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Abstract: Assessment of forest degradation has been emphasized as an important issue for 
emission calculations, but remote sensing based detecting of forest degradation is still in an 
early phase of development. The use of optical imagery for degradation assessment in the 
tropics is limited due to frequent cloud cover. Recent studies based on radar data often 
focus on classification approaches of 2D backscatter. In this study, we describe a method 
to detect areas affected by forest degradation from digital surface models derived from 
COSMO-SkyMed X-band Spotlight InSAR-Stereo Data. Two test sites with recent logging 
activities were chosen in Cameroon and in the Republic of Congo. Using the full resolution 
COSMO-SkyMed digital surface model and a 90-m resolution Shuttle Radar Topography 
Mission model or a mean filtered digital surface model we calculate difference models to 
detect canopy disturbances. The extracted disturbance gaps are aggregated to potential 
degradation areas and then evaluated with respect to reference areas extracted from 
RapidEye and Quickbird optical imagery. Results show overall accuracies above 75% for 
assessing degradation areas with the presented methods.  

Keywords: forest degradation; digital surface model; REDD+ monitoring system; 3D; 
COSMO-SkyMed; gap detection  
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1. Introduction 

The need to conduct research on tropical forest degradation emerged in the 1990s, as the spatial 
extent of selective logging and fire damage was found not to be accounted for in deforestation studies. 
Later, in the frame of the Kyoto protocol, reducing emissions from deforestation and degradation in 
developing countries (REDD) was adopted as a mechanism for the post-Kyoto reporting and parties 
agreed to an evaluation process by initiating REDD pilot projects. The need to address and monitor 
degradation along with deforestation has been emphasized on numerous occasions, such as at the COP 
meeting in Bali, 2007 (FCCC/CP/2007/6), where the parties “acknowledge that forest degradation 
also leads to emissions, and needs to be addressed when reducing emissions from deforestation”. In 
the Congo basin, degradation is considered more important than for example in Latin America or Asia, 
thus the ‘COMIFAC position on the international issue on REDD’ calls for “factoring of degradation 
as much as deforestation in emission calculations”. 

Many definitions of forest degradation exist in the literature; a selection of definitions is provided 
on the FAO website [1]. Since no common definition has been yet agreed upon within the REDD+ 
monitoring system [2], in this study a forest degradation area is defined as an area affected by forest 
canopy disturbance in terms of gaps, logging roads and skid trails, where no distinction is made 
between man-made and natural gaps. 

The use of remote sensing data to detect forest degradation is still in an early phase of development. 
The main obstacles when mapping tropical forest disturbances are the complex nature of forest 
degradation patterns and the frequent cloud cover in tropical areas. Up to now, most studies on tropical 
forest degradation have been based on optical imagery. Early studies in the Amazon basin investigated 
the degradation mapping potential of Landsat imagery by applying visual interpretation [3,4]. 
Extensive studies in Central Africa used Landsat imagery from three decades to derive area estimates 
of land cover change. A systematic regional sampling scheme based on high spatial resolution imagery 
was combined with object-based unsupervised classification techniques [5] to track the progression of 
logging roads and to track skid trails and tree felling [6]. Other methods comprise band-by-band and 
textural analysis [7]. Promising results were achieved by deriving cover-type fraction images using 
Spectral Mixture Analysis (SMA) [8]. In subsequent studies, the SMA fraction images were combined 
with contextual analysis, which takes into account that logging is spatially bound to either logging 
decks [9] or skid trails [10]. An overview of different remote sensing methods tested and validated for 
degradation mapping is provided in [2]. A recent review of remote sensing data sources for REDD+ 
monitoring is provided in [11].  

The poor availability of suitable optical EO data due to frequent cloud cover in the tropics can be 
overcome by testing the applicability and utility of active remote sensing sensor data for degradation 
mapping. Surveys using SAR data specifically for forest degradation mapping are limited. The 
capabilities of multi-temporal single polarization SAR (e.g., ERS, JERS) backscatter texture for 
forest/non-forest differentiation in supervised classification methods or in unsupervised clustering have 
been shown in the literature [12,13]. Classification accuracies of over 90% for the classes ‘primary 
forest’, ‘secondary forest’, ‘recently deforested areas’ and ‘pastures’ were reported in [14] using 
NASA’s airborne radar system AirSAR, which acquired C-band, L-band, and P-band polarimetric data 
combining two frequency bands. Direct biomass assessment from ICESat/GLAS data for tropical 
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peatland forest was done by [15] reaching an R2 of 0.61 compared to in situ aboveground biomass 
(AGB) measurements. 

