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Abstract: This study highlights the possibilities and constraints of determining instantaneous 
spatial surface radiation and land heat fluxes from satellite images in a heterogeneous 
urban area and its agricultural and natural surroundings. Net radiation was determined 
using ASTER satellite data and MODTRAN radiative transfer calculations. The soil heat 
flux was estimated with two empirical methods using radiative terms and vegetation 
indices. The turbulent heat fluxes finally were determined with the LUMPS (Local-Scale 
Urban Meteorological Parameterization Scheme) and the ARM (Aerodynamic Resistance 
Method) method. Results were compared to in situ measured ground data. The performance 
of the atmospheric correction was found to be crucial for the estimation of the radiation 
balance and thereafter the heat fluxes. The soil heat flux could be modeled satisfactorily by 
both of the applied approaches. The LUMPS method, for the turbulent fluxes, appeals by 
its simplicity. However, a correct spatial estimation of associated parameters could not 
always be achieved. The ARM method showed the better spatial results for the turbulent 
heat fluxes. In comparison with the in situ measurements however, the LUMPS approach 
rendered the better results than the ARM method. 
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1. Introduction 

The surface energy budget is an important term in the climatological system. It determines how the 
energy received from solar irradiation is distributed to other climatological terms. For example, areas 
with a high albedo reflect back a high amount of the solar irradiation, following that, the available 
energy for heating the soil and the near-surface air layers or evaporating water from the surface is low. 
Despite this, a change of the surface albedo has a direct impact on the radiative forcing and therefore 
on the microclimate. Such changes can arise by natural processes or through human impact. The 
construction of cities is an example of such a human interference. Besides the albedo, other surface 
properties like the heat storage capacity or the soil water storage capacity are also altered in cities, 
leading to different magnitudes and ratios of surface fluxes. In particular, megacities came to the notice 
of recent national and international political and social attention. More than half of the world’s 
population lives now in urban regions and megacities are a consequence of this migration process. 
Through the increased spatial extent of such urban regions, megacities become relevant for the local 
and even regional climate [1,2]. 

In the last decade, many studies have tried to estimate land surface fluxes from remote sensing 
images, e.g., [3–12]. A successful methodology would be extremely helpful, for example, for the 
determination of surface energy fluxes from remote areas, where it is difficult or even impossible to set 
up in situ measurements because of geographical, political, infrastructural, or social reasons.  

The goal of this study is to show the possibilities to determine the whole instantaneous energy 
budget from ASTER satellite images for single dates of a remote area featuring very contrasting 
surface covers, using as few in situ measurements as possible. For this purpose, a megacity was 
selected, consisting of many different quarters and located in a natural environment with a variety of 
different landscapes. This study is the second publication from the CAPAC (Climate and Air Pollution 
Analysis of Cairo) project, following the first part dealing with in situ measurements [13]. 

From literature, there are three distinct groups of methods for the estimation of instantaneous 
turbulent heat fluxes. They can be summarized as (a) Bulk transfer approaches, (b) the Local-Scale 
Urban Meteorological Parameterization Scheme (LUMPS) scheme, and (c) extreme pixel approaches. 
These three groups, which all need a measurement channel in the thermal infrared, will be touched on 
in the following. 

The bulk transfer approach uses remotely-sensed surface temperatures, together with an estimation 
of air temperature, net radiation, and ground heat flux to derive turbulent heat fluxes. The approach 
focuses on the determination of the resistance to heat transfer rh. The estimation of the single terms is 
sometimes problematic. For example, the term rh is a function of surface roughness, wind speed, and 
stability [4,14]. It inherently shows a high variability over heterogeneous surfaces. Several approaches 
using morphometric methods have been presented to account for this problem [15,16]. Also, the 
estimation of net radiation can be tricky, due to shading effects and multiple scattering of radiation by 
surface roughness elements. Nonetheless, several studies have used this method to derive urban 
sensible heat fluxes or the whole energy budget. In some cases, fairly good results were achieved, 
however other studies reported larger uncertainties and errors in the results [9,17,18]. In this paper, a 
bulk transfer approach is used, similar to the one described in [18], henceforward referred to as 
Aerodynamic Resistance Method (ARM). 
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The LUMPS approach, introduced by [19], is a linked set of equations using the method presented 
in [20] and [21]. LUMPS requires only standard meteorological observations and basic knowledge of 
the surface cover. Similar to the bulk transfer approach, it is driven by net radiation. Although the 
LUMPS approach was originally developed for surface station data, it was also used recently in 
combination with remote sensing data [18,22,23]. Central to the LUMPS approach is the determination 
of surface dependent parameters, which also show a high variability over heterogeneous surfaces. In 
this paper, the LUMPS approach was applied additionally to the ARM approach. 

The third group of methods, the extreme pixel approaches, uses extreme wet and dry pixels rendered 
either by manual setting or by the relation of surface temperature and surface albedo to find the partition 
of turbulent heat fluxes for each pixel. These methods originate in the SEBI (Surface Energy Balance 
Index) formulation proposed by [24]. SEBI was developed further by many researchers. For example, 
Su [10] introduced the SEBS (Surface Energy Balance System) scheme incorporating the aerodynamic 
roughness length for heat in the model. S-SEBI (Simplified Surface Energy Balance Index, [8,25]) was 
derived from SEBS for use with remote sensing data. Although the S-SEBI approach appeals by its 
simplicity, it was found to be unusable for the area of interest in this study. 

Please refer to [26] for a more comprehensive review on energy balance methods with special focus 
on the determination of evapotranspiration. 

To compare the results of the LUMPS and ARM methods against field values, a measurement 
campaign was conducted from October 2007 to February 2008 in Greater Cairo. All relevant variables 
were continuously measured at three stations, each representing a major land cover class: ‘urban’, 
‘suburban agricultural’ and ‘suburban desert’. Further details and results from this campaign 
are described in [13]. For simplicity, the last two stations will be named ‘agricultural’ and ‘desert’ in 
this paper. 

