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Abstract: Leaf Area Index (LAI) represents the total surface area of leaves above a unit
area of ground and is a key variable in any vegetation model, as well as in climate models.
New high resolution LAI satellite data is now available covering a period of severakdecad
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This provides a unique opportunity to validate LAl estimates from multiple vegetation
models. The objective of this paper is to compare new, saidiieed LAl m@asurements

with modeledoutput for the Northern Hemisphere. We compare monthly LAI output from
eight land surface models from the TRENDY compendium with satellite data from an
Artificial Neural Network (ANN) from the latest version (third generation) oMGIS
AVHRR NDVI data over the period 1988005. Our results show that all the models
overestimate the mean LA, particularly over the boreal forest. We also finseteatout

of the eight models overestimate the length of thetive vegetatiolgrowing seaon,
mostly due to a late dormancy as a result of a late summer phenology., Fwediyd that

the models report a much larger positive trend in LAl over this period than the satellite
observations suggest, which translates into a higher trend in thingreeason length. These
results highlight the need to incorporate a larger number of more accurate plant functional
types in all models and, in particular, to improve the phenology of deciduous trees.

Keywords: LAI; land surface models; growing seasonrently; northern
hemispherephenolgy

1. Introduction

Leaf Area Index (LAI) is the number of leaf layers per unit area in an ecosystem. It is widely used
in the coupling of land surface and atmospheric processes, such as radiation, precipitatiomimtdicept
and gas exchange [2]. There are several methods to estimate LAI [3], including direct observation and
the ue of modern radiometers. However, at global scale satellite products are arguably the masttimport
LAl is a key variable of energy and tea balance calculations in vegetation models [4]. It influences
numerous model outputs such as net primary productivity (NPP), evapotranspiration (ET), the fraction
of the light being absorbed by plants (FAPAR) and nutrient dynamics [5]. Land Surfacés Nldsiels)
have different approaches for calculating LAI, and while the use of plant functional types (PFTSs) is
widespread [6], there are important differences in the number of simulated PFTs, their spatial distributio
and the representation of vegetation dynamics [7].

LSMs differ in the number of PFTs they include [8], and typically divide vegetation into between 4
and 16 PFTs. The number of PFTs and their parameterization leads to important discrepancies in the
distribution of the vegetation types [9]. In addition, models vary in their representation of functional
tradeoffs and plant responses to the environment [10]. The former creates -@ffrbgtwveen the
number ofmodeledPFTs and their correct representatiosing many PFTs leads to an increased
uncertainty due to their parameterizations, while an insufficient number resaltsisrepresentation
of vegetation dynamics. One example of this is the ratio of evergreen to deciduous boreal forest in the
NorthernHemisphere, or the ratio of evergreen forests to grasslands over the tropics; the distribution
of these have important implications for future climate prediction, as shown byesatk/,11].

There are several studies that have compared model resiilis satellite data[11i 13].
Buermannet al [12] compared the NCAREC3 model with satellite data and found that the model
partitioning of latent and sensible heat fluxes create discrepancies in tfeuxs3, which lead to an



Remote Seng2013 5 4821

overestimation of thenodekdgrowing season length (GSL). In another example, Richaretsain[14]
compared phenology measurements of ten forests sites in USA with fourteen vegetation models; they
found that the models overestimated the length of the growing season, whilelog@aiducing the
CO,fluxes due to an underestimation of the LAI peak. Finally, Randetsah[15] found that models
underetimate the carbon uptake during the growing season in boreal forest ecosystems due ® tardines
in the LAI peak.

One d the main reasons for the lack of comparison between model outputs and satellite olvservatio
is data limitation. While satellites have been recording vegetatiowth since the 1980s, the data
were difficult to use due to frequent missing values. The firstpbete satellite global timeseries did not
appear until 1991 [167]. These products were initially used to validate simple climatic models of
vegetaion distribution [12], but their usage has increased steadily in a range of applications. For,example
they are used to estimate the biomass of grasslands [18], boreal forests [19] and mangroves [20].

During this time LSMs continued to develop in sophistication and diversity [21]. While the core
processes represented in these models remain similar, thegreatly in their parameterization. This
is particularly true in the responses to temperature and drought. Moreover, refined observatiogal forcin
data have become widely available. This allows LSMs to be run offline using observed climatology, as
in this maper, or offline with selfenerated climatology as part of an EgBistemModel (ESM) (as in
Partll of this study Anavet al [22]). Running offline allows the uncertainty corresponding to process
representation to be isolated from climet¢ated unceainties, which ultimately can be use to improve
ESMs and future climatic projections. This evaluation is key in model development.

