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Abstract: The spectral unmixing of a linear mixture model (LMM) with Normalized
Difference Vegetation Index (NDVI) constraints was performed to estimate the fraction of
vegetation cover (FVC) over the earth’s surface in an effort to facilitate long-term surface
vegetation monitoring using a set of environmental satellites. Although the integrated use
of multiple sensors improves the spatial and temporal quality of the data sets, area-averaged
FVC values obtained using an LMM-based algorithm suffer from systematic biases caused
by differences in the spatial resolutions of the sensors, known as scaling effects. The
objective of this study is to investigate the scaling effects in area-averaged FVC values
using analytical approaches by focusing on the monotonic behavior of the scaling effects
as a function of the spatial resolution. The analysis was conducted based on a resolution
transformation model introduced recently by the authors in the accompanying paper
(Obata et al., 2012). The maximum value of the scaling effects present in FVC values was
derived analytically and validated numerically. A series of derivations identified the error
bounds (inherent uncertainties) of the averaged FVC values caused by the scaling effect.
The results indicate a fundamental difference between the NDVI and the retrieved FVC from
NDVI, which should be noted for accuracy improvement of long-term observation datasets.
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1. Introduction

Time series analysis of biophysical and climatological parameters is indispensable for studies of the
Earth’s climate, land, and hydrology systems and the interactions among these systems. Such analysis
often relies on the information retrieved from reflectance spectra measured by satellite instruments [1,2].
The fraction of vegetation cover (FVC) is one method used to measure the horizontal spread of vegetation
and is defined as the ratio of the vegetated area to the entire pixel area in a satellite image [3]. The FVC
can be estimated from a reflectance spectrum via empirical or physical model-based techniques, such
as the vegetation index (VI) model [4], spectral mixture analysis (linear mixture model, LMM) [3,5,6],
and radiative transfer models [7]. Several types of FVC datasets have been produced using historical
and current optical sensor data (Table 1). For example, the European Commission provided a dataset
called fCover that was derived from an ensemble of satellites. The program used to compile this
dataset is known as the Carbon Cycle and Change in Land Observation Products (CYCLOPS) with
SPOT-VEGETATION [8]. The technique used in this work is based on neural networks and uses
simulated data from radiative transfer models [9,10] to train the neural network. NOAA initiated a
program called the Global Vegetation Processing System (GVPS), which has produced a data product
known as the global vegetation fraction (GVF). The dataset covers over 30 years of observation term
and used the Normalized Difference Vegetation Index (NDVI) [11] to estimate the FVC. Several
other programs have been initiated more recently, including the compilation of the dataset called
fCover from ENVISAT-MERIS, which uses a neural network with a radiative transfer model with
eleven spectral bands [12]; the FVC products determined using Variable Multiple Endmember Spectral
Mixture Analysis (VESMA) of data from a geostational satellite; MSG-SEVIRI [13], and the Vegetation
Continuous Field (VCF) from MODIS [14] based on a regression tree algorithm.

Table 1. Summary of the major FVC-equivalent products.

CYCLOPS TOAVEG LSA SAF GVPS GLCF
Source : CNES, etc ESA EUMETSAT NOAA UMD

Product : fCover [8] fCover [12] FVC [13] GVF [11] VCF [14]
Sensor : VEGETATION MERIS SEVIRI AVHRR MODIS
Period : 1998– 2002– 2005– 1981– 2000–2001

Resolution : 1 km 300 m 3 km 1.1 km 500 m
Scale : Global Global Europe and Africa Global Global

Long-term observations of biophysical quantities spanning several decades generally require
integrated use of an ensemble of satellite sensors [15]. Such efforts have been widely applied in
numerous studies involving land remote sensing applications [16–21]. Discrepancies between the
characteristics of the data sets, such as the spectral band configuration or the spatial resolution, however,
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introduce systematic biases into the parameter retrievals. These discrepancies can decrease the accuracy
of the land observations as well as the predictions based on the datasets; thus, the effects of such
discrepancies must be investigated thoroughly to identify mechanisms for rectifying the discrepancies.
This study contributes to an improved understanding of the effects of spatial resolution discrepancies on
the calculated area-averaged FVC values [22].

Conceptual approaches and measurement models related to the scale issues have been introduced by
Strahler et al. [23] and Woodstock and Strahler [24] in the context of remote sensing. Comprehensive
and intensive reviews on the scale issues and related problems have been provided by several
researchers [23,25–30]. Although various types of problems have been investigated by numerous
studies, monotonic behavior has not been fully analyzed. This work shed light on the monotonic
aspects of the FVC retrieval algorithm within a framework of the modifiable area unit problem [31]
originated from the field of spatial analysis, which was later introduced to the remote sensing
community [25,26,28,29].

