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Abstract: A methodology to generate spatially continuous fields of tree heights with an 

optimized Allometric Scaling and Resource Limitations (ASRL) model is reported in this 

first of a multi-part series of articles. Model optimization is performed with the Geoscience 

Laser Altimeter System (GLAS) waveform data. This methodology is demonstrated by 

mapping tree heights over forested lands in the continental USA (CONUS) at 1 km spatial 

resolution. The study area is divided into 841 eco-climatic zones based on three forest 

types, annual total precipitation classes (30 mm intervals) and annual average temperature 

classes (2 °C intervals). Three model parameters (area of single leaf, α, exponent for 

canopy radius, η, and root absorption efficiency, γ) were selected for optimization, that is, 

to minimize the difference between actual and potential tree heights in each of the  

eco-climatic zones over the CONUS. Tree heights predicted by the optimized model were 

evaluated against GLAS heights using a two-fold cross validation approach (R
2
 = 0.59; 

RMSE = 3.31 m). Comparison at the pixel level between GLAS heights (mean = 30.6 m; 

standard deviation = 10.7) and model predictions (mean = 30.8 m; std. = 8.4) were also 

performed. Further, the model predictions were compared to existing satellite-based forest 

height maps. The optimized ASRL model satisfactorily reproduced the pattern of tree 

heights over the CONUS. Subsequent articles in this series will document further 

improvements with the ultimate goal of mapping tree heights and forest biomass globally. 

Keywords: tree height; allometric scaling law; resource limitations; GLAS; 

model optimization 

 

1. Introduction 

Several recent articles have reported generating spatially continuous maps of forest canopy heights 

and/or biomass using a combination of remote sensing data, in-situ measurements and  

non-physical/non-physiological or statistical scaling approaches (e.g., [1–8]). Tree height estimation, 

and potentially biomass, is now possible with altimeter data from terrestrial, airborne, and satellite 

lidar (e.g., [1–4,9–13]). Lidar waveform data from the Geoscience Laser Altimeter System (GLAS) 

instrument onboard the Ice, Cloud and land Elevation Satellite (ICESat) have been used to map global 

and regional forest heights [1,2] and live aboveground biomass [3,4,13]. However, discrete 

distributions of tree heights retrieved from GLAS data should be extrapolated to generate continuous 

maps of forest heights or biomass [1,2,4]. This “black-box” type of extrapolation has the obvious 

limitation that it is often done using non-physical/non-physiological procedures in conjunction with 

spatially continuous remote sensing and climate data. 

Physical/physiological models for mapping tree heights or biomass rely on mechanisms governing 

plant growth. The Allometric Scaling and Resource Limitations (ASRL) model [14] is one such 
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physical/physiological model. This predicts local maximum tree heights. The ASRL model integrates 

allometric scaling laws of trees and energy budgets limited by local resources such as water, air 

temperature, sunlight, and wind [14]. Some researchers (e.g., [15–18]) however doubt the relevance of 

plant allometric scaling laws given the high variability observed in actual forests [19,20]. Other studies 

have demonstrated the applicability of scaling laws for quantifying forest structure and dynamics  

(e.g., [21,22]) and estimating live biomass in forest stands (e.g., [23,24]). The ASRL model 

implements the steady-state allometric approach based on the assumption that physiological traits of 

trees generally follow allometric scaling rules [14]. Nevertheless, the allometric coefficients and 

scaling exponents of the ASRL model are assumed constant across different eco-climatic zones and 

forest types of varying age classes. This often results in disparities between measurements and model 

predictions. Here, a significant progress in mapping tree heights and biomass is possible if the power 

of allometric scaling laws, local energy budgets and resource limitations can be incorporated with the 

advancements of remote sensing altimetry (i.e., GLAS data) for scaling purposes. 

Generating continuous fields of tree heights and biomass is the larger objective of this multi-part 

series of articles. In this first article, we focus on how the ASRL model can be used with GLAS data to 

map actual tree heights over the continental USA (CONUS) at 1 km spatial resolution. The ASRL 

model is briefly explained in Section 2 together with key equations and parameters. Section 3 includes 

descriptions of input data for ASRL model and GLAS data preprocessing. Information of the model 

optimization and evaluation is provided in Section 4 followed by results and discussion (Section 5) and 

concluding remarks (Section 6). The second paper of this series [25] examines in detail how the same 

procedures work at a local scale, specifically at several FLUXNET sites. Future articles in the series 

will consolidate these results and extend them to biomass estimation. 

2. The ASRL Model 

The ASRL model [14] predicts potential maximum tree heights using a combination of allometric 

scaling laws and energy budgets constrained by local resource limitations, such as water, air 

temperature, solar radiation, and wind. The model incorporates estimates of parameters related to tree 

geometry (e.g., canopy radius and leaf area), light (e.g., soil reflectance, leaf absorptivity and deep 

canopy reflection coefficient), and water flow (e.g., root absorption coefficient, depth of a stomata, and 

an exponent for metabolism). 

In the fundamental premises of the ASRL model, a tree obtains sufficient resources (water and 

nutrients) to meet its needs for the growth and the availability of local resources limits the maximum 

potential growth. This is expressed by an inequality equation of basal metabolic rates (Qp ≥ Qe ≥ Q0), 

where Qp is the available flow rate, Qe refers to the potential evaporative flow rate, and Q0 corresponds 

to the required flow rate of resources in a tree [14]. Q0 is solely determined by allometric scaling rules, 

while Qp and Qe are additionally associated with local resources, such as water, air temperature, solar 

radiation, and wind. The maximum tree growth can be calculated given Qp and Qe. Key equations of 

the ASRL model are given in Table 1 [14]. 