It has been demonstrated in previous studies that X-band radar data from COSMO-SkyMed [16] 
and TerraSAR-X [17] missions can provide useful information on forest cover and forest parameters. 
These sensors are able to collect images with a ground sampling distance (GSD) down to 0.75 m in 
Spotlight mode at various look angles. In addition, they deliver imagery with very precise pointing 
accuracy [18,19] so that remote regions where no reference data, i.e., ground control points, is available 
can also be mapped and processed, which is particularly important for vast tropical forest areas. The 
presented approach to digital surface model extraction for forest assessment is based on the authors’ 
previous works [20,21] where 3D surface reconstruction was performed by stereo-radargrammetry in 
Europe. Since the early years of SAR remote sensing stereo-radargrammetric techniques have been 
applied to SAR image pairs [22]. Currently, the methodology is again frequently used due to new SAR 
sensors, such as Radarsat-2 [23], COSMO-SkyMed [24] or TerraSAR-X [25]. In [26] the multi-image 
matching concept for digital surface modeling has been transferred from the authors’ previous work 
based on optical satellite images [27] to radar data, incorporating the SAR specific image geometry for 
forest parameters in European test sites.  

2. Data and Test Site 

Our approach to 3D mapping of forest degradation was tested in two tropical forest areas of Central 
Africa within the projects REDDAf (Reducing Emissions from Deforestation and Degradation in 
Africa, EC FP7) [28] and GSE FM REDD (GMES Service Elements for Forest Monitoring-Extensions 
for REDD, ESA) [29]. Both sites were predefined as test sites for various research activities within the 
projects and were not specifically selected for the needs of our presented study. Reference data 
availability is a common problem in the tropics and due to the frequent cloud cover, VHR reference 
data shortly after the logging event was only available for a small area of one of our test sites. 
However, both sites are covered by HR RapidEye data and both show recent degradation patterns. The 
location of the two test sites is shown in Figure 1. 

The first test site comprises the hilly terrain of the Pallisco concession area in the Eastern Province 
of Cameroon, where selective logging is performed. The area of the test site is 5,250 ha. A visual 
inspection of RapidEye data from 2008 to 2011 showed that logging activities were carried out 
between December 2009 and December 2011. Degradation caused by selective logging is visible in 
RapidEye data acquired on 5 December 2011 (see Figure 2). Based on this information, two InSAR 
pairs from COSMO-SkyMed (CSK) spotlight data were ordered for stereo analysis and acquired on 5 
and 6 December 2011, and on 11 and 12 January 2012. Due to an intersection angle of 12.0° between 
the two InSAR pairs a 3D mapping procedure was applied as described in Section 3. In addition to the 
RapidEye scene from December 2011, a Quickbird VHR sub-scene from 2 December 2010 covering 
only part of the CSK area was ordered as further reference (see Figure 2).  
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Figure 1. Location of the two test sites in Cameroon (Pallisco concession area) and 
Republic of Congo with a Congo Basin vegetation types map [30] as background. The red 
squares represent the test sites. The Pallisco site is characterized by dense moist forest, 
while the RoC test site is more complex, including areas of edaphic forest. 

 

Figure 2. Outline of the Pallisco test area (blue) superimposed on RapidEye data from 
December 2011; green: extent of QuickBird subscene. 
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The second test site has a size of 8,550 ha, is located in the Republic of Congo (RoC), and shows 
large scale degradation patterns in an area of flat terrain. Logging activities took place from early 2009 
to December 2010, which can be seen from Landsat and RapidEye imagery. Again, two CSK InSAR 
spotlight pairs were ordered. CSK acquisitions are from 24 and 25 January 2011 and 29 and 30 
January 2011. The stereo intersection angle of the InSAR pairs is 11.6°. RapidEye imagery was 
available from December 2009 to March 2011 and three scenes from December 2009, January 2010 
and December 2010 were used as visual reference for mapping logging activities. VHR data was not 
available for the time after logging activities took place. 