Scaling effects have been investigated extensively in the context of biophysical parameter retrievals,
such as calculations of the vegetation index [32–35] leaf area index (LAI) [36–38] and FVC [22].
Several studies have attempted to derive an analytical expression for the differences between the
area-averaged NDVI values at two extreme resolutions [33,35,39], the coarsest and finest resolution,
called the lumped and distributed cases [34]. These investigations reported that an NDVI value can never
reach its maximum or minimum values at an intermediate resolution between the two extreme cases.
Our previous studies [40,41] showed that the area-averaged values of the NDVI reach maximum and
minimum values at the two extreme resolutions under certain conditions. A proof was provided based
on the monotonic behavior of the scaling effects. One question arose in the case of FVC calculations:
Do the area-averaged FVC values change monotonically with the spatial resolution, similar to the case
of the NDVI? The present study attempts to answer this question.

Spectral unmixing under NDVI constraints (the NDVI-isoline-based LMM) has been used to estimate
FVC values. The technique has the advantages of both the VI and LMM approaches [35,42,43]. The
retrieved FVC values may be degraded by scaling effects [22] because the NDVI (used in the algorithm)
suffers from such effects. The sources of the scaling effects in the FVC and their monotonic behavior
were previously investigated analytically [44]. Although that study analyzed several fundamental
properties of the FVC scaling effects, a geometrical interpretation of the monotonic behavior and a
thorough investigation of the key parameters that significantly influenced the error bounds were not
performed. The present study investigates the FVC changes as a function of the spatial resolution, which
corresponds to the number of pixels within a fixed area, as an extension of our previous study [41]. The
analysis of the FVC scaling effects is based on the resolution transform model proposed in our previous
work [41] that is about the scaling effects in the NDVI. In that work we have shown that the NDVI varies
monotonically as a function of spatial resolution in a certain resolution sequence. As an extension of the
work, we focus on the scale issues in the FVC that uses NDVI in the retrieval algorithm. Although the
FVC retrieval algorithm discussed in this study uses NDVI as a parameter, there is no guarantee that the
FVC varies monotonically as the NDVI does. This study addresses this issue.

The structure of this work is as follows. After the brief explanation of theoretical background,
we clarify the monotonicity of scaling effects in FVC (Section 3). We then explain a geometric
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relationship between the monotonic trend and endmember spectra by numerical experiments using
simulated endmember spectra in Section 4, followed by a validation exercise in Section 5. Derivation of
the maximum error bounds of the scaling effects and numerical simulation will be explained in Section 6.
The discussion and conclusion sections (Sections 7 and 8, respectively) follow.

2. Background

2.1. NDVI-Isoline-Based LMM

A reflectance spectrum from a target pixel may be represented as a linear sum of the spectra
corresponding to a set of representative surface types (endmember spectra) in a LMM. We assume here
that a target field consists of vegetation and non-vegetation classes. Red and near-infrared (NIR) bands
are considered. Under these assumptions, a modeled spectrum, ρ̂ρρ = (ρ̂r, ρ̂n) (where the subscripts r and
n indicate red and NIR spectra, respectively), may be written as

ρ̂ρρ = ω̂ρ̂ρρv + (1 − ω̂)ρ̂ρρs, (1)

where ρ̂ρρv = (ρ̂v,r, ρ̂v,n) and ρ̂ρρs = (ρ̂s,r, ρ̂s,n) are vegetation and non-vegetation endmember spectra in
the model (the subscripts v and s indicate the vegetation and soil components, that is, non-vegetation
land areas, respectively). The weight of a vegetation endmember, ω̂, represents the FVC in the LMM.
A unity constraint is imposed in Equation (1). To retrieve the FVC, in general, ω̂ may be determined
by minimizing a distance measure (e.g., the Euclidean norm) between the modeled spectrum and the
measured spectrum [3]. The condition that determines the FVC then permits the vegetation index to be
substituted for the reflectance spectrum. The choice of NDVI for defining the condition is known as the
NDVI-isoline-based LMM [42,45]. The estimated value of the FVC may be expressed analytically by
solving for ω̂ after equating a modeled and a target NDVI

ω̂ =
v − v̂s

(1 − η̂)(v − v̂v) + v̂v − v̂s

, (2)

where v is the NDVI from the target spectrum (ρρρ = (ρr, ρn)). The variables v̂v and v̂s are the NDVI from
the vegetation and non-vegetation endmember spectra in the model, respectively. The variable η̂ is the
ratio of the L-1 norm of the vegetation endmember to the non-vegetation endmember.