The maximum tree growth varies depending on many factors (e.g., climatic and soil condition, 

forest types and stand ages), but the ASRL model implements consistent allometric scaling parameters 

and exponents across different eco-climatic regimes and forest types of varying age classes [14]. In 
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this study, we test where the ASRL model prediction successes and fails. Our optimization process 

adjusts several allometric parameters to minimize the difference between actual observations and the 

model predictions. More details are explained in Section 4.3. 

Table 1. Key equations of the Allometric Scaling and Resource Limitations (ASRL) model 

[14]. Underlined variables (α, η, and γ) are selected parameters in the ASRL model 

optimization, further explained in Section 4.3. 

Categories Variables Symbols Key Equations Sub-Variables 

Equations of 

Basal 

Metabolic 

Rates 

Available  

Flow Rate 
Qp Qp = γ π rroot

2
 Pinc 

γ = Root Absorption Efficiency; 

rroot = Radial Extent of Root System; 

Pinc = Incoming Precipitation Rate 

Evaporative  

Flow Rate 
Qe Qe = af Ecan μw ρw

−1
 

af = Effective Area over the Latent Heat Flux Loss; 

Ecan = Evaporative Flux of Canopy; 

μw = Molar Mass of Water  

(= 1.80 × 10
−2

 kg∙mol
−1

); 

ρw = Density of Water (= 1.0 × 10
3
 kg∙m

−3
) 

Required  

Flow Rate 
Q0 Q0 = β2 h

η2
 

β2 = Proportionality Constant for Metabolism  

(≈9.2 × 10
−7

 L∙day
−1

∙cm
−η2

); 

h = tree height; 

η2 = Exponent for Metabolism (≈2.7) 

Sub-

equations of 

Evaporative 

Flow Rate 

Effective Area 

over the Latent 

Heat Flux Loss 

af af  = 2 aL δs as 

aL = Total One-sided Area of All Leaves on a Tree; 

δs = Density of Stomata on a Leaf  

(=220 stomata∙mm
−2

); 

as = Area of a Single Stomata (=235.1 μm
2
) 

Total One-sided 

Area of All 

Leaves on a Tree 

aL aL = α n
N
 

α = Area of Single Leaf; 

n = Branching Parameter (=2); 

N = Number of Branching Generations 

Number of 

Branching 

Generations 

N N = 2 ln (r0/rN)/ln n 
r0 = Maximum Stem Radius; 

rN = Radius of Terminal Branch (=0.4 mm) 

Evaporative Flux 

of Canopy 
Ecan Refers to [14] 

Equation uses Rate of Absorbed Solar Radiation (Rabs) 

along with Canopy Radius (rcan) and Area of Single 

Leaf (α) 

Sub-

allometric 

Scaling 

Equations 

Radial Extent of 

Root System 
rroot rroot = β3

1/4
 h β3 = Root to Stem Mass Proportionality (≈0.423) 

Maximum Stem 

Radius 
r0 r0 = 0.5 (β2/β1)

1/η1
 h

η2/η1
 

β1 = Proportionality Constant for Metabolism (=0.257 

L∙day
−1

∙cm
−η1

); 

η1 = Exponent for Metabolism (=1.8) 

Canopy Radius rcan rcan = β5 h
η
 

β5 = Proportionality Constant for Canopy Radius 

(=35.24 cm∙m
−η

); 

η = Exponent for Canopy Radius 

3. Data  

3.1. Input Data for the ASRL Model 

The key input climatic variables include annual total precipitation, annual average temperature, 

annual incoming solar radiation, annual average wind speed and annual average relative humidity. 
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Additionally, two categories of ancillary input data are needed: (a) Digital Elevation (DEM) and Leaf 

Area Index (LAI) for initializing the ASRL model and (b) land cover and tree cover for delineating 

forested lands.  

Table 2 lists input data (climate data and ancillary inputs) required for the ASRL model. Finer 

gridded data (e.g., 30 m or 250 m) were resampled to 1 km resolution in this study using the majority 

principle for categorical values and cubic convolution for numerical values [26]. Wind speed data at  

32 km resolution were spatially interpolated to 1 km resolution using an Inversed Distance Weighting 

(IDW) method [27]. 

Table 2. Climatic and other ancillary variables used for ASRL model simulations.  

Types 
Required Input 

Variables 
Units 

Temporal 

Range 

Spatial 

Resolution 
Used Data Sets 

Climatic 

Variables 

Annual Total 

Precipitation 
mm 1980–1997 1 km 

DAYMET model [28]—Annual Average Relative 

Humidity (%) was computed by the formula 

provided by World Meteorological Organization 

(WMO) [29] 

Annual Average 

Temperature 
°C 1980–1997 1 km 

Annual Incoming  

Solar Radiation 
W/m

2
 1980–1997 1 km 

Annual Average  

Vapor Pressure 
hPa 1980–1997 1 km 

Annual Average  

Wind Speed 
m/s 2000–2008 32 km 

North American Regional Reanalysis  

(NARR) data [30] 

Ancillary 

Variables I 

Digital Elevation 

(DEM) 
m 2009 30 m National Elevation Dataset (NED) [31] 

Growing Season 

Average Leaf Area 

Index (LAI)  

N/A 
2003–2006 

Jun–Sep 
1 km 

Post-processed Moderate Resolution Imaging 

Spectroradiometer (MODIS)  

LAI products [32] 

Ancillary 

Variables II 

Land cover N/A 2006 30 m National Land Cover Database (NLCD) [33] 

Percentage of  

Tree Cover 
% 2005 250 m 

MODIS Vegetation Continuous Fields (VCF) 

Collection 5 [34] 

3.1.1. Climate Data 

The ASRL model was mostly driven by climatic variables derived from the DAYMET model [28]. 

