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Abstract:  This paper describes the long-term effects on vegetation following the 

catastrophic fire in 1987 on the northern Great Xingôan Mountain by analyzing the AVHRR 

GIMMS 15-day composite normalized difference vegetation index (NDVI) dataset. Both 

temporal and spatial characteristics were analyzed for natural regeneration and tree planting 

scenarios from 1984 to 2006. Regressing post-fire NDVI values on the pre-fire values helped 

identify the NDVI for burnt pixels in vegetation stands. Stand differences in fire damage 

were classified into five levels: Very High (VH), High (H), Moderate (M), Low (L) and 

Slight (S). Furthermore, intra-annual and inter-annual post-fire vegetation recovery 

trajectories were analyzed by deriving a time series of NDVI and relative regrowth index 

(RRI) values for the entire burned area. Finally, spatial pattern and trend analyses were 

conducted using the pixel-based post-fire annual stands regrowth index (SRI) with a 

nonparametric Mann-Kendall (MK) statistics method. The results show that October was a 

better period compared to other months for distinguishing the post- and pre-fire vegetation 

conditions using the NDVI signals in boreal forests of China because colored leaves on 

grasses and shrubs fall down, while the leaves on healthy trees remain green in October. The 
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MK statistics method is robustly capable of detecting vegetation trends in a relatively long 

time series. Because tree planting primarily occurred in the severely burned area 

(approximately equal to the Medium, High and Very High fire damage areas) following the 

Daxingôanling fire in 1987, the severely burned area exhibited a better recovery trend than 

the lightly burned regions. Reasonable tree planting can substantially quicken the recovery 

and shorten the restoration time of the target species. More detailed satellite analyses and 

field data will be required in the future for a more convincing validation of the results. 

Keywords: wildfire; remote sensing; vegetation recovery; Mann-Kendall; Great Xingôan 

Mountain; boreal forest 

 

1. Introduction 

Wildfire is an important process in regulating vegetation succession, plant regeneration, and species 

composition in boreal forest ecosystems [1ï3]. Large areas of the boreal forest zone, which natural fire 

have shaped over several millennia, are burned annually. Industrial and recreational use of boreal forests 

and forest fire suppression capabilities have dramatically increased over the past century [4]. Northeast 

China maintains abundant forest resources, with a forest area of ~47.0 × 10
4
 km

2
, occupying 31% of 

Chinaôs total forest area [5]. This region stores 1.0ï1.5 Pg·C and contributes to approximately 

24%ï31% of the total carbon storage in China [6]. Most carbon is stored in living trees. For thousands 

of years, wildfires have been the predominant disturbances in this region, which have been strongly 

modified by humans during the recent half century. Historically, fire regimes in these systems were 

characterized by frequent, low intensity surface fires mixed with sparse stand-replacing fires over 

relatively small areas. From 1950 to 1995, the annual average burned area in the northeast region 

accounted for 55% of the national total [7]. Wildfires play a dominant role in boreal ecosystems, 

altering the forest succession, biogeochemical cycling and carbon sequestration [8]. During pre-fire 

periods, forests are believed to be a net carbon sinkða place where carbon is stored (or sequestered). 

When wood is burned, carbon is emitted in decomposition, and wildfires are believed to represent a 

globally significant source of terrestrial carbon in the atmosphere. Following a wildfire, more carbon is 

absorbed in younger trees during the faster regrowth phases and it is transformed to a carbon sink 

again after fire. Therefore, a better observational base for understanding post-fire vegetation dynamics 

in the boreal forests will contribute to predicting the effects of the increasing number of wildfires 

caused by climate change in these ecosystems and subsequently forecasting the future role of boreal 

forests as a carbon sink or source [9]. 