2. Study Area 

The study area is Greater Cairo, the largest city in Egypt and on the African continent. Greater 
Cairo is a megacity, which administratively belongs to three different units: the governorates of Cairo, 
Giza and Qalyubiyya. For this historical division of the contiguous agglomeration of the megacity, and 
due to many unregistered residents, cited inhabitant numbers may differ considerably. As a whole, the 
population can be estimated to about 20 million inhabitants [27]. Next to the study area of the urban 
agglomeration, there are neighboring agricultural and natural desert landscapes, resulting in a high 
diversity of surface characteristics dominating the scene (see Figure 1). Landscape features range from 
small-scale, irrigated farming spots, to the labyrinthine of the wadi systems in the Eastern desert, to 
diverse urban settlements (extremely dense housing to spacious villa quarters). This high diversity, 
manifesting itself in large amplitudes of surface albedo, emissivity, irradiation, soil humidity, and 
roughness, requires extremely robust procedures for the processing of the remote sensing data and 
quickly exposes potential weaknesses of each of the methodologies. Additional information about the 
study area can be found in [13]. 
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Figure 1. False color composite (band 1–3) of a part of the study area from one of the 
ASTER scenes from 24 December 2007. 

 

3. Data 

3.1. Satellite Data 

The main remote sensing data source was ASTER (Advanced Spaceborne Thermal Emission and 
Reflection Radiometer), an optical imager on the TERRA satellite of NASA. It crosses the equator at 
about 10:30 local time. The spectral resolution ranges from the very visible to the thermal infrared with 
a spatial resolution from 15 m in the visible to 90 m in the thermal infrared. ASTER has a swath width 
of 60 km and its revisit time is 16 days. These features make ASTER an optimal candidate for 
medium-scale landscape analyses. A key question of this paper is how this ASTER data can be used 
for energy balance studies in urban regions.  

Atmospheric correction of the ASTER data was performed using the radiative transfer model 
MODTRAN with midday radiosonde ascents from Helwan, south of Cairo, as input atmosphere. 
After [13], evidence is given that the aerosol load is not equally distributed over the images. To 
account for this, the path radiance and transmissivity used for the atmospheric correction were 
modeled in dependence on the aerosol optical depth (AOD), taken from the operational aerosol product 
from MISR (Multi-angle Imaging SpectroRadiometer), also onboard TERRA [28]. Path radiance is not 
only dependent on the AOD, but also on the surface reflectance. An additional interpolation was 
introduced to scale the estimated path radiance to the apparent reflectance. As the reflectance is available 
only after the atmospheric correction, a first rough guess of reflectances was used for this step. 

Two versions of atmospheric correction are used in this study: a ‘best guess’ version, using the 
MODTRAN aerosol setting ‘urban, visibility 5 km’, and a ‘best fit’ version, using the aerosol setting 
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‘rural, visibility 23 km’. The second version produced the better matching of the broadband albedo 
with in situ measured values. However, the first one was considered to be the logical one to take, 
having no comparison values at hand. The use of these two versions of atmospheric correction shed 
light on the impact of atmospheric correction on the accuracy of flux determination. However, the 
versioning only affected the short wave bands. The ‘best guess’ correction of long wave bands was 
considered to be very good, so no ‘best fit’ was introduced for these bands. 

Unfortunately, the ASTER SWIR instrument suffers from thermal anomalies from December 2008. 
Therefore, the SWIR data from 24 December and 2 January could not be used in this study. It mainly 
affected the estimation of the broadband albedo. All scenes had more or less cloud contaminations. 
Cloud areas were first detected using an automated cloud-detection algorithm. As the algorithm was 
not able to detect all areas where strong haze occurred, additional manual edition was necessary. The 
cloudy areas were not used in any of the following analyses. 

Additionally, a scene of ASAR (Advanced Synthetic Aperture Radar), an imaging microwave radar 
operating at C-band, was used in this study. The scene was acquired in the ASAR image mode, where 
only one of seven predetermined swaths is sensed. A geolocated level 1B product with polarization set 
to ‘VV’ was chosen. Spatial resolution of the delivered product was 12.5 m. Further, the SRTM 
(Shuttle Radar Topography Mission) digital elevation model of the region was downloaded. Both the 
ASAR and the SRTM were georeferenced to the VNIR ASTER images using manual chosen pass 
points. Through this process, the spatial resolution was also adjusted to the VNIR ASTER  
resolution (15 m). 

3.2. In situ Data 

In situ data from the CAPAC campaign [13] were used in additional to the satellite data. Besides 
standard meteorological parameters like air temperature, humidity and wind speed/direction, the long 
and short wave up- and down-welling radiation, the ground heat flux and the turbulent heat fluxes were 
also measured continuously from 20 October 2007 to 20 February 2008 at three locations. The first 
station was on the roof of a building inside the campus of the Cairo University in Giza, west of the 
River Nile. At this station the ground heat flux was not measured, but indirectly derived from the other 
terms. The second station was on the northern rim of Cairo in the Bahteem district on an agricultural 
field inside a meteorological station of EMA (Egyptian Meteorological Authority). The third station 
was also part of a meteorological station of EMA outside the agglomeration of Cairo in the desert, next 
to the satellite town, 10th Ramadan. Further details of the campaign and a description of the data can 
be found in [13]. 

Flux measurements using the eddy covariance technique frequently suffer from a closure gap in the 
energy balance (e.g., [29]). The sum of the measured turbulent fluxes is sometimes lower than the 
available energy (the difference between net radiation and the ground heat flux). This residual is subject 
to current research and was attributed, amongst other reasons, to the influence of advection, lacking 
homogeneity of the surface, weak turbulence, and the exclusion of large eddies through a probably too 
short sampling time [30]. In the data of CAPAC, a considerable residual was found too, [13]. Most 
probably, it is reasonable to partition the residual among the turbulent heat fluxes to close the gap. 
However, it is unclear to which percentages this distribution must take place. Twine et al. [31] proposed 
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a simple distribution proportional to the Bowen ratio. This approach was applied here, despite the 
supposition that the ratio might be different for large eddies [30].  

Another constraint of the eddy covariance technique is that fluxes are average values of a certain 
time period (30 min in the CAPAC campaign), while satellite data are instantaneous measurements. 
Therefore, during the averaging period, considerable changes in the radiation situation might occur, 
probably influencing the derivation of these fluxes. Such changes are not incorporated in the satellite 
measurement, surely leading to a certain mismatch when comparing products from the two approaches. 

Finally, it should be mentioned that the anthropogenic heat flux cannot be measured separately and 
is included in the sensible and the ground heat flux. 