The DAYMET model uses daily weather observations (1980–1997) to produce wall-to-wall climate 

grids of annual total precipitation, annual average temperature, annual incoming solar radiation and 

annual average vapor pressure over CONUS. Annual relative humidity, an input parameter of the ASRL 

model, was derived from annual average temperature and annual vapor pressure using functional 

relationships provided by the World Meteorological Organization (WMO) [29] (Section S1.1 of 

Supplementary Information). Wind speed was derived from the North American Regional Reanalysis 

(NARR) data [30]. The NARR provides monthly mean values from 1979 till present at a spatial 

resolution of 0.3-degree (~32 km). Monthly mean values from years 2000 to 2008 were averaged to 

obtain annual average values and used as input to the ASRL model. 
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3.1.2. Ancillary Data 

The first set of ancillary data (DEM and LAI) is used for the initial ASRL predictions of potential 

tree heights. The growing season (June to September) average LAI data were calculated from a refined 

version of the standard Moderate Resolution Imaging Spectroradiometer (MODIS) LAI products 

(1 km grids) for the time period from 2003 to 2006 [32] (Section S1.2). 

The second set of ancillary data is required during the ASRL model prediction and the parametric 

optimization to identify forested lands. The model simulations were conducted on spatial regions 

categorized into three forest classes—deciduous, evergreen, and mixed forests—each with percent tree 

cover ≥50 percent based on the MODIS Vegetation Continuous Field (VCF) product (Figure 1). 

Figure 1. Forested lands (1 km spatial resolution) over the continental USA (CONUS) 

based on the National Land Cover Database (NLCD) 2006 land cover. Three forest  

types—deciduous, evergreen, and mixed forests—with percent tree cover ≥50% were 

considered in this study. 

 

3.2. GLAS Tree Heights 

The GLAS laser altimetry data provide information related to land elevation and vegetation height 

at a spatial resolution of ~70 m (ellipsoidal footprints) and at ~170 m spaced intervals [35,36]. The 

latest release (Release-33) of the standard GLAS product corresponding to the GLAS Level-2 Land 

Surface Altimetry (GLA14; L2 Land Surface Altimetry) for the period 2003 to 2006 was obtained 

from the National Snow and Ice Data Center (NSIDC) for this study. The GLA14 product was used to 

estimate forest canopy heights within each footprint (e.g., [1,3]) using geolocation information and 

waveform parameters, such as signal beginning and echo energy peaks [37]. There are notable 

heterogeneities in the dimension and shape of the individual GLAS footprints. The GLAS instrument 

was designed to have a fixed footprint size, but the dimensions of footprints are significantly changed 

depending on the laser periods (e.g., orbits and spans of campaigns) [38]. To simplify, we assumed that 

all GLAS footprints have a circular diameter of 70 m [39]. Data from May to October of each year 

were used, as these come from the growing season and correspond to the MODIS LAI product.  

GLAS waveform data are affected by three degrading factors: (a) atmospheric forward scattering 

and signal saturation, (b) background noise (low cloud) and (c) slope gradient effects. Additionally, 

GLAS footprints over non-forest and/or bare ground must be filtered from analysis. Five screening 

steps were applied to remove invalid GLAS waveform data prior to retrieval of tree heights (Table 3). 
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Note that we removed any remaining outliers using two standard deviations from the mean of GLAS 

tree heights (5 m < HGLAS ≤ 100 m) in this analysis. Final valid GLAS footprints were intersected with 

the pixels (=1 km) over forested lands. We averaged tree heights derived from the GLAS footprints 

falling in a pixel. This generates a raster distribution of GLAS heights (Figure S1). 

Table 3. Five screening steps to remove invalid Geoscience Laser Altimeter System 

(GLAS) footprints over the CONUS. Final valid GLAS footprints are 126693 in this study. 

Screening Steps Description 
Number of Valid 

GLAS Footprints 
References 

1. Atmospheric Forward 

Scattering and Signal 

Saturation Filter 

- Cloud-free and saturation-free GLAS waveform data; 

- Internal flag of GLAS data—“FRir_qaFlag = 15” and 

“satNdx = 0” 

1,822,739 [3] 

2. NLCD and VCF Filters 

- GLAS footprints over forested lands; 

- Geolocation of NLCD and VCF pixels (pixels nearest to the 

center of a GLAS footprint); 

- Deciduous, evergreen, and mixed forests with greater than 

50% of the tree cover 

1,659,061 - 

3. Background Noise 

Level (Low Cloud) 

Correction Filter 

- No background noise level in GLAS waveform data; 

- Absolute difference (≤ 50 m) between the NED DEM and 

the internal elevation (“i_elev”) of GLAS waveform data 

161,533 [36,40] 

4. Slope Gradient 

Correction Filter 

- GLAS footprint over non- high topographic condition; 

- Slope value < 20 ° of the nearest pixel from GLAS data;  

- Additionally correction of the potential bias (= footprint size 

× tan (slope)) 

129,705 [25,40,41] 

5. Removal of Remaining 

Outliers 

- Using two standard deviations from the mean of GLAS tree 

heights (5 m < HGLAS ≤ 100 m) 

126,693 

(Final) 
- 

There are two approaches of retrieving tree heights from GLAS waveform data [40]: (a) the 

“statistical analysis for examining full GLAS waveform extents” [41–44] and (b) the “decomposition 

of GLAS waveforms into multiple Gaussian distribution curves” [1,3,6,40,45–47]. We considered only 

the second approach in this study. 