Wildfires create profound changes in ecosystems, causing variations in vegetation reflectance, 

moisture and temperature, which can be detected by means of satellite imagery [10,11]. Fire disturbance 

causes substantial spectral changes by consuming vegetation, destroying the leaf chlorophyll, exposing 

soil, charring stems and altering vegetation moisture. These effects of a fire on vegetative ecosystem 

properties are often defined as burn severity, which is restricted to the loss of organic matter in or on 

the soil surface, and in this respect represents what BAER assessments term ñsoil burn severityò [12]. 

The post-fire re-growth process is of great importance because while fire releases carbon into the 
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atmosphere, carbon sequestration through post-fire regeneration of plants and woody vegetation may 

help to reduce the amount of carbon in the atmosphere [13]. Numerous studies have focused on the use 

of the Normalized Difference Vegetation Index (NDVI) to analyze seasonal and inter-annual 

vegetation dynamics and trends following wildfire disturbances [14,15]. The NDVI data capture the 

contrast between red and near-infrared reflectance of vegetation, which signals the abundance and 

energy absorption of leaf pigments, e.g., chlorophyll.  

NDVI can be used as a proxy for the vegetation response to wildfire disturbances because it is well 

correlated with vegetation regrowth and the fraction of photosynthetically active radiation absorbed by 

plant canopies and, thus, leaf area and biomass [16]. In the present paper, NDVI derived from and the 

Advanced Very High-Resolution Radiometer (AVHRR) satellite measurements is exploited to 

investigate post-fire regeneration and temporal dynamics in the boreal forest. Because of an unusually 

prolonged drought and high winds in northeastern China, the Great Xingôan Mountains exploded in a 

catastrophic wildfire in May 1987. The success of fire suppression in this region, coupled with a 

warmer, drier climate due to global warming, has led to fuel buildup and resulted in fires of greater 

intensity and extent than those that occurred historically in the region [17]. This fire created a mosaic 

of burn severities across the landscape and provided an ideal opportunity to study post-fire vegetation 

patterns in a Chinese boreal forest. The main goals of the present work are (i) to assess the fire damage 

of the entire fire-affected areas in the Great Xingôan Mountains from the fire event in 1987; (ii)  to 

better understand how vegetation responds to fire disturbances by analyzing intra- and inter-annual 

variability in satellite observations; and (iii) to characterize the spatial pattern of post-fire vegetation 

trends under natural regeneration and tree planting scenarios using the AVHRR GIMMS NDVI record 

over the period 1986ï2006.  

2. Data and Method 

2.1. Study Area 

The Great Xingôan Mountain is a typical fire-prone ecosystem in which many species have a 

recognized ability to regenerate after fire. Historically, fire regimes in this region were characterized  

by frequent, low intensity surface fires mixed with sparse stand-replacing fires over relatively small 

areas [18]. The Daxingôanling fire occurred on May 6 and was located on the north slope of Great 

Xingôan Mountain (52Á15'Nï53°33'N, 121°51'Eï125°05'E) in Northeastern China (Figure 1). It is 

primarily a hilly, mountainous region ranging from 450ï1500 m in elevation. This fire burned more 

than 1.33 million hectares of forest resulting in the loss of over 200 lives and 50,000 homes. Fires of 

this magnitude are a major but infrequent disturbance to this landscape, occurring at 100- to 300-year 

intervals [19]. The Daxingôanling fire produced a strikingly heterogeneous mosaic of burn severities 

(effects of fire on the ecosystem) and islands of unburned vegetation across the landscape. The spatial 

extent and heterogeneity induced by this fire provide an ideal opportunity to study the effects of fire 

size and pattern on post-fire succession. The climate in this region is terrestrial monsoon with long, 

severe winters (mean January temperature ī28.5 °C) and short, mild summers (mean July temperature 

17 °C). The precipitation, which peaks in summer, is 420 mm annually and is unevenly distributed 

throughout the year, i.e., more than 60% occurs between June and August. Vegetation in this region 
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falls within the cool temperate coniferous forests occurring at the southern extension of the eastern 

Siberian light coniferous forest [20]. The species composition is relatively simple and the forest covers 

more than 75% of the study area. The most dominant tree species is larch (Larix gmelini), accounting 

for 80% of the study area, followed by birch (Betula Platy Plylla), which covers 10% of the study area. 