Not all stations (‘Cairo University’, ‘Bahteem’, and ‘10th Ramadan’) were covered by all scenes. 
The following dates of ASTER data were available during the campaign in Cairo. An X in Table 1 
indicates that the station is covered by at least one scene during this day. Scenes (a) are usually 
depicting the northern part of the agglomeration; scenes (b) show the southern part. 

Table 1. Dates of ASTER acquisitions during the CAPAC campaign. 

Date 
Number of  

Scenes 
Urban:  

‘Cairo University’ 
Agricultural:  

‘Bahteem’ 
Desert:  

‘10th Ramadan’ 

22nd November 2007 2(a + b) X X X 

1st December 2007 2(a + b) X X X 

24th December 2007 2(a + b) X X X 

2nd January 2008    X 

4. Methods: Radiation Balance 

4.1. Modeling of Net Radiation 

The net radiation Q∗ [W·m−2] is given as 

 ,     (1) 

with α denoting the broadband surface albedo, K↓ the broadband irradiation [W·m−2], L↓ incoming 
long wave radiation [W·m−2], and L↑ outgoing long wave emission [W·m−2]. In the following, all terms 
will be explained separately. 

4.1.1. Broadband Albedo α 

To convert the spectral reflectances ρ of ASTER obtained from the atmospheric correction 
algorithm to broadband albedos, an empirical equation was used, which was gained from a multiple 
regression approach similar to [32]. The equation, using 86 samples of different surface materials of 
the ASTER spectral library Version 1.2 of JPL Laboratories.  

In case of the ASTER scenes from 24 December 2007 and 01 February 2008, only the VNIR bands 
were available due to a temperature anomaly in the detector. Therefore, another equation was obtained 
for these dates. The resulting empirical regression equations are listed in the annex. 
  

↑↓↓ −⋅ LL+K)-(1=Q* α
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4.1.2. Outgoing Long Wave Emission L↑ 

For the outgoing long wave emission L↑, the atmospheric corrected TOA (Top Of the Atmosphere) 
radiances using the ‘best guess’ option for the atmospheric correction were converted to brightness 
temperatures using the Planck-function. As the Planck-function is only valid for a single band wave 
number, the correction of the least-square-fit method described in [32] was used. Using assumed 
synthetic emissivities, surface temperatures were then calculated for band 14. The assumed emissivities 
were 0.98 (water and pure vegetation) and 0.90 (urban and desert). In urban and agricultural areas of 
the ASTER scenes, where mixed pixels often occur, the formulas of [33] were used, incorporating the 
above-mentioned emissivities for pure pixels. The emissivities of the other bands were obtained by 
comparing their surface temperatures with the surface temperatures of the emissivity-corrected band 
14. The resulting band emissivities (εbi) were then converted to broadband emissivities (ε), using 
empirical regression equations for each land use, similar to the albedo approach. The equations for the 
different land use classes are also in the annex. 

4.1.3. Incoming Broadband Irradiation K↓ and Incoming Long Wave Radiation L↓ 

Incoming broadband irradiation K↓ was estimated using MODTRAN runs over the short wave 
range from 0.25 to 4 μm. For the option ‘best guess’, the same MODTRAN settings were used, as for 
the atmospheric correction of the band radiances in the ‘best guess’ mode. For the option ‘best fit’ 
however, the in situ measured K↓ values from the CAPAC campaign [13] were used to iteratively find 
the optimal AOD values for the three available stations by minimizing the differences between the 
measured and the modeled K↓ values. The spatial solar irradiation K↓ is given as the sum of beam 
irradiation, diffuse irradiation, and irradiation reflected from the environment and is calculated in 
dependence on the sky view factor which was derived from the SRTM DEM [34].  

Incoming long wave radiation L↓ was also estimated using the ‘best guess’ option in MODTRAN. 
Yet, no ‘best fit’ option was introduced to the long wave fluxes. 

5. Methods: Heat Fluxes 

5.1. Modeling of the Ground Heat Flux Qs 

The ground heat flux Qs [W·m−2] is a function of the available energy on the surface and the layers 
beneath and the thermal properties of the soil. Thermal properties are dependent on soil moisture and 
porosity and therefore only constant at sealed surfaces. Whilst the estimated Q* stands for the 
available energy, it is more difficult to describe the thermal properties of the ground. Common 
approaches found in literature are using different vegetation indices for this purpose [3,5,7,35–37]. In 
this work the approach found in [38] and a new approach are presented. According to [38] the ground 
heat flux in urban areas is 

     (2) 

Apart from this approach, a new formula was derived using linear regression with a set of in situ 
data from the CAPAC campaign. Due to extremely high fluctuations in the storage term of the ground 
heat flux [13], it was decided only to work with 30 min averages. Daytime Q* and Qs (07:00–16:00) 

( ) *3914.03673.0 QNDVIQurban ⋅⋅−=
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from the period from 20 November 2007 to 20 February 2008 were used. The data were filtered for 
sunny hours by comparing actual net radiation to an adapted sine wave. The daily curve of Qs features 
a time offset towards the curve of Q* of about one hour (see Figure 8 in [13]). The reason for this 
offset is probably found in the measurement technique of in situ Qs, measuring the flux a few 
centimeters underground. Therefore, the whole time series of the latter parameter was shifted 
backwards one hour for the regression calculations (Q*h−1). The NDVI then explains the differences 
between the stations, similar to the ‘Parlow/urban’ approach. The first term in equation 9 explains the 
variation of the land use and was derived specifically for the late morning hours. The second term 
describes the relation between Q* and Qs and is valid for the whole day.  

 r2 = 0.6   (3) 

Qs was not measured at the urban station. Therefore, it had to be deduced from the balance of Q* and 
the turbulent heat fluxes. However, for surfaces which were not perfectly homogeneous, the energy 
balance is not closed and a considerable unexplained residual remains. This residual was roughly 
estimated for the urban station using the residuals from the agricultural and the desert station. Then Qs 
was derived as balance from Q*, the turbulent heat fluxes and the estimated residual. 

Besides Q*, other variables like α or ε were tested for their feasibility in describing Qs. However, 
none of these variables was able to improve the regression coefficients. 