One important process that remains to be evaluated is the lengthening of the growing season ove
the Northern Hemispher&his has been observed by several authors in satefiddeledand field
data [B,24]. Changes in seasonal variation and the mean values of LAI, mostly due to an increase in
temperature at the beginning of the growing season, have important implicatitives gilobal carbon
cycle. However, considerable uncertainty remains with regard to greening trends and the ability of
models to reproduce satellitkerived trends.

With new and improved LAI data now availalpBsi 28], a more precise validation of model output
is imperative. The objective of this paper is to compare LAI from satdiitered measurements with
modeledoutput from a set of 8 LSMs over the Northern Hemisphere. We ask three questidfi to
this objecive:

1 Do uncoupled (LSMs) models correctly reproduce the spatial variability of LAl shown by
satellite data over the Northern Hemisphere?

1 How does the length of the growing season in the different models compare with the satellite
data? And where are the main discrepancies (onset or dormancy)?

1 What are the trends in LAI and the growing season over this period?

2. Materials and Methods
2.1 Model Data

We use monthly LAI output from eight LSMs from the TRENDY compendium [8]. The models
differ in the way they simulate and parameterize several processes (T&(28 B5]) and in the way they
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calcubte LAI. All of the models were forced usingetsame observed climatic and £fata (corrected
CRU v3.1 merged with NCEP) and simulated two experiments over the last century:

1 S1:real CQgrowth and climate kept constant, recycling the first 10 years of the century.

1 S2:real CQand climate. In the present study we use the S2 simulations. All model outputs were
regridded to a common® 1 degree gridAlthough satellite data are available before 1986,
focus on the last 20 years of the 20th century simulations {2986) to be consistent with the
analyses of the coupled modefnav et al, this issue [27]

Table 1. Characteristics of theight dynamic global vegetatiomodels (redrawn from
Sitchet al [8]).

Model Name Abbreviation  Spatial Resolution Number of PFTs Vegetation Fire dynamics Full Nitrogen Cycle Reference
Community
CLM 0.5°x0.5 16 Imposed Yes Yes [29]
Land Model 4CN
Lund-PotsdamJena LPJ 05 x0.5 11 Dynamic Yes No [6]
LPJ-GUESS GUESS 0.5°x0.5 11 Dynamic Yes No [30]
ORCHIDEE -CN OCN 3.7 x 2.5 12 Imposed Yes Yes [31]
ORCHIDEE ORC 0.5°x0.5 12 Imposed No No [32]
Sheffield DGVM SDGVM 3.7 x 2.5 6 Imposed Yes No [33]
TRIFFID TRI 3.75 x2.5° 5 Dynamic No No [34]
VEGAS VEG 05 x0.5 4 Dynamic No No [35]

2.2 LAl Parameterizatiorand Calculation

Models differ in the way they calculate LAI, but all of them reportesided LAl and use
self-calculated LAI, independent from the satellite measurements. Theirdifi@rence is the choice
of imposed or dynamic vegetation. The former uses a-damdr map to generate PFT categories,
while the latter generates PFT categories based on climatic and competition dynamics.

1 CLMA4CN. The model has 16 PFTs. In this versibe tarbomitrogen cycling model simulates
leaf carbon and specific leaf area to calculate the LAI for each PFT.

1 LPJ. The leaf area index is updated daily and depends on temperature, soil water, and plant
productivty for each PFT. The models have 3 different phenology types (evergreen, suramergre
raingreen) and 11 PFTs.

1 LPJGUESS.The leaf area index is updated daily and depends on temperature, soil water, and
plant productivity for each PFT. The models have 3ediint phenology types (evergreen,
summergreen, raingreen) and 11 PFTs.

1 ORCHIDEE.LAI is estimated based on temperature. It also uses a maximum LAI threshold after
which no more carbon is allocated to the leaves.

1 OCN employs an approach based on the pimelel for allocation, which results in much more
rapid leaf development, and does not prescribe a maximum leafatinea, the maximal annual
LAl is an emergent outcome of the NPP of the vegetation and the costs (roots, shoot) for
maintaining the leaf aa, which varies as a function of water and nitrogen stress.



Remote Seng2013 5 4823

1 SDGVM. LAl is calculated to optimize stem & root NPP. This is achieved through consideratio
of the net carbon balance of the bottom layer of the canopy. The fraction of NPP available for leaf
production is adjusted each year based on this carbon balance. The rate at which this fraction is
adjusted is PFOependent.