Another study site not showing any recent logging activities was to be included in our study to test 
the method’s suitability in non-degraded forest. Unfortunately, only one image (no stereo data) could 
be acquired for this site by COSMO-SkyMed. Such an analysis should be included in future studies. A 
summary of the data sets used in this study is given in Table 1. 

Table 1. Imagery used for the two test sites in Cameroon (Pallisco concession area) and 
Republic of Congo. CSK stands for COSMO-SkyMed. 

Test 
Site 

Sensor Attributes 
Acquisition 

Date 
Image Size Used for 

Pallisco CSK Spotlight, asc 05.12.2011 10 km × 10 km 3D mapping 
Pallisco CSK Spotlight, asc 06.12.2011 10 km × 10 km 3D mapping 
Pallisco CSK Spotlight, asc 11.01.2012 10 km × 10 km 3D mapping 
Pallisco CSK Spotlight, asc 12.01.2012 10 km × 10 km 3D mapping 

Pallisco RapidEye 
5-band multispectral image,  

5 m GSD 
30.11.2009 77 km × 113 km 

test site 
selection only 

Pallisco RapidEye 
5-band multispectral image,  

5 m GSD 
05.12.2011 77 km × 50 km reference  

Pallisco Quickbird 
(Pan&MS), Pan: 0.6 m GSD,  

MS: 2.4 m GSD 
02.12.2010 5 km × 5 km reference  

RoC CSK Spotlight, asc 24.01.2011 10 km × 10 km 3D mapping 
RoC CSK Spotlight, asc 25.01.2011 10 km × 10 km 3D mapping 
RoC CSK Spotlight, asc 29.01.2011 10 km × 10 km 3D mapping 
RoC CSK Spotlight, asc 30.01.2011 10 km × 10 km 3D mapping 

RoC RapidEye 
5-band multispectral image,  

5 m GSD 
01.12.2009 77 km × 300 km reference  

RoC RapidEye 
5-band multispectral image,  

5 m GSD 
20.01.2010 77 km × 300 km reference  

RoC RapidEye 
5-band multispectral image,  

5 m GSD 
10.12.2010 77 km × 300 km reference  

3. Methods 

Starting from SAR images, DEMs can be generated by exploiting either the amplitude 
(radargrammetry) or the phase of the radar signal (interferometric techniques). To generate digital 
surface models (DSMs) from radar imagery we employed an algorithm that combines interferometric 
processing with radargrammetry. The main idea, sketched in [31], is based on acquiring two 
interferometric image pairs (i.e., four complex images) at two distinct incidence angles over the scene 
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of interest. The two InSAR pairs are processed individually and the amplitude images of the two 
resulting (flat terrain filtered) interferograms then serve as the two input images for stereogrammetric 
processing. The main advantage of using the interferogram amplitude for stereo processing is that 
speckle-noise can be reduced leading to higher matching accuracies. Moreover, the standard 
interferometric DEM generation can be applied to the coherent parts of each interferogram. Finally, the 
interferometric DEMs and the stereometric DEM can be merged as they show complementary behavior:  

• the stereometric DEM is more accurate and complete for dense vegetated areas where the 
interferometric coherence and thus the interferometric phase signal is low; 

• the stereometric DEM is less accurate and complete for open areas where the interferometric 
coherence and thus the interferometric phase signal is high. 

Unfortunately, the used COSMO-SkyMed scenes show nearly no coherence (below 1.25% of the 
scene shows coherence values above 0.3) and therefore interferometric DEMs could not be generated 
or merged in the current study. Interferometric coherence can be of great value in forest segmentation 
and deforestation detection since regions of vegetation suffer from temporal decorrelation (see also the 
detailed study on interferometric decorrelation [32]). However, due to the low coherence values of the 
COSMO-SkyMed scenes, the coherence images could not be used as meaningful additional 
information to detect forest disturbances in our study. 