5.2. LUMPS 

LUMPS stands for the Local-Scale Urban Meteorological Parameterization Scheme and was 
developed to calculate turbulent fluxes using standard meteorological measurements and two  
semi-empirical parameters describing the surface cover. Its origin is a simplified Penman-Monteith 
approach, incorporating the Priestley–Taylor coefficient for extensive wet surfaces and extending it to 
non-saturated surfaces [19]. While the α parameter should account for the strong correlation between 
the heat fluxes (QH, QLE) and the available energy (Q* − Qs), β stands for the uncorrelated part [21]. In 
this study, both parameters were derived empirically from the in situ data of the CAPAC campaign. 
The values are derived for each station for a vegetated and a non-vegetated wind sector. Further, a 
comparison with a set of selected values from literature from [19] is given. Thereby the values from 
Mexico City are taken for the urban station. Table 2 gives the α and β values. The values were applied 
to the ASTER images according to the land uses: ‘urban’, ‘vegetation’ and ‘desert’. The LUMPS 
equations for the turbulent heat fluxes are as follows: 

      (4) 

and 

     (5) 
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Table 2. α and β parameter derived from the in situ data of the CAPAC campaign. 

 Urban: ‘Cairo University’ Agricultural: ‘Bahteem’ Desert: ‘10th Ramadan’ 
 α β α β α β 

Non-vegetated sector 1.46 3.43 1.52 43.99 0.78 0.78 
Vegetated sector 1.64 7.2 3.17 33.16 0.71 9.70 

Values from literature  
(Grimmond & Oke 2002) 

0.19 −0.3 1.2 20 0.2 20 

5.3. ARM (Aerodynamic Resistance Method) 

An alternative method to estimate the sensible heat flux is the bulk transfer equation, 

  ,     
(6)

 
where ρair is the density of air [kg·m−3], Cp the specific heat of air at constant pressure [J·kg−1·K−1], Ts 
is the surface temperature [°K] calculated from the ASTER TIR data and Ta is the air temperature 
[°K]. rh is the aerodynamic resistance for heat [s·m−1] [14]. QLE is then the residual of the available 
energy and QH. Spatial Ta had to be estimated and was deduced using empirical regression equations 
with Ts and wind speed obtained from the CAPAC campaign data. The equations are given in  
the appendix.  

The aerodynamic resistance rh can be determined with an approach using the roughness length, 
stability correction functions for momentum and heat, and the friction velocity [9]. The estimation of 
these parameters needs a detailed surface scheme, including a digital surface model of the urban area. 
However, no such detailed model was available for Cairo in sufficient accuracy; therefore, another 
empirical approach using radar data was pursued. Several studies have shown that aerodynamic 
roughness length can be represented by radar data [39–41]. Using the measurement data from the 
CAPAC campaign, an empirical relation was found between rh and the radar backscattering coefficient 
σ0 of the ASAR image from 2 January 2008. 

The radar image was smoothed with a 13 × 13 filter to remove speckle and other disturbing effects 
before serving as input in the regression calculation, together with the wind speed wnd_spd [m·s−1]. 
The resulting equation is 

.    (7) 

5.4. Source Footprint Models 

Eddy flux towers measure fluxes originating from an extended upwind source area of the tower. 
The spatial extent of the source area depends on the measuring height, the roughness of the surface, 
and the stability of the boundary layer. In the CAPAC campaign, considerable directionality was found 
in the turbulent flux data, especially at the agricultural station ‘Bahteem’ [13]. To be able to compare 
these in situ measurements with the remote sensing data, it was decided to use a source footprint 
model. Analytical approaches describing the source area have their origin in the works of [42] and [43]. 
In this work, a simple analytical model, the KM (Korman & Meixner) model [44], was used. In 
parallel, two other models [45], as used in [46] and [47], were investigated. However, even though the 
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calculated footprints were not identical, the resulting fluxes were nearly the same. Figure 2 shows the 
footprints for the three stations on 24 December 2007. Footprints were used for the evaluation of the 
LUMPS and the ARM results. 

Figure 2. Footprints for the three stations and the scenes from 24 December 2007. Due to 
less unstable conditions, the flux footprints extend over a large area. As the color table is 
linear, only about 50% of the footprint is given in color. 

 
6. Results 

The presentation of the results follows two strategies. First, the calculated parameters from the 
ASTER data are compared to the in situ measurements. The comparison is executed by the analysis of 
mean absolute differences (MAD), which are the mean values of the absolute differences between 
associated values from each of the in situ measurements and the remote sensing approaches. The MAD 
is given by 

  (8) 

In a second step, the spatial variations in the image are discussed on the basis of what is expected and 
realistic. The basis for this discussion are the general land use classes ‘urban’, ‘agriculture’ and ‘desert’. 
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6.1. Radiation Fluxes 

The calculated radiation fluxes from the ‘best guess‘ and the ‘best fit‘ option were compared to the 
in situ measured fluxes (original 1 min averages) using the values of the pixel directly associated with 
the station. Assuming a purely cosine dependent sensor response of the in situ radiation measurement 
instrument, reflected radiation for the agricultural and the desert station comes from a circular area 
within a radius of 11 m. In the case of the urban station however, the radius is much larger. Though, 
using only the height difference between the sensor and the roof, about 90% of the flux would come 
from a circle within a radius of 45 m.  

For the urban and the agricultural station, three overflights could be used; the desert station had four 
scenes available for comparison. The MADs of these 10 value pairs were calculated and are listed in 
Table 3. The critical term is the albedo, which has a MAD of 2.3% in the ‘best fit’ option. All 
differences of the albedo were of such magnitude, independent on the station. The high MAD of the 
‘best guess’ irradiation of 43.0 W·m−2 could be improved significantly by using the ‘best fit’ option, 
reducing the MAD to only 10.1 W·m−2. The two long wave terms both showed good agreement in the 
‘best guess’ case, therefore no ‘best fit’ option was introduced. Finally, the net radiation could be 
determined with 11.6% accuracy in the ‘best guess’ option, and with 6.9% in the ‘best fit’ option. As 
the ‘best fit’ option is fitted to the measurement values, this comparison is of course not independent. 
Anyhow, the ‘best guess’ version can be interpreted as an error measure for other pixels not included 
in this comparison. 