Other species, including pine (Pinus sylvestris var. mongolica), spruce (Picea Kor-aiensis), two 

species of aspen (Populus davidiana, Populus suaveolens), and willow (Chosenia arbutifolia) cover 

approximately 10% of the study area.  

Figure 1. Location of the study area.  

 

2.2. Data 

2.2.1. AVHRR GIMMS 15-Day Composite NDVI Dataset 

We used the continental NDVI dataset at 8 km resolution for the period 1984ï2006 produced by the 

Global Inventory Monitoring and Modeling Studies (GIMMS). The dataset was derived from imagery 

obtained from the AVHRR instrument onboard the NOAA satellite series 7, 9, 11, 14, 16 and 17. It 

contains channel 1 (0.58ï0.68 ɛm) and channel 2 (0.73ï1.1 ɛm) reflectance, channel 4 (10.3ï11.3 ɛm) 

and channel 5 (11.5ï12.5 ɛm) brightness temperatures, solar and view zenith angles, and the day of 

compositing. These channels and associated data correspond to the maximum NDVI value during a 

15-day compositing period. The NDVI is expressed on a scale between ī1 and +1. GIMMS NDVI 

values range between ī0.2 and 0.1 for snow, inland water bodies, deserts, and exposed soils, and 

increases from approximately 0.1ï0.7 for increasing amounts of vegetation. The GIMMS dataset 

includes calibration using desert targets, atmospheric correction for stratospheric aerosol, and 

normalization for temporal changes in solar zenith angle [21]. 

2.2.2. Landsat Imagery 

We used Landsat TM and ETM+ data to make a comparison with GIMMS NDVI due to the relatively 

higher spatial and spectral resolution of the sensors. The spatial resolution of 30 m was adequate to 

respond within stand changes, and the scene extent was large enough to cover the whole burned on two 

images. Moreover, since Landsat TM data are available for such an old fire event occurred on 1987. The 

Landsat TM and ETM+ data used in this study are list in Table1. 
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Table 1. Landsat TM and ETM+ scenes used in this analysis. 

Year Date Sensor Path/Row 

1986 5 June TM 121/23 

1987 24 June TM 121/23 

1987 15 June TM 121/22 

2000 19 June ETM+ 121/23 

2004 22 June TM 121/23 

2.3. Method 

2.3.1. Mapping Fire Damage 

In the present study, the difference in vegetation activity obtained from the NDVI between the  

pre- and post-fire periods was used to estimate fire damage. Fire damage represents the reflectance 

changes between the pre-fire vegetation and post-fire burn scar that can be interpreted as the extent of 

degradation of the pre-fire vegetation community. Therefore, fire damage (D) can be measured as a 

difference between pre- and post-fire NDVI values, as given by  

$ ὔὈὠὍ ὔὈὠὍ (1) 

where ὔὈὠὍ  is the average NDVI value in the pre-fire period, i.e., from 1984 to 1986, while 

ὔὈὠὍ is the NDVI value in the fire year, i.e., 1987. In this paper, we prefer fire damage to burn severity 

because the latter definition is often associated with numerous factors that include the effects on soil 

composition, the amount of organic material consumed by the fire, the effects on vegetation, e.g., amount 

of char on shrubs, scorch height and crown scorch, tree mortality or the presence of colonizers [22]. 

2.3.2. Modeling of Vegetation Recovery 

Fire disturbances cause abrupt changes in the trend and seasonality of vegetation growth trajectories. 