We used two standard altimetry variables of GLA14 product (signal begin range increment, 

SigEndOff; centroid range increment for the last Gaussian Peak, gpCntRngOff 1). Theoretically, 

gpCntRngOff 1 is assumed to represent the ground level elevation within a GLAS field-of-view, while 

SigBegOff refers to the highest point of a surface. Amongst five possible GLAS height metrics 

representative of tree heights [25], we used the best metric that closely resembled field-measured and 

Laser Vegetation Imaging Sensor tree heights (R
2
 = 0.70; RMSE = 4.42 m; [25]): that is,  

“SigBegOff – gpCntRngOff 1” with correction of the potential bias [40] (Equation (1)).  

tan
( )

2
GLAS

d
H SigBegOff gpCntRngOff


    (1) 

Here, SigBegOff is the signal begin range increment and gpCntRngOff 1 refers to the last peak of 

Gaussian of GLAS waveform, d is the footprint diameter of GLAS data (~70 m) and θ is the slope 

value nearest to the geolocation of GLAS footprint center. 
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4. Methods  

4.1. Defining Climatic Zones 

The forested area in the CONUS was categorized into 841 climatic zones based on three forest 

types, annual total precipitation (30 mm intervals) and annual average temperature (2 °C intervals). An 

empirical orthogonal panel [48,49] was used to identify the pattern of these two climatic variables 

(horizontal axis—annual total precipitation and vertical axis—annual average temperature), and to 

associate forested grids to climatic zones (Figure S2; Table 4).  

The reasons for defining climatic zones are twofold: First, a direct comparison of GLAS heights, 

which represent actual tree heights, with potential tree heights predicted by the ASRL model is not 

valid. Second, optimization of the ASRL model for every forested pixel (over 1.3 million pixels) is not 

computationally practical. Thus, the optimization was performed at the climatic zone level for each of 

the three forest types. 

Table 4. Definition of climatic zones for grouping pixels within a forested area. Three 

forest types with fixed ranges of annual total precipitation (30 mm intervals) and annual 

average temperature (2 °C intervals) yield a total of 5805 segments (3 × 129 × 15). Of 

these, only 841 climatic zones have at least one GLAS observation. 

Forest Types (Deciduous, 

Evergreen, and Mixed 

Forests) 

Annual Total Precipitation (mm) Annual Average Temperature (°C) Climatic Zones 

Lower 

Limits 

Upper 

Limits 
Intervals 

Lower 

Limits 

Upper 

Limits 
Intervals Effective 

3 300 4,170 30 −5 25 2 841 

4.2. Initial ASRL Model Prediction of Potential Tree Heights 

ASRL model simulations were performed over forested areas (Section 3.1.2). The ASRL model 

predicts potential tree heights at 1 km spatial resolution using input climatic and ancillary variables 

(Section 3.1). There are notable disparities between model predicted tree heights and actual 

observations—the reason being that the ASRL model includes constant scaling exponents and 

parameters across different climatic regimes and forest types.  

4.3. Optimization of the ASRL Model 

Optimization of the ASRL model was designed to simultaneously adjust multiple scaling 

parameters. This optimization was aimed to minimize the difference between actual tree heights 

derived from GLAS data and tree heights predicted by the ASRL model (Figure 2). The underlying 

theoretical framework is based on Powell’s optimization methodology [50] that results in finding the 

minima of a multidimensional function. This algorithm is efficient for generating the convergence of a 

function due to (a) its bi-directional search algorithm over the vector of multi-variables and  

(b) nonessential calculation of derivatives for each variable [50]. A function involving three variables 

(merit function as in Equation (2)) was formulated and implemented based on Press et al. [51] and 

Kuusk and Nilson [52]. 
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Three parameters of the ASRL model—area of single leaf (α), exponent for canopy radius (η) and 

root absorption efficiency (γ)—were selected for optimization. Initial values of these three parameters 

(α, η, and γ) were set to 13 cm
2
, 1.14, and 0.33, respectively. These values are comparable to the 

representative values (averages) from the TRY database [53] and also based on Kempes et al. [14]. 

Although there are other physiological traits available from the TRY database [54], this study was 

limited to optimization of these three parameters. 

The collection of solar radiation for plant growth is associated with the coefficient for canopy 

transmissions. Here, α produces the total leaf area based on the branching generation theory [55]. In 

the ASRL model, the canopy-level budget is collected from the energy budget in a single leaf based on 

the allometric geometry of canopy [14]. The value η controls the scaling of canopy radius with tree 

height, which is related to the rate of absorbed solar radiation. Lastly, γ determines the available flow 

rate given the incoming rate of precipitation within the root capture area. The tallest tree takes γ (=1/3) 

on average and local γ varies across different soil type and hydrology [14]. 

Kempes et al. [14] have performed the sensitivity tests of several allometric scaling exponents, and 

η showed the second least sensitivity. The value γ was tested in the optimization procedures of 

Kempes et al. [14], generating clear improvement of the model predictions. In this study, α was 

additionally selected for optimization due to (a) its strong relationship to net absorbed radiation, 

sensible and latent heat fluxes (e.g., [56]) and (b) considerable variability of α across different climatic 

zones and forest types [57,58]. 