Table 3. Mean absolute difference (MAD) of the four terms of the radiation balance. The 
values in brackets indicate the percentage of the MAD on the mean of the in situ measured 
values. 

 MAD ‘Best Guess’ MAD ‘Best Fit’ 
Albedo [%] 3.5 (14.8 %) 2.3 (9.7 %) 

Irradiation [W·m−2] 43.0 (7.4 %) 10.1 (1.7 %) 
Long wave emission [W·m−2] 8.4 (2.0 %) Na 

Incoming long wave radiation [W·m−2] 20.4 (6.5 %) Na 
Net radiation [W·m−2] 37.6 (11.6 %) 22.3 (6.9 %) 

The in situ radiation values were measured using CNR1 from Kipp & Zonen. The specification 
sheet lists the expected accuracy for the daily totals to be ±10%. A calibration of the instruments at the 
end of the campaign improved the accuracy to about 5–10% for single measurements. Having this in 
mind, the achieved 11.6% accuracy for the net radiation using the ‘best guess’ option is good. 

A main constraint in the modeling of the irradiation was the limited accuracy of the used DEM. The 
DEM had a spatial resolution of 3 arcsecond (≈90 m), but could not resolve exactly the geomorphologic 
features occurring in the desert, such as wadi systems. Further, the modeling of the irradiance reflected 
from opposed slopes is simply parameterized using the neighboring pixel’s reflectance and therefore 
might be underestimated. Hence, areas of massive over- and underestimation of the incoming spectral 
irradiance were present in some areas of the desert, finally resulting in wrong albedo values. Also, radar 
data exhibit increased scattering over rough surfaces. Therefore, the SRTM data over urban areas showed 
some irregularities. To account for this, the slope was set to zero over urban areas. A further constraint is 
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given by the fact that solar irradiation was modeled assuming the urban surface to be flat; for example, 
no enhanced reflections from sun-facing walls and sloped roofs or diminishing effects of shadows were 
considered. In urban areas, this assumption can lead to considerable errors, as was shown in [34]. For the 
ASTER scenes used, a maximum error of 2% is estimated for this geometry effect.  

Figure 3 shows the ‘best fit’ net radiation from scene (b) of 24 December 2007 for a part of Greater 
Cairo. The three main landscape features can be easily recognized: the desert areas in the right part of 
the image with low net radiation values, the agricultural fields in the upper left part with high net 
radiation values and the urban parts with medium net radiation values. The River Nile is also clearly 
visible with very high values. 

Figure 3. Net radiation (option ‘best fit’) from one of the ASTER scenes from 24 
December 2007. 

 

A similar distribution is found in all scenes; however, in some scenes, the net radiation of the urban 
areas almost equaled the net radiation of the agricultural areas. The main reason for this difference is 
the albedo. For example, the difference between the mean urban and mean agricultural albedo of the 
scene (b) from 01 December 2007 is only 0.7%, while in the scene (b) from 24 December 2007, which 
covers a very similar sector, it is 4.1%. Even though the difference between the mean values seems to 
be small, there is a resultant effect on the spatial pattern. The urban net radiation of the scene (b) from 
01 December 2007 is only 9.1 W·m−2 lower than the agricultural net radiation. In the case of the scene 
(b) from 24 December 2007, it is 30.3 W·m−2 lower. 

6.2. Ground Heat Flux 

Qs was derived using the ‘Parlow/urban’ and the new ‘Frey/NDVI’ approaches. It was compared to 
half hour averages of Qs from the measurement campaign. The option ‘best guess’ and the option ‘best 
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fit’ were used as input in the comparison through the net radiation. Generally, the option ‘best fit’ 
performed slightly better than the option ‘best guess’, although the MAD of ‘best fit’ was only few 
percent higher than ‘best guess’. The best agreement showed the ‘Parlow/urban’ approach. There the 
MAD for the option ‘best fit’ was 18.9 % of mean Qs. The new approach performed similarly well. 
Table 4 shows the MADs of Qs.  

Table 4. MAD of the ground heat flux, option ‘best fit’. The values in the third row 
indicate the percentage of the MAD on the mean of the in situ measured values. 

 
MAD [W·m−2] MAD [%] 

MAD [W·m−2] Single Stations 

 Urban Agriculture Desert 

‘Parlow/urban’ 15.47 18.90 27.42 8.44 10.02 

‘Frey/NDVI’ 17.53 21.42 24.07 13.69 14.54 

Spatial analysis showed that both approaches were in agreement with the general assumed spatial 
pattern with agricultural pixels having the lowest Qs and urban pixels featuring the highest values. The 
desert pixels ranged somewhere in between. However, the ‘Parlow/urban’ approach showed another 
pattern in 3 scenes: here the means of the urban and the means of the desert pixels were almost similar. 
Figures 4 and 5 show a sample from the scene (b) on 24 December 2007. The values of the River Nile 
are probably not realistic, as no special algorithm for water was used. 

Figure 4. Soil heat flux (‘Parlow/urban’) from one of the ASTER scenes from 24 
December 2007.  
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Figure 5. Soil heat flux (‘Frey/NDVI’) from one of the ASTER scenes from 24 December 2007. 

 

6.3. LUMPS 

QH and QLE estimated with the LUMPS scheme were calculated using both the ‘Parlow/urban’ and 
the ‘Frey/NDVI’ approaches for Qs. At the urban station, three value pairs (a pair consists of one in 
situ and one remote sensing value) of each turbulent heat flux were available for comparison; the 
agricultural station had only one pair, and the desert station also had three pairs. For simplicity, the 
agricultural pair is also addressed as MAD in the further analysis. The comparison was firstly 
conducted simply matching the value of the pixel of the mast’s location to the corresponding in situ 
value. In a second step, the footprint model was used for the retrieval of the remote sensing values. 

The parameters from [19] produced fairly good QH and QLE at the desert station. Taking the 
‘Parlow/urban’ method for Qs and using the ‘best fit’ option for Q*, the MAD of QH and QLE was 
13.4 W·m−2, and 16.2 W·m−2 respectively, in case no footprint model was used. The parameters retrieved 
from the campaign in Cairo produced similar good results for this station. This good fit is mainly due to 
the simple environment at the desert station, facilitating the model development. At the urban and the 
agricultural stations, higher MADs of 40.0 W·m−2 and 95.2 W·m−2 for QH and 41.3 W·m-2 and 
116.6 W·m-2 for QLE were observed for the same setting taking the parameters from [19]. The deviation 
of the agricultural station is extreme, even though the best fitting value for α proposed by [19] (α =1.2) 
was taken. 