Several studies concerning the regeneration of vegetation have proven that the NDVI is particularly 

useful for monitoring plant regrowth after fire disturbances [23ï25]. To ascertain how long it takes burnt 

vegetation stands to return to their pre-fire average NDVI conditions, a relationship between pre- and 

post-fire NDVI values for a control scenario is necessary. The post-fire recovery also relies on the 

so-called healthy state [26]. Here, the healthy state is considered the theoretical potential vegetation 

attainable (ὔὈὠὍ ) by an ideal healthy state without any disturbance. Therefore, we define the 

stand regrowth index (SRI) at time t after the fire as 

ὛὙὍ 
ὔὈὠὍȟ
ὔὈὠὍ

ρππϷ  (2) 

where t is the elapsed year since the fire and ὔὈὠὍȟ is the stand average annual NDVI at time t. 

Moreover, ὔὈὠὍ  is the NDVI value of the healthy state, which is defined by the maximum 

NDVI value of the pre-fire period (1984ï1986). Actually, it is very difficult or even impossible for all 

post-fire pixels to reach the healthy state. Therefore, stand regrowth index approaches 100% as time 

progresses following a fire disturbance. However, the rate never attains this value. Therefore, the growth 

rate can be used as a proxy for the vegetation recovery trend. 
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Furthermore, inter-annual NDVI signals are also greatly influenced by climate changes, e.g., 

temperature and precipitation anomalies. With the goal of separating the inter-annual variations caused 

by climate from changes in NDVI and highlighting fire-induced effects on vegetation, another similar 

index using a control stand NDVI instead of the pre-fire NDVI has been used in numerous fire recovery 

studies [9,27,28]. This relative regrowth index (RRI) at time t can be expressed as follows: 

ὙὙὍὔὈὠὍȟ ὔὈὠὍȟ (3) 

where ὔὈὠὍȟ and ὔὈὠὍȟ are the average NDVI values of the burned area and unburned control 

plot, respectively, derived from the GIMMS NDVI.  

The advantage of using SRI to evaluate post-fire recovery is that it relates all post-fire NDVI values to 

the actual situation in the stand before the fire. However, pre-fire vegetation is specific to antecedent 

environmental conditions affecting vegetation growth. Hence, by utilizing an adjacent unburned control 

stand NDVI to derive the RRI, changes in environmental conditions are potentially captured by the 

NDVI signals throughout the analysis period [27]. It is very important for the calculation of the RRI that 

the selected control area has similar properties (e.g., vegetation type or climate) to the burnt area. The 

control area was required to have a long history without fire or other disturbances to ensure that it was 

not undergoing changes associated with vegetation recovery. To minimize differences in temperature 

and precipitation characteristics, the selected control area should have a similar elevation range to the 

burned area. In considering these premises, an adjacent area to the fire scar was chosen as the unburned 

control area (Figure 1). 

2.3.3. Mann-Kendall Trend Assessment 

Trend significance was evaluated using a statistical rank-based nonparametric Mann-Kendall  

test [29,30], which is a commonly used method to assess the significance of monotonic trends in 

long-term time series. It has the advantage of not assuming any distributional form for the data and has 

similar capabilities as its parametric counterparts. In this study, the time series of the calculated ὛὙὍs  

are analyzed to identify meaningful long-term trends using the Mann-Kendall statistics. In the 

Mann-Kendall test, the data are ranked with reference to time; each data point is treated as the reference 

for the data points in successive time periods [31]. The equation used to calculate the Mann-Kendall 

correlation coefficient (S) is defined by Kendall as 

3 ίὭὫὲὛὙὍὛὙὍ (4) 

where 

ίὭὫὲὛὙὍὛὙὍ

ρ     ὭὪ   ὛὙὍὛὙὍπ 

π     ὭὪ   ὛὙὍὛὙὍπ

ρ    ὭὪ   ὛὙὍὛὙὍπ

 (5) 

Here, n is the length of the time series dataset and ὛὙὍ and ὛὙὍ are the observational stand 

regrowth index at times i and j, respectively. According to Mann and Kendall, the statistic S is 

approximately normal when n  8 with the mean and the variance as follows: 
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E (S) = 0 (6) 

6ÁÒ3
ÎÎ ρ ςÎ υ В ὸὭὭ ρ ςὭ υ

ρψ
 (7) 

where ὸ denotes the number of ties of extent i. 