v =
ρn − ρr

ρn + ρr

, (3a)

v̂v =
ρ̂v,n − ρ̂v,r

ρ̂v,n + ρ̂v,r

, (3b)

v̂s =
ρ̂s,n − ρ̂s,r

ρ̂s,n + ρ̂s,r

, (3c)

η̂ =
ρ̂v,n + ρ̂v,r

ρ̂s,n + ρ̂s,r

. (3d)

Under the two-endmember assumption, if an endmember spectra assumed in a model rigorously
corresponds to the true endmember spectra over a target field, the spatially averaged FVC will be
independent of the spatial resolution (the averaged FVC values must be true values) [44]; however,
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accurately estimating the endmember spectra based on satellite data is difficult due to the surface
heterogeneity or the existence of multiple endmember spectra within a pixel [45–48]. Therefore, the
FVC values calculated using this algorithm are biased by the differences between the modeled and true
endmember spectra. In this case, the FVC retrieval algorithm becomes a nonlinear function of the input
spectra, and this nonlinearity is a source of scaling effects.

The analytical form of the biased FVC under the two-endmember assumption (the target field is
modeled under the same assumption) can be derived according to the following steps. First, we
assume that a measured spectrum, ρρρ, can be expressed as a combination of true endmember spectra
(ρρρv = (ρv,r, ρv,n) and ρρρs = (ρs,r, ρs,n)) with a true FVC value ω given by

ρρρ = ωρρρv + (1 − ω)ρρρs. (4)

We then rewrite the FVC estimate given in Equation (2) using Equation (4) as the target spectrum,

ω̂ =
ω · det(∆ρρρ, ρ̂ρρs) + det(ρρρs, ρ̂ρρs)

ω · det(∆ρ̂ρρ, ∆ρρρs) + det(∆ρ̂ρρ,ρρρs)
, (5)

where

∆ρρρ = ρρρv − ρρρs, (6a)

∆ρ̂ρρ = ρ̂ρρv − ρ̂ρρs. (6b)

2.2. Scaling Effects of the FVC on the Landsat7-ETM+

Scaling effects in the calculation of an area-averaged FVC can be seen in the data from
Landsat7-ETM+. In order to clearly show the scaling effects, we conducted the following experiment
using the data acquired on 7 July 2001 (Path:109, Row:36), which covers both urban and suburban
regions in the Aichi prefecture in Japan. The spectral data of the size of 64 × 64 pixels (extracted
from the original scene) was used in this experiment (Figure 1(a)). The spectral data was aggregated
using an average-based moving block window into a data set comprising images at multiple resolutions
(2i × 2i (i = 0, 1, · · · , 5)), as shown in Figure 2. The vegetation endmember spectra assumed in
the algorithm was (0.05, 0.35). The effects of the endmember spectra on the scaling effects were
demonstrated by assuming either of two non-vegetation spectra, (0.12, 0.14) and (0.18, 0.22), denoted as
the “soil endmem.-1” and “soil endmem.-2”, respectively. The reflectance spectra of the target area and
endmember spectra assumed in the model are plotted in Figure 1(b). The vegetation spectrum is denoted
by the green circle, whereas the soil endmem.-1 and -2 spectra are denoted by the dark and light brown
circles, respectively.

The averaged FVC values (ω̂j) were computed as a function of the spatial resolution, which
corresponds to the number of pixels within a fixed area (j). The scaling effects in the averaged FVC,
calculated as the relative differences between the ω̂j and ω̂1, were computed according to

δω =
ω̂j − ω̂1

ω̂1

. (7)

The relative differences obtained from the pair of spectra comprising the vegetation and soil endmem.-1
are indicated by the filled circles in Figure 3. The averaged FVC values as a function of the spatial
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resolution, for the soil endmem.-2, are indicated by the filled squares (Figure 3). Using the pair of
vegetation and soil endmem.-1 spectra, the averaged FVC increased as a function of the number of
pixels (coarser to finer). By contrast, the averaged FVC decreased when the spectral pair comprising the
vegetation and soil endmem.-2 spectra was assumed in the algorithm. The results clearly indicate that the
magnitude and trends (increasing or decreasing) of the scaling effects depend heavily on the endmember
spectra assumed in the model. The scaling effects also depend on the endmember spectra reflected from
the target area. The mechanism underlying the scaling effects observed in the calculated FVC has not
been previously elucidated. The present study aims to address this very issue.