The processing chain for combined InSAR Stereo DSM extraction is illustrated in Figure 3.  
Co-registration is done by complex cross-correlation, a subsequent surface fitting and finally an 
iterative least squares adjustment. Interferograms are generated by cross-correlating the co-registered 
images. The results are an initial interferogram, the interferogram’s amplitude and a coherence image. 
The interferogram’s amplitude is then used as the input for the stereo processing. The two amplitude 
images are matched in order to find point correspondences. The proposed approach is based on image 
pyramids, where the results, i.e., the disparities, are calculated on the smaller image pyramid level and 
are then projected to the next larger pyramid level for refinement [33]. The next step is the spatial point 
intersection, i.e., an iterative least squares approach to find the 3D intersection point of SAR range 
circles as defined by the corresponding image pixels delivered from image matching. This methodology 
has also been applied successfully to optical imagery [27]. Finally, DSM resampling or rather  
re-gridding, i.e., interpolation of a regular raster of height values from these 3D points is performed. 
Remaining gaps are filled using linear interpolation of the neighboring height values. The presented 
approach yields a dense digital surface model, describing the surface of the region of interest.  

The resulting DSMs have a spatial output resolution of 2 m. The accuracy of the DSMs could not 
be verified for our test sites for lack of ground truth or LiDAR DSM data, but previous studies by the 
authors on European forest test sites have shown geo-location errors of ±5 m and underestimations of 
canopy height of 2 m with respect to LiDAR using comparable stereo data [26]. 
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Figure 3. Combined InSAR Stereo processing chain. 

 

After DSM generation we tested two different approaches to derive forest disturbance from the 3D 
models. The first approach termed Height Variance Approach aims at detecting disturbances within 
the forest canopy and is based on a difference model between the full resolution surface model and a 
flattened mean filtered (window size >100 pixels) surface model. The method is sketched in Figure 4. 
Pixels with high difference values are then extracted with visually derived threshold values, e.g., all 
degradation features in the reference images have values of >10 m in the difference image, and serve 
as a preliminary forest disturbance mask. This mask is then aggregated using site specific distance and 
area values to map potential degradation areas.  

While the Height Variance Approach shows good results for mapping larger forest disturbances related 
to forest roads and logging activities in the topographically flat RoC test site, it was not useful for the hilly 
degradation site in Pallisco. When topographic height variance within the filter window is equally large or 
larger than the tree height this method will fail. In addition, with this approach non-forest areas (e.g., 
wetlands) are falsely detected as potential degradation areas and need to be eliminated by other methods 
such as a supervised classification making the approach more complex and time-consuming. 

We therefore used a different approach termed SRTM Difference Approach for the Pallisco test site 
which includes the 90 m SRTM model as the coarse surface model input instead of mean filtering the 
original CSK 3D model. The SRTM model reflects the topography such that height variances in the 
difference model are likely to represent forest disturbances and not topographic effects. This 
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assumption was tested for our test site in Pallisco by comparing the results with logging activities 
visible in the RapidEye and Quickbird reference images. 

Figure 4. Illustration of the Height Variance Approach. 

 

The extracted individual forest disturbance polygons are then aggregated to larger polygons of 
potential degradation areas using the ‘Aggregate Polygons’ tool of ESRI ArcGIS software based on 
site specific distance values related to logging activities. The aggregation procedure combines 
polygons (disturbance areas) within a specified distance to create new polygons (degradation areas). 
By measuring distances in the Quickbird reference, an aggregation distance of 180 m was found to be 
a maximum distance between individual logging sites where selective logging is carried out. This 
means neighboring individual forest disturbance polygons with distances below 180 m are united to 
create a larger potential forest degradation polygon, which includes the area in between. An equal 
distance is applied to visually extract the reference degradation area from RapidEye data. The 
minimum area for the aggregated degradation area was set to 10 ha and the minimum size of a polygon 
hole to be retained to 50 ha. 

Reference data for degradation was derived by visually identifying forest disturbances in HR 
RapidEye imagery and for Pallisco partly from VHR imagery. Forest disturbances were clearly visible 
in the HR imagery but it was not possible to differentiate individual skid trails and logging sites at this 
resolution. Instead of extracting individual logging sites and gaps, we created polygons for the area 
affected by logging activities in accordance with REDD+ monitoring requirements [34] allowing for a 
site specific buffer distance of 180 m, which is a maximum distance in between logging features in the 
area. At the Pallisco site 63% of the area was affected by degradation and 86% for the RoC test site. 