The equation used to calculate Mann-Kendall significance (U and p) is as follows:  

5

ừ
Ử
Ừ

Ử
ứ
Ὓ ρ

6ÁÒ3
      ÆÏÒ    Ὓ π

    π          ÆÏÒ    Ὓ π
Ὓ ρ

6ÁÒ3
       ÆÏÒ    Ὓ π

 (8) 

The U statistic follows the standard normal distribution with zero mean and unit variance under the 

null hypothesis of no trend. A positive U value indicates an upward trend; a negative value indicates a 

downward trend. The p value of an MK statistic S can then be determined using the normal cumulative 

distribution function 

ὴ ςρ ᶮȿὟȿ (9) 

where ᶮȿὟȿ denotes the cumulative distribution function of a standard normal vitiate.  

3. Results and Discussion 

3.1. Fire Damage Assessment 

The goal of this study was to examine the spatial and temporal patterns of forest regeneration and then 

assess the driving factors relevant to the vegetation recovery process, especially for fire damage. The 

differences between the immediate post-fire and pre-fire NDVI values enabled us to identify the 

fire-damaged areas that were likely burned. Figure 2 shows a spatial pattern of fire damage that was 

computed from the pre- to post-fire difference in GIMMS NDVI. Red pixels represent large NDVI 

differences between pre- and post-fire, while blue pixels represent small NDVI differences. Fire damage 

is expected to influence the spatial configuration and arrangement of forest patches, contributing to and 

influencing ecological processes during post-fire recovery and succession [32]. Therefore, to track 

vegetation behavior that was affected by different fire damage extents, we classified the fire damage into 

five classes using the z-score (standard deviation) method [33]. 

A z-score, or standard deviation, measures the dispersion of data. A reclassification procedure was 

used to divide the z-scores of the simple difference images (the standardized difference between pre- and 

post-fire NDVI values) into five categories (Table 2). 

Figures 3 and 4 illustrate the result of the fire damage classification using the z-score approach. The 

image is mapped in a blue-red color scale. Low z-scores are represented in blue, while a red color was 

assigned to high z-score pixels. The spatial pattern of the fire damage classes is clearly visible in the map 

with an evident differentiation between very high and slight patches.  

There were five different fire sources for this large fire event. Some burned areas joined together 

while others did not (Figure 4 and Table 3). Therefore, very high and high fire damage pixels were 

concentrated in a few disjunctive regions.  
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Figure 2. Fire damage map of the study area for the Daxingôanling fire event with fire 

damage values obtained using Equation (1). 

 

Table 2. Fire damage classification using the z-score method. 

Pre-Fire Year 

(1984ï1986) 

Post-Fire Year 

(1987) 

Standard 

Difference 
z-Score 

Fire Damage 

Class  
Pixels 

Percentage 

(%)  

0.7708 0.6542 ī2~ī1 1 Slight 5 2.44% 

0.7764 0.5352 ī1~0 2 Low 49 23.90% 

0.7852 0.3868 0~1 3 Medium 94 45.85% 

0.7884 0.2239 1~2 4 High 46 22.44% 

0.8165 0.0524 2~999 5 Very high 11 5.37% 

Figure 3. The fire damage of the entire burned area divided into five classes:  

Very high (VH), High (H), Moderate (M), Low (L) and Slight (S). 
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Figure 4. Fire sources and fire damage classes: Very high (VH), High (H), Moderate (M), 

Low (L) and Slight (S). The base map image is a composition of two Landsat 5 TM images 

from June 1987 (false color composite bands: red-band 7; green-band 4; blue-band 1). Beryl 

green grids were chose to track the detail vegetation signals using Landsat images with 30 m 

spatial resolution. 

 

Table 3. Five sources of the 1987 large fire related to Figure 4. 

