties for savanna, while for 
forests, the main source of uncertainties may be due to algorithm deficits, especially in summer. To 
reduce the LAI uncertainties, further efforts should therefore be focused on improving the biome 
classification for the structurally complex savanna systems and refinement of the retrieval algorithms 
for forest biomes.  
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