4. Results and Discussion 

For Cameroon, only the SRTM Difference Approach was applied in the hilly Pallisco area, as the 
Height Variance Approach only works in flat terrain. The resulting difference model is shown in 
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Figure 5. In areas affected by selective logging, visual reference to forest degradation from RapidEye 
and VHR data (area marked red in Figure 5) show that there are many patches with negative values 
(appearing dark in Figure 5). The basic assumption is that these values result from roads and forest 
gaps associated with logging. In order to test the assumption, 3D profiles of both the CSK and the 
SRTM model were derived over roads and forest canopy gaps, which were selected from RapidEye 
imagery. Figure 6 shows a profile crossing a logging road and a forest gap. Both the road and the gap 
show clear height differences in the two elevation models. Given these findings, an area wide 
estimation was performed.  

Figure 5. Difference model from CSK 3D generated with the SRTM Difference 
Approach. Red polygon shows the reference degradation area obtained from RapidEye and 
Quickbird data. 
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Figure 6. 3D profile over a logging road and forest disturbance. The black line represents the 
SRTM model, the red line represents the COSMO-SkyMed model. Blue line (and red cross 
in imagery) show a disturbance in the forest canopy (gap). Background image is RapidEye. 

 

The difference model is classified into ‘areas of high difference values’ larger than 10 m (yellow 
patches in Figure 7); and ‘other areas’. These areas of high difference values are mostly logging roads 
and forest canopy disturbances and thus can serve as indicators for forest degradation. Using these 
indicator areas, a spatial aggregation as described above was performed to map potential areas of 
degradation. The output map is shown in Figure 7. 

For the test site in the Republic of Congo, both the Height Variance Approach and the SRTM 
Difference Approach were applied. In the results of the Height Variance Approach, smaller 
marshlands and other non-forest areas show high difference values and are falsely included in the 
resulting degradation map. However, these areas are not included in the results of the SRTM Difference 
Approach. We have therefore combined the two resulting difference images to derive a degradation 
map keeping only pixels identified in both difference images as a forest disturbance and using 
threshold values of 8 m (Height Variance Approach) and 10 m (SRTM Difference Approach), 
respectively. The threshold values were derived using mean height difference values of logging roads 
in both models and by visually ensuring that logging roads were included in the degradation map. The 
difference in value between the two models seems related to the different penetration depth of the 
radar signal and the differing image geometries. The same aggregation procedure was applied as in the 
Pallisco test area. 
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Figure 7. Areas of high negative difference values as indicators for degradation (yellow) 
and result of aggregation (yellow hatch). Background image is RapidEye. 

 

We then evaluated our results from both test sites by comparing the aggregated degradation maps 
with reference degradation maps visually derived from RapidEye and Quickbird reference data. Due to 
the limited spatial resolution of the RapidEye data as reference, we could not derive individual gaps as 
reference, but instead whole forest areas affected by degradation as required by REDD+ 
monitoring [34]. For evaluation first a fishnet with equal grid spacing was used for all test sites, with 
900 label points for the Pallisco test site and 1470 label points for the larger RoC test site. For each 
label point the class labels (i.e., ‘degraded forest’, ‘undegraded forest’) from the aggregated 
degradation maps and the reference maps were compared in a confusion matrix. The results for the 
different test sites and approaches are shown in Tables 2–5. 
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Table 2. Confusion matrix for Pallisco, SRTM Difference Approach; 900 label points used; 
reference: 63% degraded forest, 37% undegraded forest 

 Reference 

cl
as

si
fic

at
io

n  degraded forest undegraded forest user’s accuracy 
degraded forest 475 72 86.8% 

undegraded forest 90 263 74.5% 
producer’s accuracy 84.0% 78.5% overall accuracy: 

82.0% 

Table 3. Confusion matrix for RoC, SRTM Difference Approach; 1,470 label points used; 
reference: 86% degraded forest, 14% undegraded forest 

 Reference 

cl
as

si
fic

at
io

n  degraded forest undegraded forest user’s accuracy 
degraded forest 1,033 78 93.0% 

undegraded forest 233 126 35.1% 
producer’s accuracy 81.6% 61.8% overall accuracy: 

78.8% 

Table 4. Confusion matrix for RoC, Height Difference Approach; 1,470 label points used; 
reference: 86% degraded forest, 14% undegraded forest 

 reference 

cl
as

si
fic

at
io

n  degraded forest undegraded forest user’s accuracy 
degraded forest 999 91 91.7% 

undegraded forest 267 113 31.4% 
producer’s accuracy 78.9% 55.4% overall accuracy: 