Fire Source Name Longitude Latitude Burned Area Ignition Reason 

Source-1 Gulian 122°22' 52°26'  38 × 104 ha Electric spark 

Source-2 Hewan 122°21' 53°11'  33.8 × 104 ha Smoking 

Source-3 Pangu 123°43' 52°45'  28 × 104 ha Unknown 

Source-4 Xingan 122°22' 122°22' 616 ha Smoking 

Source-5 Yixi  123°25' 53°05'  587 ha Electric spark 

3.2. Temporal Analysis of Post-Fire Vegetation Trajectory 

3.2.1. Monthly Dynamics of Post-Fire Vegetation Trajectory 

The relationship between pre-fire (1986) and fire year (1987) NDVI values is illustrated in a series of 

scatter plots (Figure 5). The location of the cloud of points shows a large shift away from the 1:1 line 

when the fire occurred in May and a positive recovery trend after the fire. From January to April  

(Figure 5aïd), the cloud of points is close to the 1:1 line, which indicates the NDVI values were 

generally equal during periods without fire disturbances in both years. However, Figure 5e shows that 

there was a sharp decrease when the fire occurred in May 1987. Following the fire event, there was a 

rapid increase from June to August (Figure 5fïh), which was likely the NDVI response of the understory 

vegetation (e.g., herbaceous and shrubs) to temperature or precipitation variability [34,35]. From 

September to November, the Great Xingôan Mountain entered autumn; NDVI values decreased in both 
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years with the spread of colored foliage and the percentage of fallen leaves increasing. Regardless, Figure 5j 

also shows clear NDVI departures when post- and pre-fire conditions are compared. This is because colored 

leaves fall from grasses and shrubs while the tree leaves remain green in October. The difference in NDVI 

values appeared again in this month. Therefore, October was a better than the others to distinguish post- and 

pre-fire vegetation conditions using NDVI signals. Thereafter, this region was covered by snow from 

December to the following February. During this period, it is difficult to find evidence of fire effects on 

vegetation from NDVI values due to the values reaching a minimum for the entire seasonal cycle.  

Figure 5. Monthly scatterplots of post-fire normalized difference vegetation index (NDVI)  

(1987) versus pre-fire NDVI (1986) ((a) January, (b) February, (c) March, (d) April,  

(e) May, (f) June, (g) July, (h) August, (i) September, (j ) October, (k) November,  

(l) December) for the large fire on May 1987. 
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Shortly after the fire event, the NDVI signal should decrease significantly due to the disappearance of 

green grasses and shrubs before rapidly increasing again in the following months because of the 

re-growth of understory vegetation occurs and the phenology trajectory effect. Therefore, to avoid the 

phenology effect we further compared monthly NDVI trajectories of the normal year (without fire) and 

fire year (Figure 6). The trajectory of black points (average NDVI values for each month) is expected to 

be distributed along the 1:1 line when there is no disturbance; the monthly differences between the two 

normal years are very small (Figure 6a). However, for the fire year, there was a large increase in the fire 

month (May); most points following the fire are below the 1:1 line, indicating a pronounced decrease in 

greenness due to the fire. 

Figure 6. Monthly NDVI trajectories of (a) a normal year and (b) the fire year. The points 

within the green box represent the growing season (April to October), while the points 

within the black box represent the snow cover season (November to March). The red point 

represents the month that the fire occurred. 

 

(a)       (b) 

3.2.2. Yearly Dynamics of Post-Fire Vegetation 

The entire study period (1984ï2006) includes three parts: pre-fire years (1984ï1986), fire event year 

(1987) and post-fire years (1988ï2006). Figure 7 shows the evolution of RRI, which was calculated 

using NDVI differences between fire scars and unburned control areas for the growing season average 

(April to October) and June (the month right after the fire in 1987) time series. Zero on the time scale 

represents the burn year, i.e., relative year 0 was the year of the wildfire event. Relative year ī1 and +1 

were years immediately before and after the fire event, respectively. In both series, there was an abrupt 

decrease in RRI values from 0 to ī0.1 and ī0.25 for the growing season average and June, respectively. 