Figure 2. Diagram showing the optimization of the ASRL model. The model predicts 

potential tree heights (initial prediction) based on input climatic and ancillary variables. 

Three allometric scaling parameters (area of single leaf, α, exponent for canopy radius, η 

and root absorption efficiency, γ) are adjusted in the optimization process to minimize the 

difference between GLAS tree heights and ASRL modeled tree heights. This optimization 

process is done separately for each of the climatic zones. 
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The optimization process stops the iterative adjustment of the three parameters when it finds the 

maximum likelihood estimates of each parameter that result in minimizing the merit function. To reach 

an optimal solution, we implemented variable ranges (lower and upper boundaries as in the TRY 

database) for each of the input parameters such that 1 cm
2
 ≤ α < 100 cm

2
, 0.8 ≤ η < 1.5, and 0.1 ≤ γ < 0.8. 

Equation (2) shows the merit function, 

 
   

22

3 4 , , 2 0

1 2 3 2 21 1
( ,  ,  )

k

N ASRL i GLAS ik k

k kb kk i

p H

H Hp p
J p p p p p w

 


   

 

 
 
  

   (2) 

Here pk is the selected ASRL model parameter (k; 1 = area of single leaf, 2 = exponent for canopy 

radius, and 3 = root absorption efficiency), pk0 refers to the initial values of each parameter in the 

original ASRL model, pkb refers to the boundary limits ((lower limit + upper limit)/2) for each 

parameter, ∆pk is the standard deviation associated with each parameter with respect to initial values, 

wk is a scalar weight (wk = 0 when pk  [pk_lower-limit, pk_upper-limit], otherwise wk = 10), N is the total 

number of comparison sets (i) for GLAS heights (HGLAS) and ASRL model predictions (HASRL) with 

given parameter values for each climatic zone and ∆H is the standard deviation associated with HGLAS 

and HASRL. The iterative adjustment process continues until it finds the minimum of the function  

J (p1, p2, p3) for each of the climatic zones. 

A noteworthy limitation of this optimization exercise is that forest stand ages are not directly 

involved in the optimization process. Tree heights and growth rates vary depending on forest types and 

sites due to different growing conditions. Those are clearly related to forest stand ages [59–61]. When 

a tree ages, its height increases along with decline in the rate of its vertical growth over time—young 

forest stands (~10 years) grow in the southeastern region, while old forest stands (~900 years) inhabit 

the western coasts in CONUS [62]. However, it does not necessarily mean that our methodology 

neglects forest stand ages in tree height estimations. GLAS waveform data indirectly brings age 

information of forests into the ASRL model to find appropriate scaling parameters, as actual heights 

are associated with forest stand ages. 

Performance of the ASRL model was tested by comparing GLAS tree heights and model predicted 

heights (with and without optimization). The goal was to show the efficacy of the optimization 

process. We calculated R
2
 and root-mean-square-error (RMSE) from relationships between GLAS tree 

heights and model predicted heights in each climatic zone (Equation (3)). 

 
n

HH
RMSE

n

i iGLASiASRL

ASRL

 


 1

2

 , ,

 (3) 

Here H̄ ASRL is the mean of tree heights from ASRL model predictions (with and without optimization) 

in each climatic zone, H̄ GLAS is the mean of tree heights derived from GLAS waveform data in each 

climatic zone, and i refers to the number of climatic zones (n = 841). 

The training datasets of GLAS used in model optimization are identical to the test datasets of GLAS 

used for evaluation [63]—this was first done to assess whether the optimization scheme was correctly 

implemented or not. It was not meant to establish validity of the optimized ASRL model. The actual 

evaluation of the optimized ASRL model was performed as detailed below. 
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4.4. Evaluation of the Optimized ASRL Model Results 

The prediction of the optimized ASRL model was evaluated in two parts: (a) two-fold cross 

validation approach and (b) two inter-comparisons of optimized ASRL model prediction (Hopt ASRL) 

with forest canopy heights produced by Simard et al. [1] (HSimard) and Lefsky [2] (HLefsky). Each 

evaluation performs inter-comparisons at the climatic zone level and at the pixel level. 

4.4.1. Two-Fold Cross Validation 

A two-fold cross validation approach was performed: That is, we randomly divided the original 

sample input data into two sets of training and test data. The first half of the GLAS tree heights was 

used as a training data to optimize the ASRL model in each climatic zone. The test data was generated 

by averaging the remaining half of the GLAS tree heights in each climatic zone and used for model 

evaluation purposes (Equation (4)). In addition, pixel level comparisons were performed to evaluate 

model prediction errors (Hopt ASRL training − HGLAS test). We selected spatially corresponding tree height 

values (the nearest pixels) in pixel level comparisons.  

 
n

HH
RMSE

n

i iGLASiASRLopt

ASRL

 


 1

2

 , test , training 

 valid.cross fold- two:  (4) 

Here H̄ opt ASRL training is the predicted height by the optimized ASRL model using the first set of GLAS 

training data for each climatic zone, H̄ GLAS test is the mean of tree heights computed from the second set 

of GLAS test data in each climatic zone, and i refers to the number of climatic zones (n = 245). In 

these climatic zones, the number of pixels with GLAS tree height data was more than 20. 