75.6% 

Table 5. Confusion matrix for RoC, Combined Approach; 1,470 label points used; 
reference: 86% degraded forest, 14% undegraded forest 

 Reference 

cl
as

si
fic

at
io

n  degraded forest undegraded forest user’s accuracy 
degraded forest 1,059 74 93.6% 

undegraded forest 207 130 38.6% 
producer’s accuracy 83.6% 63.7% overall accuracy: 

80.9% 

The overall accuracies vary between 75.6% and 82.0%. Overall, the degraded forest areas are 
underestimated. The unequal class distribution (63% and 86% degraded forest in the test sites) results 
in very high commission errors for the undegraded forest class and overall good accuracies for the 
degraded forest class. It is possible however to compare the different models for RoC. Lowest overall 
accuracy was achieved with the Height Difference Approach in RoC. Wetlands that occur in this test 
area are falsely classified as forest disturbance in the difference model resulting in the highest 
commission errors. By combining the Height Difference Approach with the SRTM Difference 
Approach in the Combined Approach, the commission error is reduced as the wetlands are eliminated 



Remote Sens. 2013, 5 660 
 

 

from the classification of degraded forest. More than 78% of the degraded forest area was classified 
correctly in all images and with all approaches. The omission error for degraded forest areas of 
between 16.4% and 21.1% for RoC and 16.0% for Pallisco is acceptably low. The main problem is the 
underestimation of degraded forest and the relatively high omission and commission errors for 
undegraded forest, which result partly from the unequal distribution of the classes but could also result 
from inadequate settings for the aggregation procedure. By using a logging buffer as aggregation 
distance (in our study 180 m) one does not necessarily reproduce the actual shape of the logged area 
and the buffer can actually vary across the landscape as is pointed out in [2]. This can lead to errors in 
the aggregated classification with respect to the reference data. In addition, the side-looking geometry 
of the Cosmo-SkyMed SAR sensor leads to location inaccuracies of up to 5 m for forests [26] which 
can result in positional errors when combining with the SRTM model. An approach that combines 
ascending and descending data might reduce these geometric shifts.  

All methods will need to be tested for larger areas and areas with different types of logging. Site 
selection for future test sites must focus on the availability of VHR data or ground truth data in order 
to reduce errors induced from low quality reference data. With VHR reference the produced forest 
disturbance maps could be compared to individual forest gaps, potentially allowing for more detailed 
information on logging activities, such as the length of logging road and skid trails, gap sizes and gap 
number. This could not be verified with the available RapidEye data. 

5. Conclusion 

In this study, we have tested 3D mapping approaches using COSMO-SkyMed InSAR stereo data 
and demonstrated their potential to map forest disturbances such as roads and gaps from selective 
logging in tropical forests. These disturbances, which can be considered degradation indicators, appear 
as large negative values in the difference images of COSMO-SkyMed digital surface model and 90 m 
Shuttle Radar Topography Mission model or mean filtered digital surface model. Two different 
methods were developed and tested at two test sites in Central Africa. The SRTM Difference Approach 
was tested at both sites. The Height Variance Approach requires flat terrain and could therefore only 
be tested at one site. Both approaches yield good results in detecting forest degradation areas with 
overall classification accuracies of above 75%. The accuracy for degraded forest is 78.9% for the 
Height Variance Approach and varies between 81.6% and 84.0% for the SRTM Difference Approach. 
A combination of both methods at one test site improved the overall accuracy by 2.1% compared to the 
SRTM Difference Approach. Due to an unequal class distribution in the reference data, the omission 
and commission errors for undegraded forest are very high. Future work requires the processing of an 
area of pristine rainforest and areas with different percentages of degraded areas in order to test 
whether the unequal class distribution is the main reason for the high omission and commission errors. 
Other sources of error could be the side-looking sensor geometry of the COSMO-SkyMed SAR 
sensor, which limits the matching and geo-location accuracy, and leads to a slight shift between  
COSMO-SkyMed and Shuttle Radar Topography Mission data. An approach that combines ascending 
and descending data might reduce these geometric shifts. In terms of REDD+ monitoring, however, 
the accuracies of the proposed procedure are well in the frame of currently achievable degradation 
mapping results and our proposed method has the main advantage of being independent from weather 
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conditions for data acquisition. Further research is needed to test the performance of the proposed 
methods on larger areas and for different logging types.  
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