1 TRIFFID. LAI is calculated for each of the 5 PFTs, based on parameters describing the
minimum, maximum and balanced LAl if full coves reached. The actual LAl is then calculated
as a function of the balanced LAl and the phonological status of the vegetation, which depends
on temperature.

1 VEGAS. The model has five PFTs: broadleaf tree, needleéteaf C3 grass, C4 grass, and crop.
Whether a tree PFT is deciduous or evergreen is dynamically determined, so it has essentially 7
functional types. Phenology is calculated for each PFT as the balance between growth and
respiration. The actual leaf mass calculated based on photosynthesis allocation, and then
converted to leaf area index.

2.3. Satellite Data

The LAI data set used in this study was generated using an Artificial Neural Network (ANN) from
the latest version (third generation) of the GIMMYHRR NDVI data for the period July 1981 to
December 2010 at a 4fay frequency (Zhwet al this issue[36]). The ANN was trained with
bestquality Collection 5 MODIS LAl product and corresponding GIMMS NDVI data for an
overlapping period of 5 years (2008 2004) and then tested for its predictive capability over another
five year period (2002009). The average uncertainty of the MODIS LAI product is estimated to be
0.66 LAl units [24], thoul it varies depending on the mean LAI, and the data is$mtet LAI; further
details are providein Zhuet al [36]. The 10 years of MODIS LAI/FPAR (2002009) was further
processed to generate climatology. The ANN was further trained on the climatology fields. The NDVI3g
data have now a 3gear history of develapent. The data was further regridded to the saméd Brid,
using a linear interpolation; all missing values were filtered when average over a coarser resolution.

2.4, Study Region

The main focus of this study is the high northern etttvpics. This area was chosen due to the
fact that satellite data is more reliable over this region than others, because there are fewer clouds
Additionally, we want to study the response of phegplo temperature and thesiee no clear seasonal
changes in vegetation growth over the tropldence our study region comprises all the land areas
north of 30N. All results, with the exception of zonal LAI, are projected over a stereographic
projectionfrom the North Pole, with the latitude ranging fronf\N3@o 90N .

2.5. Leaf Phenology Analyses

Growing season onset, dormancy and length were calculated based on the seasonal amplitude. LA
has been shown to have a normal distribution over the year imenokdtitudes [J], so we consider
the start of the growing season to be 20% of the maximum amplitude. This processes has been prove
to be more stable for monthly data, compared to an approach based on sudden LAI changes.
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In order to analyze changestire growing season, we mask regions where there are minimal shange
in LAl over the year (e.g., evergreen forests and mixed forest with a small deciduous compongat). The
regions were defined as those where the difference between the maximum and miramyplitude
is less than 0.5. We also masked regions where the LAl decreased in the middle of the sumnigr (droug
deciduousness), assuming those months to have constant LAI.

For the gridcells with enough variatiowe calculated a critical threshold val¢CT) above which
we assume the plants to be photosynthetically active (Equ@ajion

5Y 06 ™ 06D 06 (1)

where LAI Min and Max represent minimum and maximum gridcall over one year. The length of

the growing season for each year was calculated as the number of months with an LAI value above this
threshold; the onset is the first of these months and the dormancy is the last. Since part of the growinc
season occurdtar the end of thgear [38], we includedhe first three months of the following year in

the calculations. Henceéhe growing season offset can occur on the following year, having DOY
higher than 365Even when calculated monthly all results are presemtedays (humber of days
passed until the end of the calculated month). The procedure was repeated for each gridcell, year an
dataset. Mean length, onset and dormancy represent the average over the whole time period (Figure 1

Figure 1. Growing seasonrset, dormancy (offset) and length calculation based on the
seasonal amplitude. A critical threshold value is calculated for each gridcell and each year
based on the maximum and minimlueaf Area IndexI(Al).
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In order to quantify the differences betweba models and data we calculate the root mean square

errors (Equation(2)) between each model and the satellite observations for each grid cell and aiggrowi
season variables, and the seasonal amplitude.
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2.6. Temporal Trends

In order to calculate the temporal changes in annual average LAl and growing season length (GSL),
linear trends were calculated for each gridéailthe whole time period. The values are presented as
net change in both variablés,m? m'? and indaysyear respectively. This approach has been used by
other authors [34] giving important insights on the drivers of change.