Figure 1. (a) A false-color image of a target field used to simulate the scaling effects in
an area-averaged FVC calculation; (b) the reflectance spectra of the field and endmember
spectra assumed in the model. One vegetation endmember spectrum assumed in the
algorithm was (0.05, 0.35), denoted by a green circle. Two non-vegetation spectra were
assumed: (0.12, 0.14) and (0.18, 0.22), that is, “soil endmem.-1” and “soil endmem.-2”,
indicated by the dark and light brown circles, respectively.
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Figure 2. False-color images of the spectral data at several resolution levels used to simulate
the scaling effect in the calculation of an averaged FVC.
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Figure 3. Scaling effects of area-averaged FVC, calculated based on the NDVI-isoline-based
LMM as a function of the spatial resolution, using two pairs of endmember spectra. The
averaged FVC derived using the vegetation endmember and the soil endmem.-1 spectra is
indicated by the filled circles. The averaged FVC derived using the vegetation endmember
and soil endmem.-2 spectra is indicated by the filled squares. Increasing and decreasing
trends in the averaged FVC depend on the choice of endmember spectra assumed in the
model. (The trend also depends on the endmember spectra present over the target fields).
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2.3. Resolution Transformation Model

The FVC estimate, ω̂, presented in Equation (5), incurs bias errors if ρ̂ρρv ̸= ρρρv or ρ̂ρρs ̸= ρρρs. These
discrepancies are the source of the scaling effects. To analyze the scaling effects of ω̂ and the monotonic
behavior of the scaling effects as a function of the spatial resolution, we introduced the resolution
transformation rule described in our previous work [41]. Resolution transformations are conducted
according to a simple rule for pixel partitioning that interconnects the area-averaged values of biophysical
parameters at different spatial resolutions. A variable α in the model represents the fraction of a pixel
remaining after the partitioning process. The definition of the model is described in detail in [41].

The reflectance spectrum for a pixel k at the j-th resolution level can be expressed as ρρρj,k. Under the
two-endmember assumption, the spectrum can also be expressed as the FVC (true value) for pixel k at
the j-th resolution, ωj,k, with endmember spectra for the target field (ρρρv and ρρρs) given by

ρρρj,k = ωj,kρρρv + (1 − ωj,k)ρρρs. (8)

The estimated FVC for the k-th pixel at the j-th resolution, ω̂j,k, can be expressed as

ω̂j,k =
ωj,k · det(∆ρρρ, ρ̂ρρs) + det(ρρρs, ρ̂ρρs)

ωj,k · det(∆ρ̂ρρ, ∆ρρρs) + det(∆ρ̂ρρ,ρρρs)
. (9)
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The area-averaged FVC values estimated using the algorithm for the j-th resolution level become

ω̂j =
1

j

j∑
k=1

ω̂j,k. (10)

Note that the areas of all pixels are equal in an above equation. A set of appropriate weights should
be used for area averaging processes if the pixel size is not identical [41]. The variables assumed for
the partitioning and unmixing processes are described in Figure 4. In the figure, a target spectrum
derived from data at the 1st resolution level (ρρρ1,1) is expressed as a function of the endmember spectra
corresponding to the vegetation and non-vegetation coverage over a target field (ρρρv and ρρρs, respectively)
and the FVC over the target field (ω1,1). The FVC estimate at the 1st resolution level (ω̂1,1 = ω̂1) is
obtained by unmixing based on the spectrum ρρρ1,1 and the endmember spectra assumed in the model
(ρ̂ρρv and ρ̂ρρs). The resolution transformation is performed by partitioning the data at the first resolution
level into two sub-pixels. The partition ratios across the pixel pair are represented by α and (1 − α).
The target spectra in each pixel (ρρρ2,k) are functions of the FVC for the pixel (ω2,k) and the endmember
spectra (ρρρv and ρρρs). FVC estimates for each pixel at the second resolution level (ω̂2,k) can be obtained by
unmixing the target spectra ρρρ2,k based on the endmember spectra assumed in the model, ρ̂ρρv and ρ̂ρρs. The
area-averaged FVC for the second resolution level is a linear sum of ω̂2,1 and ω̂2,2 with weights α and
(1 − α).

Figure 4. Illustration of the variables, the partitioning process, and the unmixing process
used to implement a FVC estimate using the isoline-based LMM.
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Pertitioning (Resolution transfer)

Target field Estimated FVC

The averaged FVC estimate at the j-th resolution level can be expressed in terms of the sum of the
average FVC value at the (j − 1)-th resolution level and the factor ∆ω̂, according to

ω̂j = ω̂j−1 + ∆ω̂. (11)

By substituting 2 into j in Equation (11), ∆ω̂ can be transformed as follows:

∆ω̂ = ω̂2 − ω̂1 = αω̂2,1 + (1 − α)ω̂2,2 − ω̂1,1. (12)
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Recall that the transformation of the spatial resolution can be modeled by repeatedly applying this “unit”
resolution transformation from level 1 to 2. ∆ω̂ in Equation (12) thus becomes a key to analyzing the
monotonicity as a function of the spatial resolution. For instance, if the sign of ∆ω̂ is invariant under the
resolution transformation, the average FVC values certainly vary monotonically.