Both series had low temporal variability in the pre-fire period that progressively increased in the 

post-fire period. 

The June series RRI values decreased abruptly after the Daxingôanling fire in 1987. This decrease 

was larger than for the growing season average time series. The RRI underwent a progressive increase 

during the first four years following the fire. Different recovery trends have been explained in relation to 

the species types installed and the biophysical constraints of the sites [23]. Generally, understory grass 

can recover to very high RRI values within several months following a fire. Dwarf shrubs also exhibit 
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rapid regrowth capabilities, which can reach the saturating biomass stage within a short time scale  

(3ï5 years). Therefore, the increase in this phase was mainly the result of survived dwarf shrub and 

understory grass. There is a slight decrease in the relative year 5, which was mainly a consequence of 

post-fire logging and planning. The RRI value was less than 0 during the post-fire period. However, the 

recovery trend was well pronounced and the system tended to recover to pre-disturbance conditions. 

Figure 7 shows a good recovery at relative year 19 with RRI reaching zero, which indicates there was no 

difference between burn scar and control plot. However, to confirm this result over a much longer 

period, additional observations are required. 

Figure 7. The evolution of RRI calculated using NDVI difference between fire scars and the 

unburned control area for the growing season average (April to October) and June (the 

month immediately after the fire in 1987) time series. Zero on the time scale represents the 

burn year, i.e., relative year 0 is the year of the wildfire event. Relative year ī1 and +1 

corresponds to the year before and after the fire event, respectively. 

 

3.3. Spatial Pattern and Trend Analysis of Post-Fire Stands Regrowth Index (SRI) 

An annual stands regrowth index (SRI) series was estimated from the vegetation response after the 

fire. Most of the burned pixels suggest that vegetation responses follow a positive trend, increasing their 

annual SRI responses in subsequent years (1988ï2006) after this fire event (Figure 8). It is evident from 

the figure that substantial change occurred within this region from 1988 to 2006. There was a small 

annual increase in SRI values during the first five years following the fire. However, there was a more 

robust annual increase between years 10 and 19 in the subsequent period. This change in the rate was due 

to intensive salvage harvesting of standing dead logs in the first two years following the fire and then 

coniferous trees were planted to restore the timber volume of coniferous species because lumbering was 

the main forest industry in this region [36]. Figure 9 presents a significance image and degree of 

significance for the post-fire stands regrowth index (SRI) trend from the study area using the simple 

non-parametric Mann-Kendall test (single pixel-based analysis). The blue-green color shows the 

statistically significant positive trends. Most of the study area had significant increases in SRI, 

corroborating accounts of a general greening of the burned area during this period. A trend was 

considered statistically significant (at P πȢπυ) when the Mann-Kendall (MK) statistics U was either 
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ρȢωφ ÏÒ ρȢωφ [29,30]. Therefore, the degree of significance of the post-fire stands regrowth 

index (SRI) trend using a non-parametric Mann-Kendall test can be divided into four categories:  

U < ī1.96, significant downward trend; ρȢωφ U  0, downward trend, however not significant; 

π  U 1.96, upward trend, however not significant; and ρȢωφ U, significant upward trend (Figure 9b). 

Table 4 demonstrates that all very high (VH) damage pixels had an upward trend; there was a significant 

upward trend (Mann-Kendal significance (U) ρȢωφ) for 18% of the pixels and a non-significant 

upward trend for 82% of the pixels. Our results agree well with the findings of similar researches 

conducted by Wang and He et al. [17,37]. They found that larch abundance increases due to increasing 

planting intensity and the degree of increased abundance among these planting intensity scenarios is 

different. The results also suggest that approximately 65% and 61% of the high (H) and medium (M) fire 

damage pixels, respectively, underwent a non-significant upward trend. However, for the slight (S) and 

low (L) damage classes, this number was very low because tree planting mainly occurred in the severely 

burned area (approximately equal to the Medium, High and Very High fire damage areas combined). 