3. Results
3.1. Mean LAl

All of the models overestimate mean LAI, LAI trend and interannual variability (IAV) over the
high-latitude Northern Hemisphere compared to the satellite observations (Figure 2). In general, model
with the highest average LAI also have strong positivedse This occurs regardless of whether the
models use imposed or dynamic vegetation, or the number of PFTs implemented. Interestingly, models
with a trend and average LAI closest to the satellite records, such as ORCHIDEE, OCN and TRIFFID
have very differat values of 1AV, ranging from values similar to the satellite data up to 4 times
higher. On the contrary, the most dissimilar models to the observations, subld and CLM4CN,
have larger IAV.

Figure 2. Linear trend against average LAl for each model saellite observations, with
IAV represented as colors. The data represents the wholdakitiglde Northern Hemisphe
(30°190°) for the time period 198@005.

NORTHERN HEMISPHERE (30N-90N)
T T T 0.3

0.01 '

0.008 - - Bo.z2s
LPJ®

©CLM4aCcN
0.006 - - Moz

1986-2005 IAV

. SDGVM

0.004 - [10.15
* LPJ-GUESS

1986-2005 Linear Trend

® ORCHIDEE
«VEGAS

® OCN

0.002 - TRIFFID -+ Ho.1

0 I I I I I I io_os

0.8 1 1.2 1.4 1.6 1.8 2 2.2
1986-2005 Mean Annual LAI

Looking at the spatial distribution of LAI, most of the models simulate the obsgraédl distribtion
pattern (Figure 3). Peaks in LAl are evident over the boreal fore$tg5™N) and the North American
temperate forest (3055°N). The lowest values are found over the cold Gobi plateau and the Siberian
Tundra. As noted above, thereasgeneral overestimation of mean LAl in the models, relative to
observations. LAI values range from 0 to 2.5 in the satellite data, while for the models they are as high
as 5.Models and observations agree on values over the deserts ahAdlloggions bu the differences
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are higher (B4) over the boreal region. As shown by spatial correlations, differences between satellite
data and models are higher in VEGAS and TRIFFID, and smaller in LPJ ar@dWP3S (Figure 3).

It is noteworthy that much of the diggrancies occur over evergreen vegetation, suggesting that the
lack of regenerative vegetative states, fire and gap dynamics over this region lead to an overestimatior
of thenumber of fully grown trees on models, which ultimately means a much higher da\bbiserve.
However, satellite signadaturatiod this is theinability of the satellite to distinguish between areas

with high LAI- could be leading to an underestimation of LAl in dense forested areas such as the
boreal forest, which might also accouat the lower LAI over this area.

Figure 3. Spatially distributed annual mean LAl for 8 LSM$ &) and satellite observahs
over the Northern Hemisphere (800°N), for the period 198&005. Spatial correlations
between each model and observations arengin the white boxes.

The seasonal amplitude patterns show large disagreements between the models and the satellite da
(Figure 4). Most models overestimate the mean amplitude (RSMB2 2.21), which is particularly
evident over Europe and Easté&torth America. The exception here is SDGVM, which displays little
seasonality and performs better than the rest of the models in reproducing the -dateltie
observations. The RSME show that models using dynamic vegetation are less similar tdiobserva
than those using imposed vegetation. Regardless, most models correctly simulate the spatial variability
of the seasonal amplitude; this is true for CLM, GUESS, OCN and VEGAS to some extent. TRIFFID
shows almost no seasonality over this area, whicmasmly driven by the omnipresence of the
evergreen PFT over the Northern Hemisphere (not shown) (Figure 4).
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Figure 4. Seasonal Amplitude in LAI for 8 LSMs and satellite observations for the Northe
Hemisphere (30 90°N) for the period 19862005. Rootmean square errors and spatial
correlations between each model and the observations are given in the white boxes.
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3.2 GrowingSeason

The growing season onset derived from LAl is broadly consistent across the models, with high
correlations compared todtsatellite data (>0.5) (Figure 5). In general the satellite observations show
a later onset as latitude increases, remarkably similar to the thermal gradient. CLGUESS, LPJ,
SDGVM and, to a lesser extent, OCN, ORCHIDEE and VEGAS correctly reprdhbiscgpatial patter,
as $iown by the RSME and spatial correlations. This is not surprising as those models includala therm
limitation to photosynthesis and a snow scheme. TRIFFID shows no detectable onset aNdwet 50
has later values compared to tegtellite below that threshold, likely due to the distribution of the
evergreen PFT over the whole NH. Models that have the highest correlations with the satellite on the
SA also show very similar values to the satellite on the onset, as shown by RSME &}ig
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Figure 5. Mean (19862005) growing season onset (day) for 8 LSMs and satellite
observations over the Northern Hemisphere&i(80°N). Spatial correlations and root mean
square errors between each model and the observations are given in thmxédste