Of course, the LUMPS parameters derived from the measurement data performed better for both the 
urban and the agricultural station. MAD of QH of the urban station was 26.6 W·m−2, of the agricultural 
station 3.5 W·m−2 and of the desert station 12.0 W·m−2 in case no footprint model was used. The 
respective values of QLE are 18.3 W·m−2, 24.9 W·m−2, and 15.1 W·m−2 (compare Figures 6 and 7). 
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Figure 6. MAD of QH for the different methods of soil heat flux, parameters of the 
LUMPS scheme and atmospheric correction. MADs are given for simple pixel comparison 
and for the usage of the footprint model. Annotations are given in Table 5. 

 

Figure 7. MAD of QLE for the different methods of soil heat flux, parameters of the 
LUMPS scheme and atmospheric correction. MADs are given for simple pixel comparison 
and for the usage of the footprint model. Annotations are given in Table 5. 

 

The MAD mostly increased, not when using the ‘best fit’ option, but rather the ‘best guess’ option 
for the net radiation input in the calculations. The appropriate MADs for the urban, the agricultural and 
the desert station also using the ‘Parlow/urban’ Qs were then 37.0 W·m−2, 5.2 W·m−2 and 20.0 W·m−2 
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for QH and 20.5 W·m−2, 32.1 W·m-2, and 14.8 W·m−2 for QLE. The MAD also increased in almost all 
cases, taking the parameters from [19] and using the ‘best guess’ option. 

MADs for QH and QLE change only at the agricultural station, when using the ‘Frey/NDVI’ 
approach for Qs. There, the MAD of QLE decreases to 16.2 W·m−2, and MAD of QH increases to 
14.1 W·m−2, both for the ‘best fit’ option. At the two other stations, the MADs remained almost  
the same. 

From the results of the LUMPS method, we can see that it is fairly reasonable to model turbulent 
heat fluxes in desert-like environments from values in the literature, but it is more critical to do so in 
urban or agricultural environments. 

To evaluate the performance of the LUMPS approach further, the KM footprint model was applied 
to the results of the approach. Due to cloudiness, not all values could be used in the footprint analyses. 
There was a limitation in the calculation that at least 70% of the accumulated flux footprint must be 
cloud free, otherwise the result was invalid. Unfortunately, the pixel of the desert station of the first 
ASTER scene was set to invalid due to cloud cover. The use of the footprint model only partly 
improved the results. In most cases, the results were even worse. The QH MAD values only improved 
significantly at the agricultural station, and in some cases, the LUMPS parameters from literature were 
used. QLE sometimes improved, other times not. Overall, the effect of the footprint models was 
ambiguous. Figures 6 and 7 show the MAD of QH and QLE for all calculated combinations. 

Figure 8. QH modeled using the ‘Parlow/urban’ Qs and the option ‘best fit’ from one of the 
ASTER scenes from 24 December 2007. 

 

Spatial analysis of the LUMPS heat fluxes showed that the different approaches produced fairly 
different patterns. Following [13], it was assumed that the sensible heat flux should be highest in desert 
areas, closely followed by urban areas and lowest over agricultural fields. However, the latent heat flux 
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should be highest over the agricultural fields, followed by the urban areas, and be lowest in the desert 
areas. This pattern was partly fulfilled by the LUMPS approaches. The latent heat flux was modeled 
fairly in accordance with this pattern in almost all cases. Only the approaches using the parameters 
of [19] rendered urban QLE which were lower than the desert QLE. Figure 9 shows QLE modeled using 
the ‘Parlow/urban’ Qs and the newly-retrieved parameters for the LUMPS parameters. 

Figure 9. QLE modeled using the ‘Parlow/urban’ Qs and the option ‘best fit’ from one of 
the ASTER scenes from 24 December 2007. 

 

Table 5. Annotations for Figure 6 and Figure 7. 

Number Ground Heat Flux LUMPS Parameter Atmospheric Correction 
1 ‘Parlow/urban’ Campaign derived best fit 
2 ‘Parlow/urban’ Grimmond [19] best fit 
3 ‘Frey/NDVI’ Campaign derived best fit 
4 ‘Parlow/urban’ Campaign derived best guess 
5 ‘Parlow/urban’ Grimmond [19] best guess 

QH however, did not always follow this order. On one day for example, 22 November 2007, mean 
agricultural QH was higher than mean urban or mean desert QH. In Figure 8, the agricultural areas show 
clearly the lowest values, but the urban and the desert areas are almost similar. As mentioned before, QLE 
was modeled quite well. This is attributed to the fact that the LUMPS parameters α and β deducted from 
the in situ measured values were retrieved for Equation (4), which estimates QLE. QH in Equation (5) 
then uses the same parameters. Due to the structure of the formula, it is not possible to retrieve α and β 
for Equation (5).  

Looking at the Bowen ratio β (=QH/QLE), the desert showed the highest β values, the urban areas 
slightly lower values and the agricultural areas the lowest β. The MAD of the desert β thereby was 
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found to be 5 < β < 7, agricultural areas featured 0.5 < β < 3 and urban areas 1 < β < 3. However, using 
the parameters from the literature, they rendered extremely high urban β (10 < β < 28) and also very 
high agricultural values (β ≈ 3). 

6.4. ARM 

QLE estimated with the ARM method was calculated with the ‘Parlow/urban’ Qs only, as no 
significant influence was found from taking either the ‘Parlow/urban’ or the ‘Frey/NDVI’ QS in the 
analysis of the LUMPS results. Generally, MAD of QH and QLE from the ARM method were higher 
than the MAD of the LUMPS approach. Especially at the desert station, the agreement worsened. Only 
the agricultural value matched better with the ARM method. MAD of QH for the urban, the agricultural 
and the desert station were 49.1 W·m−2, 1.4 W·m−2 and 25.0 W·m−2 for the ‘best fit’ option. The MAD 
of QLE for the same stations was 74.8 W·m−2, 27.7 W·m−2 and 25.4 W·m−2. At the urban, station the 
‘best guess’ option of QLE performed better than the ‘best fit’ option (65.3 W·m-2). However, at the 
agricultural and the desert station, the ‘best fit’ approach performed better. 