3. Monotonicity of the Area-Averaged FVC

The variable ∆ω̂ provides a basis for analyzing the monotonicity of the area-averaged FVC. ∆ω̂ is
a function of (1) the endmember spectra used in the model; (2) the target field (ρ̂ρρv, ρ̂ρρs, ρρρv, and ρρρs); and
(3) the parameters that vary for each partitioning event (during a resolution transform), such as the true
value of the FVC in the data at the second resolution level (ω2,k) or the partition ratio (α). We therefore
focus on the sign of ∆ω̂ and the dependence of the above variables on ∆ω̂.

3.1. Partial Derivative of ∆ω̂ with Respect to ω2,1

The sign and dependence of the inputs on ∆ω̂ were analyzed by deriving the partial derivative of ∆ω̂

with respect to the FVC for a 1st pixel in the 2nd resolution level, ω2,1, using Equation (12),

∂∆ω̂

∂ω2,1

= α
∂ω̂2,1

∂ω2,1

+ (1 − α)
∂ω̂2,2

∂ω2,1

, (13)

where ω̂1 is independent of ω2,1. The derivative terms on the right-hand side of Equation (13) can be
obtained by taking the derivative of ω̂2,k (for k = 1, 2) with respect to ω2,k,

∂ω̂2,k

∂ω2,k

=
β

(γω2,k + ϕ)2
, (14)

where β, γ, and ϕ are defined by

β = det(∆ρ̂ρρ, ρ̂ρρs) · det(∆ρρρ,ρρρs), (15a)

γ = det(∆ρ̂ρρ, ∆ρρρ), (15b)

ϕ = det(∆ρ̂ρρ,ρρρs). (15c)

The derivative of ω̂2,2 with respect to ω2,1 can be expressed as

∂ω̂2,2

∂ω2,1

=
∂ω̂2,2

∂ω2,2

∂ω2,2

∂ω2,1

. (16)

The variable ω1,1 can be expressed as

ω1,1 = αω2,1 + (1 − α)ω2,2. (17)

Therefore, ω2,2 can be written as

ω2,2 =
ω1,1 − αω2,1

1 − α
. (18)
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Accordingly, Equation (16) yields the following result (after some rearrangements),

∂ω̂2,2

∂ω2,1

=
−αβ

(1 − α)(γω2,2 + ϕ)2
. (19)

By setting k = 1 in Equation (14) and by substituting Equation (19) into Equation (13), the partial
derivative of ∆ω̂ with respect to ω2,1 can be obtained as

∂∆ω̂

∂ω2,1

=
αβ

U2
1 U2

2

(
U2

2 − U2
1

)
, (20)

where
Uk = γω2,k + ϕ. (21)

3.2. Analysis of ∂∆ω̂/∂ω2,1

The behavior of ∆ω̂ can be understood from an analysis of the changes in the sign of ∂∆ω̂/∂ω2,1. For
example, if ∂∆ω̂/∂ω2,1 changes from negative to positive, the sign of ∆ω̂ should be positive, regardless
of the parameters that determine the spatial characteristics, such as the true FVC, ω2,k, or the pixel
partition ratio, α. In this case, the sign depends only on the endmember spectra (ρ̂ρρv, ρ̂ρρs, ρρρv, and ρρρs).

First, the factor β in Equation (20) can be rearranged to give the following expression

β = ρr,vρr,sρ̂r,vρ̂r,s

(
ρn,v

ρr,v

− ρn,s

ρr,s

)(
ρ̂n,v

ρ̂r,v

− ρ̂n,s

ρ̂r,s

)
. (22)

Because the four ratios in the parentheses in Equation (22) are equal to the ratio vegetation index (RVI),
the two parentheses are inevitably both positive. Thus, Equation (22) is positive as well. The sign of
∂∆ω̂/∂ω2,1 depends only on the second factor in the right-hand side of Equation (20). The factor may
be formulated as h(ω2,1, ω2,2),

h(ω2,1, ω2,2) = U2
2 (ω2,2) − U2

1 (ω2,1)

= (γω2,2 + ϕ)2 − (γω2,1 + ϕ)2. (23)

If ω2,1 = ω2,2, the function h(ω2,1, ω2,2), ∂∆ω̂/∂ω2,1, and ∆ω̂ are equal to zero, then the FVC
is scale-invariant. Likewise, if γ = 0, the above function will be identical to 0, hence, a certain
relationship is guaranteed between the modeled and true endmember spectra, represented by the
following expression,

det(∆ρ̂ρρ, ∆ρρρ) = 0. (24)

Equation (24) indicates that a vector spanned by the assumed endmember spectra (∆ρ̂ρρ) necessarily
becomes parallel to the vector spanned by the true endmember spectra (∆ρρρ), as illustrated in
Figure 5. Empty and filled squares represent the true vegetation and non-vegetation endmember spectra,
respectively. Similarly, the circular symbols indicate the vegetation and non-vegetation endmember
spectra, respectively, assumed in the algorithm.