28 29 24

GUESS

The discrepancies between the models and satellite observations are larger when considering th
end of the growing season or dormancy (Figure 6). While the satellite data shows a latitudinal gradient,
with the dormancy occurringarlier at highetatitudes, most models overestimate the dormancy day
(RSME = 31 63). Out of the eight models, LRFAUESS, LPJ, ORCHIDEE and VEGAS have a similar
dormancy distribution with minor discrepancies over the taiga and boreal forest, as shown by the
spatial correlaons. CLM, OCN and TRIFFID have patchy areas of agreement, while SDGVM has a
much later dormancy than the satellite data. In some regions, particularly boreal deciduous forest,
modeled dormancy can happen after the end of the year (DOY higher than 8&8uar over these
months the snow corrupts the satellite signal, leading to an underestimation of LAI. This partially
explains why the dormancy date errorslarger than those of the onset.

All of the models predict a later dormancy date (day), pagibulover the northern temperate
region (30150°N) (Figure 6). This means that leaves in the models remain for longer than they
should. However, the late dormancy is not in line with the vegetation photosynthetic activity. When
the same methodology used ¢alculate the LAlgrowing period was applied to gross primary
productivity (GPP), we found that the dormancy began at 277 +7 days in the models, which is
remarkably earlier than previously predicted by LAI (315 +10 days), even on thadaW latitudes
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(287 £18). It is evident that all of the models keep inactive leaves for longer than they should, which
does not have an impact on the C cycle but could potentially modify radiation and turbulent fluxes,
therefore affecting planetary boundary layer dyicam

Figure 6. Mean (19862005) growing season dormancy (day) for 8 LSMs and satellite
observations over the Northern Hemisphere&i(80°N). Spatial correlations and root mean
square errors between each model and the observations are given in theoxegdOYs
above 365 represent DOYs of the following year.
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There is a higher level of agreement in growing season length between the satellite data and
the models than for dormancy dates (Figure 7). Surprisingly, the satellite observations display a ve
homogeneous length over region8®N, with values between 1P050 days. Similar to the previous
pattens, LPJ, LPIGUESS, CLM, ORCHIDEE and VEGAS have the highest agreement with theesatelli
data, as shown by the RSME and spatial correlationstestingly, the disagreement between modeds an
observations occurs mostly over the lower latitudes of the Northern Hemisphere. OCN displays the
samepatchy agreement that shows on the onset and SDGVM displays the least agreement witht@n opposi
GSL dstribution. The length of the growing season has the highest error compared to the satellite data,
where 6 out of 8 models display longer GSL, mostly driven tate leaf shedding (Table 2).

When looking at the hemispheric mean values it is clear that tie models overestimate the LAI,
dormancyand length of the growing season (Table 2). Satellite LAl average for the Northern Heenisphe
was0.83, while LAI from the models varies between D286. Both growing season onset and dorrya
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were later in k of the models, in some cases by more than a month. The effect of the late offset
translaés as an increased GSL, with values 9 to 180 days higher than the satellite data (Table ), Howev
when the dormancy period is calculated based on GPP the meod&iled become much closer to the
observations, with an average GSL of 144 £15 days, compared to 184 days in the satellite data. This
again suggests a decoupling between the active period of photosynthesis and leaves in the models.

Figure 7. Mean growingseason length (1988005) in days for 8 LSMs and satellite
observations over the Northern Hemisphere&i(80°N). Spatial correlations and root mean
square errors between each model and the observations are given in the white boxes.

Table 2. Average LAI, growing season onset, dormancy and length for the Northern
Hemisphere for each model and the satellite observations. The values for dormancy and
length based on GPP are presented in brackets.

Model LAI Onset (day) Dormancy (day) Length (days)
CLM 1.6 131 351 (288) 220 (164)
LPJ_GUESS 1.6 125 314 (285) 189 (151)
LPJ 2.2 130 319 (278) 189 (134)
OCN 1.2 121 342 (268) 221 (142)
ORCHIDEE 0.98 151 323 (268) 172 (134)
SDGVM 1.56 122 374 (275) 252(145)
TRIFFID 111 133 355 (274) 222(125)
VEGAS 1.98 136 336 (277) 200 (139)

LAI3g 0.83 111 295 184