Spatial analysis of the ARM heat fluxes followed the same rules as in the LUMPS analysis. QLE 
was modeled correctly, with the agricultural QLE the highest, the desert QLE the lowest and the urban 
QLE somewhere in between. Also, QH showed a reasonable distribution. Figures 10 and 11 show QH 
and QLE for the ‘best fit’ option and the ‘Parlow/urban’ Qs. 

The analysis of the Bowen ratios β also showed that most methods assigned the desert β highest 
values, the urban areas slightly lower β and the agricultural areas the lowest. However, in some cases 
the desert had a negative latent heat flux, resulting in negative β values. 

Figure 10. ARM heat fluxes. QH modeled using the ‘Parlow/urban’ Qs and the option ‘best 
fit’ from one of the ASTER scenes from 24 December 2007. 
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Figure 11. ARM heat fluxes. QLE modeled using the ‘Parlow/urban’ Qs and the option 
‘best fit’ from one of the ASTER scenes from 24 December 2007. 

 

7. Discussion 

The findings of this study highlight the possibilities and difficulties of instantaneous flux 
determination from remote sensing images. ASTER images are well suited for this task concerning 
their spatial and spectral resolution. The temporal resolution, however, is insufficient for a regular flux 
determination from space. 

This study showed that it is possible to determine turbulent heat fluxes from space within a good 
accuracy range. The differences found between remote sensing and in situ measured fluxes compare 
well to other values found in the literature, e.g., [48–50], or [12]. However, differences are higher than 
the ones found in [51], which compare remote sensing and in situ measured fluxes at relatively simple 
homogeneous sites on the Tibetan Plateau. Also [52] found a better agreement, yet they had only one 
scene to compare. Nevertheless, there is still room for improvement. Mainly, there are two concerns: 

(a) There is the error propagation from input variables, which was mentioned by [49]. Inaccuracies 
from input variables can result from various sources like BRDF effects, thermal anisotropy or an 
imprecise atmospheric correction. For example, in a single case at the desert station, the solar 
irradiation was underestimated about 99.6 W·m−2 (scene (a) of 22 November 2007, ‘best guess’) due to 
an inappropriate value of a MISR AOD product pixel. Q* then was underestimated 111.2 W·m−2. In 
the LUMPS approach this produced a difference to the ‘best fit’ option in QH of 31.1 W·m−2 taking the 
campaign retrieved parameters and the Qs of ‘Parlow/urban’. The difference in QLE with the same 
input is only 4.7 W·m−2. Using the ARM approach, the difference between this ‘best guess’ option and 
the ‘best fit’ option is 35.7 W·m−2 for QLE. Dealing with such magnitudes, it is difficult to decide 
whether a spatial pattern is mainly governed by land use or due to incorrect atmospheric correction. 
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The ground heat flux is an important input variable and also determines the accuracy of the 
subsequently calculated heat fluxes. Differences found between the remote sensing and the in situ 
ground heat flux are in the range of values found in [38]. It can be noted that differences are higher at 
the urban station compared to the agricultural and the desert station. This is probably due to the 
inability to measure directly the ground heat flux of an urban surface. So, the in situ data of the urban 
station are less accurate. The remote sensing ground heat flux was compared to 30-minute averages of 
in situ measurements. Direct comparison to one-minute averages would render extreme differences. 
This is because the storage heat flux as part of the ground heat flux showed extreme deviations due to 
short-time fluctuations of the surface temperature. Such high fluctuations can never be explained by 
instantaneous net radiation and vegetation indices only.  

(b) The second concern in determining turbulent heat fluxes is the model uncertainty itself. 
Especially in heterogeneous environments, the development of a good model is important. For 
instance, the LUMPS method is using two empirical parameters which are dependent on the 
environment. It is a great challenge to find the right values for each pixel in such a fast changing 
landscape, especially as in situ measurements are scarce. This study has shown that adapting values 
from literature can lead to high mismatches. 

 In the ARM method, both concerns can be found in the determination of the aerodynamic 
resistance for heat, which is dependent on surface roughness and on the conditions of convection and 
winds. An improper estimation of this variable will lead to a weak determination of heat fluxes. 
Additionally, the spatially distributed air temperature has to be estimated in the ARM method—A step 
which is crucial for flux determination accuracy. 

Bare soil and plant foliage temperatures contribute both to radiometric surface temperatures and 
contribute to the turbulent transport of sensible heat [6]. This problem, which applies only at the 
agricultural station, is not addressed by either the ARM or the LUMPS methods, and probably leads to 
higher differences at the agricultural station compared to the urban and the desert station. 

The discussion so far about flux determination accuracy neglects the problem of the imprecise 
determination of the turbulent fluxes by eddy covariance measurements. In inhomogeneous areas 
especially, the onsite flux determination is difficult, but also at our desert station, the measured energy 
balance had to be closed by force. Before closing, midday ensemble average of the residual term from 
the desert station was nearly 60 W·m−2; at the agricultural station, it almost reached 150 W·m−2. 
Similar residuals were found by [51] or [29]. Having these magnitudes of closure gaps in mind, the 
results of the remote sensing fluxes do actually compare quite well. 

7. Conclusions 

The estimation of the radiation and energy balance from satellite images strongly depends on a 
successful atmospheric correction. Especially in areas where the aerosol content of the troposphere is 
not constant (for example due to air pollution as in our research area), the atmospheric correction is a 
crucial task. In this research, two versions of atmospheric correction were used: ‘best guess’ and ‘best 
fit’, with ‘best fit’ being the version that produced albedos that fit the ground measurements better than 
the ‘best guess’ version. The albedo is estimated with a 14.8% accuracy in the ‘best guess’ scenario. 
Short wave irradiation was estimated with 7.4%, long wave emission with 2.0%, incoming long wave 
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radiation with 6.5%, and finally the net radiation with 11.6% accuracy. The ‘best fit’ case improved 
these values considerably, e.g., the net radiation was estimated in the ‘best fit’ case with 6.9% 
accuracy. Considering the accuracy of the in situ measurements to be 5–10%, achieved percentages  
are good.  