4.4.2. Inter-comparison with Other Forest Height Maps 

The optimized model evaluations were additionally performed by comparing model predicted 

heights with HSimard and HLefsky. Linear regression analysis between model predicted tree heights and 

the two maps was performed for each of the climatic zones. Pixel level evaluations used differences in 

histograms that were differentiated by forest types: deciduous, evergreen, and mixed forests. Some 

caveats are in order regarding these inter-comparisons: (a) the metric of forest height map in Lefsky [2] 

is Lorey’s height—basal area weighted mean height, while Simard et al. [1] and our research used 

maximum canopy height, (b) the forest height map of Simard et al. [1] does not allow tree height 

values >40 m, (c) both Simard et al. and Lefsky differ in their definition of forested lands, and (d) final 

products of Simard et al. [1] and Lefsky [2] are at different spatial resolution (1 km and 500 m, 

respectively) and different map projection. 

To facilitate inter-comparison with HSimard, we resampled and reprojected the forest height map of 

Simard et al. [1] to match our map of model predicted tree heights. The comparison was then 

performed over pixels that spatially corresponded to our definition of forested lands. 

On the other hand, a direct comparison between Lefsky [2]’s forest heights and our results was not 

feasible for the reason of different measures (Lorey’s height versus maximum tree heights). Therefore, 

we used Lefsky [2]’s input GLAS heights data, rather than the final product of Lefsky [2]. For the 

inter-comparison, we averaged Lefsky’s GLAS heights falling in a pixel (=1 km) of the forest lands. 
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There are certain limitations of our analysis in the ASRL model predictions and evaluations:  

(a) up- and down-scaling approaches of resampling may cause potential errors due to the aggregation 

of heterogeneity in finer grids and the neglect of discontinuity in coarser datasets [64,65] and  

(b) the reprojection possibly results in certain modification of true pixel values [66]. 

5. Results and Discussion 

5.1. Initial ASRL Model Predictions of Potential Tree Heights  

A continuous map of potential tree heights (Hpotential ASRL) was generated with the unoptimized 

ASRL model at 1 km resolution (Figure 3(a)). Maximum potential tree heights were greater than 50 m 

in both the Northeastern Appalachian and Pacific Northwestern forest corridors. The model predicted 

lower values of potential tree heights (≤35 m) in the Southeast.  

Figure 3. (a) Map of potential tree heights predicted by the unoptimized ASRL model for 

the CONUS at 1 km resolution. (b) Comparison between GLAS tree heights and 

unoptimized model predictions in each of the climatic zones. (c) Histograms showing pixel 

level comparison between GLAS and potential tree heights. Number of bins of histograms 

is 50. Frequencies have been normalized by total grids (frequency %). 

 

(a) 

  

(b) (c) 

We noted discrepancies between model predictions and GLAS tree heights (HGLAS; actual tree 

height; Figure S1). A low correlation was observed (Figure 3(b)) in each climatic zone (R
2
 = 0.06; 

RMSE = 22.8 m). In addition, there was significant skewness in the histograms of actual (mean = 31.3 m; 

standard deviation = 11.5) and potential (mean = 45.5 m; std. = 23.6) tree heights at the pixel level 

(Figure 3(c)). Tree heights were overestimated especially in the northeastern forests as compared to 
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HGLAS (Figure S3(a)). A plausible reason could be that the ASRL model does not accurately reflect the 

spatial/temporal dynamics in the estimation of internal flow balances (metabolic flow requirement, 

available flow, and evaporative flow) across different eco-climatic regimes and forest types [14]. 

5.2. Optimized ASRL Model Predictions 

The optimized model was then used to generate a spatially continuous map of tree heights (Hopt ASRL; 

Figure 4(a)). We noted a significant improvement in predictions of tree heights both at the climatic 

zone level (Figure 4(b)) and individual pixel level (Figure 4(c); Figure S3(b)): (a) the RMSE decreased 

from 22.8 m (without optimization) to 3.1 m (after optimization) with an increase in R
2
 from 0.06 to 

0.8 (P < 0.01); (b) the histograms show a better agreement between distributions of GLAS tree heights 

(mean = 31.3 m; std. = 11.5) and the optimized model predictions (mean = 30.4 m; std. = 8.5); and (c) 

relatively smaller model prediction errors over the Northeastern Appalachian and Pacific Northwestern 

forest corridors as compared to the unoptimized ASRL model predictions.  

Figure 4. (a) Spatially continuous map of tree heights predicted by the optimized ASRL 

model at 1 km spatial resolution. (b) Comparison between GLAS tree heights and the 

optimized ASRL model predictions in each climatic zone. (c) Histograms at pixel level 

showing the degree of agreement between GLAS tree heights and the optimized ASRL 

model predictions. Number of bins of histograms is 50. Frequencies have been normalized 

by total grids (frequency %). 

 

(a) 

  

(b) (c) 

Figure S4 shows that the ASRL model prediction errors at the individual pixel level decreased from 

15.10 m (HGLAS − Hpotential ASRL) to −0.80 m (HGLAS − Hopt ASRL). However, the optimized ASRL model 
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poorly predicted tree heights over complex terrains (e.g., ~20 m underestimation for the redwood 

stands in the Pacific Northwestern mountains of California and Oregon; Figure S3b). Other GLAS-based 

models also reported relatively large prediction errors in the estimation of tree heights [1] and 

biomass [3] in these forests. Interpolation of annual precipitation (e.g., [67]) and temperature 

(e.g., [68]) may have produced large uncertainties in climatic variables that are sensitive to topographic 

features. Note that these are critical inputs to the ASRL model. Other plausible reasons for this 

discrepancy may be: (a) GLAS undersampling for some of the climatic zones (Figure S5) that resulted 

in fewer comparison sets in the merit function (Equation (2)) and (b) topographic influence on GLAS 

waveform data which could not perfectly be rectified by our slope gradient filter (Table 3). 