For ω2,1 ̸= ω2,2 and γ ̸= 0, however, the function h(ω2,1, ω2,2) is not equal to zero, and the sign of the
function depends on all variables. In this case, Equation (23) can be expressed as

h(ω2,1, ω2,2) = −2γ2(ω2,1 − ω2,2)

(
ω2,2 + ω2,1

2
+

1

ζ − 1

)
, (25)
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Figure 5. Illustration of the relationship between the vectors describing the true endmember
spectra and the assumed endmember spectra (∆ρρρ and ∆ρ̂ρρ) in the red–NIR reflectance space.
Empty and filled squares indicate the vegetation and non-vegetation endmember spectra
in the target field, and empty and filled circles indicate the assumed endmember spectra
in the LMM. When the two vectors are parallel, scaling effects are not observed in the
average FVC.
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where

ζ =
det(ρρρv, ∆ρ̂ρρ)

det(ρρρs, ∆ρ̂ρρ)
. (26)

A geometrical interpretation of the variable ζ is provided in Section 4. The factor ζ determines the
sign of h(ω2,1, ω2,2) as follows. The sign of h(ω2,1, ω2,2) can be readily determined once the following
information is known. The range of (ω2,1 + ω2,2)/2 (the last factor in Equation (25)) becomes

0 ≤ ω2,1 + ω2,2

2
≤ 1. (27)

Within this range, the sign of h(ω2,1, ω2,2), namely the sign of ∂∆ω̂/∂ω2,1, can be determined from ζ as
follows. If ζ > 1, the last parenthesis in Equation (25) will be positive. Then ∂∆ω̂/∂ω2,1 will vary from
positive to negative as a function of ω2,1.

If ζ > 1,
∂∆ω̂

∂ω2,1


> 0 (ω2,1 < ω2,2),

= 0 (ω2,1 = ω2,2),

< 0 (ω2,1 > ω2,2).

(28)

If 0 ≤ ζ < 1, the last parenthesis in Equation (25) will be negative, hence the sign of ∂∆ω̂/∂ω2,1 will
vary from negative to positive as follows.

If 0 ≤ ζ < 1,
∂∆ω̂

∂ω2,1


< 0 (ω2,1 < ω2,2),

= 0 (ω2,1 = ω2,2),

> 0 (ω2,1 > ω2,2).

(29)

The sign of ∂∆ω̂/∂ω2,1 for ζ < 0, however, does not change monotonically with ω2,1 because the sign
of the last factor in Equation (25) cannot be unique (dependent on ω2,1). Finally, if ζ = 1, which
corresponds to the case of γ = 0, the average FVC will be independent of the spatial resolution.
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3.3. Behavior of ∆ω̂

The sign and dependence of the input variables on ∆ω̂ can be summarized as

∆ω̂


≤ 0, (ζ > 1),

= 0, (ζ = 1),

≥ 0, (0 ≤ ζ < 1),

the sign is variable, (ζ < 0).

(30)

Consequently, the magnitude of the relationship between ω̂2 and ω̂1 can be written as

ω̂2


≤ ω̂1, (ζ > 1),

= ω̂1, (ζ = 1),

≥ ω̂1, (0 ≤ ζ < 1),

the relation is variable, (ζ < 0).

(31)

Note that if ζ is equal to or greater than zero, the relationship between ω̂2 and ω̂1 is independent of the
true value of the fractional abundances of the endmember spectra (ω2,k) or on the fractional areas by
which one pixel is divided into two (α). On one hand, the relationship depends only on the spectra of
the endmember components assumed in the algorithm and the true spectra of the target field (ρ̂ρρv, ρ̂ρρs, ρρρv,
and ρρρs).