The ground heat flux could be modeled satisfactorily using two different approaches when 
comparing the values to 30-minute averages of in situ measurements. Single differences were lower 
than 30 W·m−2 in all cases. The MAD (mean absolute difference) is 15.5 W·m−2 for the ‘Parlow/urban’ 
method and 17.5 W·m−2 for the ‘Frey/NDVI’ method using the ‘best fit’ option. Looking at the spatial 
distribution, both approaches rendered proper values.  

All in all, five possible methodological combinations were used to calculate QH and QLE with the 
LUMPS approach. Combinations included the ‘best guess’ and the ‘best fit’ option of Q*, different 
approaches for α and β, and two sources for the ground heat flux. Overall, MAD (including all 
combinations) of QH of the urban station was 36 W·m−2, which is 19% of the mean in situ measured 
flux. At the agricultural station, the overall MAD was 40 W·m−2 (34%), and at the desert station, it was 
17 W·m−2 (17%). The respective values for QLE were 28 W·m−2 (57%), 62 W·m-2 (34%) and 16 W·m−2 

(61%). The best combination consisted of the 'best fit' case for the atmospheric correction, the 
‘Parlow/urban’ approach for the ground heat flux and the newly-derived LUMPS parameters. In this 
case, the MADs for QH were 27 W·m−2 (14%), 4 W·m−2 (3%), and 12 W·m−2 (8%) and the MADs for 
QLE were 18 W·m−2 (38%), 25 W·m-2 (14%), and 15 W·m−2 (60%). 

The desert station showed the best absolute results due to its simple and homogeneous environment 
and general very low latent heat fluxes. The agricultural station, on the contrary, showed the highest 
deviations, which probably resulted from the high fragmentation of the landscape. The urban station 
was somewhere in between. Considering the uncertainty of the in situ measurements, these results are 
good. Single combinations showed differing results, with generally the ‘best fit’ option improving the 
MAD and the empirical estimated α and β delivering better results than the values from literature. The 
choice of the ground heat flux did not influence the results significantly. 

The analysis of the spatial distribution of the LUMPS fluxes revealed that QLE was modeled 
according to our expectations; however, QH showed some irregularities. Summarizing the LUMPS 
results, we conclude that the estimation of the turbulent heat fluxes with literature values is only 
applicable when the environment is fairly simple, like our desert example. As soon as the environment 
becomes more complex, the determination is more difficult.  

The ARM approach was calculated with the two combinations for the atmospheric correction - ‘best 
guess’ and ‘best fit’ options of Q*. MAD of QH of the urban station was 49 W·m−2, which is 26% of 
the mean in situ measured flux. At the agricultural station, the MAD was 1 W·m-2 (1%) and at the 
desert station, it was 25 W·m−2 (16%). The respective values for QLE were 70 W·m−2 (145%), 
37 W·m−2 (20%) and 35 W·m−2 (211%). Generally, similar results to the LUMPS analysis were found. 
‘Best fit’ worked better than the ‘best guess’ option. The spatial analysis showed that the ARM 
approaches were able to reproduce meaningful spatially-distributed fluxes in contrary to the  
LUMPS approach. 

The application of the footprint model increased the MAD in most cases for both the LUMPS and 
the ARM method. It is therefore not encouraged to use such models when working with  
high uncertainties.  
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This study showed that it is reasonable to calculate the energy balance using spaceborne data when 
sufficient in situ data for model adjustments are available. Without such ground truth data, results are 
most probably disputable. The remaining differences between in situ measured and the remote sensing 
energy balance in this study suggests further efforts in conducting research on this topic. Besides the 
definition of robust parameters for different land uses, the methods of comparison, e.g., using footprint 
models, should be evaluated more in detail. 
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Appendix 

The regression equations for the broadband albedo are: 

α = 0.001 + αb1·0.221 + αb2·0.174 + αb3·0.265 + αb4·0.295 + αb5·(−0.514) + αb6·0.504 + αb7·0.066 + 
αb8·(−0.074) + α b9·0.015     (8) 

α = 0.035 + αb1·0.132 + αb2·0.101 + αb3·0.637    (9) 

The subscripts b1–b9 denotes the respective bands of the ASTER scenes. The equations for the 
broadband emissivity for the different land use classes are: 

Desert: 
ε = 0.287 + εb10*(0.175) + εb11*(−0.080) + εb12 *(0.068) + εb13*(0.541)    (10) 

Vegetation: 
ε = 0.001 + εb10*(0.091) + εb11*(−0.023) + εb12*(0.349) + εb13*(0.584)    (11) 

Water: 

ε = −0.470 + εb10*(0.416) + εb11*(0.815) + εb12*(-0.452) + εb13*(0.163) +εb14*(0.529)  (12) 

Urban: 

ε = 0.486 + εb11*(0.026) + εb12*(0.091) + εb13*(0.374)      (13) 
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The regression equations for estimation of spatial air temperature are 

Ta urban = 0.697·Ts − 0.632·wndspd + 0.588   r2 = 0.83   (14) 

Ta agri = 0.575·Ts − 0.277·wndspd + 2.482   r2 = 0.71   (15) 

Ta desert = 0.601·Ts − 0.420·wndspd + 1.657    r2 = 0.77   (16) 

with wndspd being the wind speed at the respective land use. 

Q* of one hour before the overflight (Q*h−1) can be calculated from Q*h, assuming that Q* follows 
the above-mentioned idealized sine wave. In the morning, the wave starts at the point, when Q* 
becomes positive (sine = 0). It then grows to the maximum (sine = 1) at the point of time when Q* has 
its maximum, to decrease to sine = 0 again in the evening, when Q* becomes negative. Q*h−1 is then  

     (17) 

with Γ given in  

Table 6. Γ values for the calculation of the sinus curve. 

Hour Γ Hour Γ 
07:00 0.000 12:00 1.396 
07:30 0.175 12:30 1.222 
08:00 0.349 13:00 1.047 
08:30 0.524 13:30 0.873 
09:00 0.698 14:00 0.698 
09:30 0.873 14:30 0.524 
10:00 1.047 15:00 0.349 
10:30 1.222 15:30 0.175 
11:00 1.396 16:00 0.000 
11:30 1.571 (= 90*π/180)   
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