Figure 5. Spatial distribution of the three parameters selected for model optimization. 

(a) Area of single leaf, (b) Exponent for canopy radius and (c) Root absorption efficiency. 

 

(a) 

 

(b) 

 

(c) 
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The optimized parameters are shown in Figure 5. There are notable changes in the optimal area of 

single leaf (initial value α: 13.0 cm
2
) that ranged from 1.5 cm

2
 to 90.0 cm

2
. The root absorption 

efficiency (initial value γ: 0.33) converged to a relatively narrower range of values (from 0.05 to 0.65), 

while ~80% of the optimized exponent for canopy radius (η) fell within the range of ±10% of its initial 

value (1.14). Kempes et al. [14] have also reported a stable median relative error against the percent 

change of a single scaling parameter (i.e., η). 

The area of single leaf of deciduous forests (mean α = 19.3 cm
2
) was higher than that of evergreen 

forests (mean α = 9.1 cm
2
). The original ASRL model precludes inclusion of forest types. The 

optimization process allows combining allometric scaling laws with features that are representative of 

specific forest types. Optimized α values are well correlated with the variability in forest types, annual 

total precipitation and annual average temperature in each climatic zone. Warm (annual average 

temperature = ~15 °C) and wet (annual total precipitation ≥ ~1,500 mm) regions displayed a larger 

value of α for both deciduous and evergreen forests. In cold regions (annual average  

temperature = ~5 °C), the optimized value of α for evergreen forests increased with annual total 

precipitation. These results are supported by other studies that examined relationships between leaf 

traits and environmental conditions [69–71]. 

Similar trends in the optimized γ values were observed in warm and wet regions. However, 

evergreen forests generally showed higher optimized γ values compared to deciduous forests in 

relatively dry regions. Water availability is spatially heterogeneous for an individual species within a 

location [72]. For example, evergreen and deciduous plants in dry regions have different root systems 

and water use efficiencies (evergreen > deciduous as in [73,74]). Kempes et al. [14] have demonstrated 

an improvement of the ASRL model based on optimization of γ that generated a lower variance in the 

model error. 

5.3. Evaluation of the Optimized ASRL Model  

5.3.1. Two-Fold Cross Validation Approach 

Figure 6(a) shows the two-fold cross validation comparison (R
2
 = 0.59; RMSE = 3.31 m; P < 0.01). 

Histograms comparing the test GLAS heights (mean = 30.8 m; std. = 10.7) and tree heights predicted 

by the optimized model (mean = 30.6 m; std. = 8.4) show considerable similarity (Figure 6(b)), even 

though it gives relatively less correlations than using all of valid GLAS tree heights. The satisfactorily 

low prediction errors (mean = −0.61 m; std. = 12.91) are shown in Figure 6(c). We achieved the 

stability of the optimized model predictions from the two-fold cross validation. 

5.3.2. Inter-comparison with Other Forest Height Maps 

Forest height maps from Simard et al. [1] and our study portray similar patterns of tree heights over 

the CONUS: (a) taller trees (> 40 m) in the Pacific Northwestern forests of California and Oregon,  

(b) relatively medium-to-tall trees (30 to 40 m) in the northeastern forested regions, and (c) smaller 

trees (~20 to 30 m) along the Great Lake and the Mississippi River basin. It should be noted that the 

regression tree procedure described in Simard et al. [1] is based on the GLAS altimetry variables of the 
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Gaussian decomposition (signal beginning, signal end, and last Gaussian peak). Simard et al. [1] also 

included a similar set of environmental layers related to elevation, temperature, and precipitation.  

Figure 6. A two-fold cross validation approach showing comparisons between test GLAS 

tree heights and the optimized ASRL model predictions using training GLAS tree heights. 

We randomly divided the GLAS height data into two equal sets of training and test data: 

(a) Scatter plot of tree heights for each of the climatic zones. A total of 245 climatic zones 

were considered in this comparison (available number of GLAS tree height data ≥ 20 in 

each climatic zone). (b) Pixel level histogram comparison. (c) Optimized ASRL model 

prediction errors (Hopt ASRL training − HGLAS test) from pixel level comparison. Number of bins 

of histograms is 50. Frequencies have been normalized by total grids (frequency %). 

  

(a) (b) 

 

(c) 

Figure 7(a) depicts a scenario where Hopt ASRL is relatively higher in the northwestern and 

northeastern forested regions as compared to HSimard. At the scale of climatic zones (Figure 7(b)), the 

optimized ASRL model predictions are moderately correlated to height values derived by Simard et al. [1] 

(R
2
 = 0.45; RMSE = 8.01 m; P < 0.01). Average values of Hopt ASRL for each of the climatic zones were 

usually higher. Figure 7c shows that the differences between these two maps are nearly independent of 

forest type. The differences in height values can likely be attributed to differences in definitions of 

forests—the map from Simard et al. [1] used forested areas corresponding to classes such as mosaic 

crops, open forest, and saline flooded forests. An added caveat, as noted in Simard et al. [1], was the 

inability of their regression tree model to simulate forest heights >40 m.  
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Figure 7. Inter-comparison of tree heights predicted by the optimized ASRL model with 

forest canopy heights from Simard et al. [1]: (a) Spatial map showing differences in tree 

heights (Hopt ASRL − HSimard). (b) Comparison at the climatic zone level. (c) Pixel level 

difference histograms (Hopt ASRL − HSimard) for the three forest types considered in this study. 