The main species planted was L. gmelinii, with a small area of P. sylvestris var. Mongolia and Korean 

Spruce (Picea koraiensis). Therefore, the severely burned area exhibited a better recovery trend than the 

lightly burned regions, similar to the results of Li et al. (2010). By 1997, approximately 50% of the 

severely burned area had been reforested, mostly in high accessibility areas and locations with good site 

conditions. In the moderately burned areas (30%ï70% of trees dead), human promoted restoration was 

conducted with mechanical plows. However, in the lightly burned areas (less than 30% of trees dead), 

natural regeneration was permitted to occur [36]. Additionally, Wang and He et al. believed that spatial 

pattern of plantation also influences the three species, with higher larch and pine abundance and lower 

white birch abundance under dispersed planting than that under aggregated planting [37]. 

Table 4. The degree of significance for the post-fire stands regrowth index (SRI) trends 

using a non-parametric Mann-Kendall test.  

Fire Damage Class 

Mann-Kendal Significance (U) 

ἣ Ȣ  Ȣ  U  0  U  1.96 Ȣ  U 

Significant  

Downward Trend 

Downward Trend,  

However Not  

Significant 

Upward Trend,  

However Not Significant 

Significant  

Upward Trend 

Slight  

(S) 

Pixel counts 0 2 3 0 

Percentage (%) 0% 40% 60% 0% 

Low  

(L)  

Pixel counts 3 33 12 1 

Percentage (%) 6% 67% 24% 2% 

Medium  

(M)  

Pixel counts 3 32 57 2 

Percentage (%) 3% 34% 61% 2% 

High  

(H) 

Pixel counts 0 13 30 3 

Percentage (%) 0% 28% 65% 7% 

Very High  

(VH)  

Pixel counts 0 0 9 2 

Percentage (%) 0% 0% 82% 18% 
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Figure 8. The trajectory of the post-fire stands regrowth index (SRI) for the relative year 1, 

5, 10, 15 and 19. 

 

Figure 9. (a) The stands regrowth index (SRI) significance distribution using a 

non-parametric Mann-Kendall test and (b) the degree of significance degree for the post-fire 

stands regrowth index (SRI) trend using a non-parametric Mann-Kendall test. 
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3.4. Assessment against Landsat-NDVI 

With higher spatial resolution than NOAA/AVHRR, enable the delineation of NDVI with a higher 

degree of accuracy. We attempted to assess the agreement of the GIMMS NDVI by comparing with 

NDVI extracted by Landsat TM/ETM+ sensors. We used Landsat TM and ETM+ data due to the 

relatively high spatial (30 m) and spectral resolution of the sensors. Moreover, Landsat TM data  

are available in the 1980s; the response of post-fire vegetation may be estimated using these data. Five  

8 km × 8 km simples were acquired for the same location with GIMMS NDVI to track the detail 

vegetation signals in Landsat imagery (Figure 4). Landsat images were selected at close dates (5 June 

1986, 15 June 1987, 19 June 2000 and 22 June 2004) in order to avoid the influences of phenological 

differences (Table 1 and Figure 10). To account for differences in the temporal resolution, GIMMS 

15-day images nearest to the Landsat sample acquisition date were selected.  

Figure 10. Landsat TM/ETM+ images (RGB:432) illustrating fire-caused changes on the 

ground vegetation. The locations of these five tracked simples can be found in Figure 4. 

Minus and plus signs represent pre-fire and post-fire period, respectively. Fire damage 

classes: Very High (VH); High (H); Moderate (M); Low (L); Slight (S). 

 

Figure 11 shows a similar the NDVI trends of GIMMS and Landsat. GIMMS dataset appears 

positively biased compared to Landsat-NDVI values. Landsat-NDVI values confirm that the GIMMS 

dataset overestimates NDVI in this region, which is likely due to GIMMS NDVI consisting primarily of 