3.4. Monotonicity of the Area-Averaged FVC

As derived in the previous subsection, the sign of the factor ∆ω̂ is invariant during any resolution
transform if the endmember spectra satisfy certain conditions (ζ ≥ 0). In other words, the relationship
between the FVC values before and after partitioning should be invariant under each step of the resolution
transform. The relationship results in monotonic changes in the average FVC for ζ ≥ 0 as a function
of the resolution transform sequence. Recall that the resolution transform sequence generated by the
repeated application of a simple partitioning rule is referred to as a “resolution class”. The findings
from the derivation presented in this section are summarized in the following theorems (under the
two-endmember assumption).

Theorem 1 Within a single resolution class, the area-averaged FVC values change monotonically as a
function of the spatial resolution if ζ ≥ 0.

When this is the case,

Theorem 2 The area-averaged FVC values follow a trend determined by ζ such that estimation of the
FVC is a non-increasing function if ζ > 1 or a non-decreasing function if 0 ≤ ζ < 1.

On the one hand, the average FVC values can change non-monotonically for ζ < 0 because the
relationship between the average FVC values at any two resolutions will vary.
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4. Geometrical Relationship between ζ and the Endmember Spectra over the Delta Reflectance
Space

The variable ζ may be interpreted geometrically as a factor that determines the monotonic behavior
within the scope of monotonicity (ζ ≥ 0). By applying Equation (26), we can derive equations that
comprehensively describe the relation between ζ and the endmember spectra as follows:

det(∆ρρρ, ∆ρ̂ρρ)


> 0 (ζ > 1),

= 0 (ζ = 1),

< 0 (ζ < 1).

(32)

where det(∆ρρρ, ∆ρ̂ρρ) represents the determinant of a matrix consisting of the vectors ∆ρρρ and ∆ρ̂ρρ. The
geometrical relationship is described over a delta-reflectance space in which the x-axis represents
the difference between the red reflectance of the vegetation and non-vegetation classes (delta-red
reflectance). The y-axis in this space represents the delta-NIR reflectance (Figure 6).

Figure 6. A geometrical interpretation of the variable ζ , the endmember spectra in the
model, ∆ρ̂ρρ (colored dashed arrows), and the target field, ∆ρρρ (a solid arrow). If ζ > 1, the
determinant, det(∆ρρρ, ∆ρ̂ρρ), becomes positive, indicating that the vector over the endmember
spectra to be estimated, ∆ρ̂ρρ, should be described in regions of the left-hand side of the vector
corresponding to the difference between the true vectors, ∆ρρρ (a solid vector), indicated in
blue. That is, ∆ρ̂ρρ may be expressed as a vector rotated counterclockwise relative to ∆ρρρ.
Similarly, if 0 ≤ ζ < 1, the determinant is less than unity and ∆ρ̂ρρ may be expressed as a
vector rotated clockwise relative to ∆ρρρ.
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If ζ > 1, then the determinant, det(∆ρρρ, ∆ρ̂ρρ) becomes positive, indicating that the vector expressed
over the basis of the endmember spectra to be estimated, ∆ρ̂ρρ, should be described in regions of the
left-hand side of the vector corresponding to the difference between the true vectors, ∆ρρρ (the solid
vector in Figure 6), indicated by a blue dashed vector over the delta-red and delta-NIR reflectance space.
In other words, ∆ρ̂ρρ may be expressed as a vector rotated counterclockwise from ∆ρρρ. Similarly, if ζ < 1,
the determinant is less than unity, and ∆ρ̂ρρ may be expressed as a vector rotated clockwise relative to ∆ρρρ,
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as illustrated by the red dashed line in Figure 6. Note that these interpretations fall within the limited
cases that display monotonicity in the averaged FVC (ζ ≥ 0).

Next, we present a set of numerical examples that demonstrate the relationship between the
monotonicity (ζ value) and the endmember spectra (including cases in which non-monotonicity (ζ < 0)
holds) over the delta-reflectance space. The factor ζ is explicitly a function of ρρρv and ρρρs and ∆ρ̂ρρ, given
by ρ̂ρρv and ρ̂ρρs. In this simulation, two vectors, ∆ρ̂ρρ and ∆ρρρ, were considered (in Equation (32)). ∆ρρρ

was held constant, and the vector ∆ρ̂ρρ was varied from 0 to 2π in 0.10 radian increments. The origins
of the two key vectors ∆ρρρ and ∆ρ̂ρρ have been shifted relative to the origin of the coordinate system
for comparison purpose. The lengths of these vectors were set to be equal to facilitate interpretation.
Note that the lengths do not affect monotonicity trend. An example of the results is shown in Figure 7.
The black arrows indicate ∆ρρρ and the gray arrows indicate ρρρv and ρρρs. The colored arrows indicate
∆ρ̂ρρ for the respective trends: green arrows correspond to the non-decreasing trends of the averaged
FVC (0 ≤ ζ < 1). Red arrows fall into the range of non-increasing (ζ > 1). Blue arrows indicate
the non-monotonic case (ζ < 0). In Figure 7, ∆ρρρ, denoted by the black arrow, is located just on the
boundary of two regions (indicated by the red and green arrows). Note that the boundaries between the
trends (indicated by the arrows of different colors) are determined by the three vectors, ∆ρρρ, ρρρv, and ρρρs,
which match the representation of Figure 6.