Number of bins of histograms is 50. Frequencies have been normalized by total grids 

(frequency %). 

 

(a) 

  

(b) (c) 

Figure 8. Inter-comparison of tree heights predicted by the optimized ASRL model with 

tree heights from Lefsky [2]: (a) Comparison for each of the climatic zones (Hopt ASRL and 

HLefsky). (b) Pixel level difference histograms (Hopt ASRL − HLefsky) for the three forest types 

considered in this study. Number of bins of histograms is 50. Frequencies have been 

normalized by total grids (frequency %). 

 
 

(a) (b) 

We also compared our forest height map with Lefsky’s [2] original GLAS-based tree heights. 

Figure 8(a) shows a one-to-one comparison between the average height values obtained from Hopt ASRL 
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and HLefsky for each of the climate zones. Overall, there is a moderate correlation (R
2
 = 0.41;  

RMSE = 6.72 m; P < 0.01) between Hopt ASRL and HLefsky. Mean values of Hopt ASRL are an underestimate. 

Figure 8b shows the pixel level difference (Hopt ASRL – HLefsky) histograms for three forest  

types—deciduous forests show higher differences (mean = −5.7 m; std. = 10.3) followed by the 

evergreen forests (mean = −4.2 m; std. = 12.6) and mixed forest types (mean = −4.5 m; std. = 9.5).  

A plausible reason could be that Lefsky [2] applied a different height retrieval procedure (statistical) 

based on full GLAS waveform extents, while our study used the standard Gaussian decomposition 

approach. 

6. Concluding Remarks 

An optimization of the Allometric Scaling and Resource Limitations (ASRL) model with 

Geoscience Laser Altimeter System (GLAS) waveform data was performed to generate a spatially 

continuous map of tree heights over the continental USA (CONUS) at 1 km resolution. The 

optimization is designed to minimize differences between actual heights (based on GLAS waveforms) 

and potential tree heights predicted by the ASRL model. This study covered all forested lands with 

over 50% tree cover. These were categorized into 841 climatic zones based on forest types (deciduous, 

evergreen, and mixed forests), fixed intervals of annual total precipitation (30 mm) and annual average 

temperature (2 °C). The optimization procedure simultaneously adjusted three model parameters (area 

of single leaf, α; exponent for canopy radius, η; and root absorption efficiency, γ) in each of the 

climatic zones. 

After testing for correctly implementing the optimization technique, tree heights predicted by the 

optimized model were first evaluated using a two-fold cross validation approach. Regression analysis 

was used to assess the correlation between predictions of tree heights by the optimized model  

(Hopt ASRL training) and test GLAS tree heights (HGLAS test) in all climatic zones. Mean values of Hopt ASRL 

explained 59% of the variability in HGLAS test mean estimates in each of the climatic zones and, on 

average, showed an estimation error of 3.31 units of height. A similar evaluation of the optimized 

ASRL model was performed at FLUXNET sites—this is detailed in the second of this multi-article 

series [25]. A comparison at the pixel level to quantify the skewness between Hopt ASRL training  

(mean = 30.8 m; standard deviation = 10.7) and HGLAS (mean = 30.6; std. = 8.4) was performed. 

Predicted tree heights by the optimized model agreed better with GLAS tree heights (mean = −0.6 m; 

std. = 12.9) in comparison to the estimates from the unoptimized ASRL model. However, the 

optimized ASRL model still poorly predicted tree heights over the Pacific Northwestern Mountains of 

California and Oregon. 

Second, tree height predictions by the optimized ASRL model were compared with available forest 

height products derived independently but from the GLAS data—Simard et al. [1] (HSimard) and Lefsky [2] 

(HLefsky). The results indicate moderate correlation between optimized ASRL model predicted heights 

and forest heights from Simard et al. [1] and Lefsky [2] for all climatic zones (R
2
 = 0.45 and  

RMSE = 8.01 m for HSimard; R
2
 = 0.41 and RMSE = 6.72 m for HLefsky). Hopt ASRL was an overestimate 

compared to HSimard and an underestimate compared to HLefsky and with significant skewness at the 

individual pixel level—these discrepancies can be attributed due to different definitions of heights and 

forested lands between these studies and certain inherent limitations of the various approaches. 
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Predictions of tree heights by the ASRL model were clearly improved by the optimization technique 

reported in this article. The optimization successfully compensated for certain limitations of the 

original ASRL model, which did not account for effects related to spatio-temporal variability in 

climatic-regimes and forest types. The results demonstrate the potential for a more generic 

applicability of the ASRL model for estimation of tree heights. Nevertheless, the optimized ASRL 

model still yields ambiguous results over complex terrains, possibly due to uncertainties in input 

climatic data and topographic effects in the GLAS waveform data. The optimization methodology 

reported in this article has certain limitations: e.g., (a) a limited number of scaling parameters  

(α, η, and γ) were explored in the model optimization, (b) stand age was not directly considered in the 

optimization, (c) soil conditions were neglected in the optimization and (d) we assumed that allometric 

scaling laws at individual tree level were applicable at larger scales. Also, our analysis could not take 

into account the uncertainties derived from resampling and reprojection of maps and data at different 

scales and projections. Alleviation of these limitations should be addressed in future articles in this series. 
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