Figure 7. An example numerical demonstrations of the relationships between the
endmember spectra and the monotonic behavior of the area-averaged FVC. ∆ρ̂ρρ was varied
from 0 to 2π in 0.10 radian increments. The initial point and the length of the vectors were
assumed to be (0, 0) and 0.25, respectively. ∆ρρρ is indicated by black arrows, and the vector
defined by the assumed endmember spectra, ∆ρ̂ρρ, is indicated by the colored arrows. Gray
arrows indicate ρρρv and ρρρs. The vectors indicated in green correspond to non-decreasing
trends in the averaged FVC (0 ≤ ζ < 1). The red arrows indicate that ζ falls into the class
of non-increasing functions (ζ > 1). The blue arrows indicate non-monotonic case (ζ < 0).
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Figure 8. Results of numerical demonstration of the relationship between the endmember
spectra and the monotonic behavior of the area-averaged FVC. Nine vector variations
corresponding to different endmember spectra ∆ρρρ were considered, as listed in (a–i) in
Table 2. The vectors indicated in green correspond to non-decreasing trends in the averaged
FVC (0 ≤ ζ < 1). The red arrows indicate that ζ falls into the class of non-increasing
functions (ζ > 1). The blue arrows indicate non-monotonic case (ζ < 0). The results show
the influence of the changes in ∆ρρρ on the relation. Namely, angular ranges of each colored
vector (trends in averaged FVC along spatial resolution) vary with ∆ρρρ.
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Figure 8 shows the vector ∆ρρρ = (∆ρr, ∆ρn) in a vector chart for all nine cases of the endmember
spectra summarized in Table 2. The results show the influence of the change in ∆ρρρ on the relation.
The results show that the delta-reflectance ranges of the decreasing and increasing trends depended
significantly on the reflectances of the non-vegetation endmember. For instance, although no obvious
differences are observed among the results shown in Figure 8(a,d,g) for the different vegetation
endmember spectra assumed, the contribution of the non-decreasing (green arrows) components
increased with the red reflectance in the non-vegetation endmember, as shown in Figure 8(a–c). The
blue arrows corresponding to the non-monotonic behavior are situated between ρρρv and ρρρs, indicated by
the gray arrows (Figure 8). Non-monotonicity in the averaged FVC is rarely observed because the angle
∆ρ̂ρρ relative to the x-axis often exceeds that of ρρρv; however, if the non-vegetation endmember reflects
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extremely lower radiances (for example, in coastal and watershed regions) ∆ρ̂ρρ may fall among the blue
vectors, as shown in Figure 8(a,d,g). Even if ∆ρ̂ρρ points in the opposite direction (−∆ρ̂ρρ), the ζ value
is invariant under Equation (26). This property results in a point reflection of ∆ρ̂ρρ with respect to the
monotonicity, as shown in Figure 8.

Table 2. Endmember spectra in the red and NIR, corresponding to vegetation (ρv,r and ρv,n)
and non-vegetation (ρs,r and ρs,n) coverage, and the differences between the endmember
reflectances of each band (∆ρr and ∆ρn) used in the numerical demonstration.

(a) (b) (c) (d) (e) (f) (g) (h) (i)
ρv,r 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.05 0.05
ρv,n 0.24 0.24 0.24 0.32 0.32 0.32 0.4 0.4 0.4
ρs,r 0.05 0.15 0.30 0.05 0.15 0.30 0.05 0.15 0.30
ρs,n 0.06 0.18 0.36 0.06 0.18 0.36 0.06 0.18 0.36
∆ρr –0.02 –0.12 –0.27 –0.01 –0.11 –0.26 0 –0.10 –0.25
∆ρn 0.18 0.06 –0.12 0.26 0.14 –0.04 0.34 0.22 0.04

5. Validation of the Analytical Implications

In this section, we introduce a set of numerical experiments in an effort to validate the results derived
here in a practical application. Equation (31) implies an important fact, that the FVC values produced
under a resolution transformation do not display variations for ζ = 1. This result implies that the
endmember spectra assumed in the algorithm provide FVC values that are less sensitive to scaling
effects. In the section below, the numerical experiments are explained to provide evidence for a practical
demonstration that demonstrates the utility of our analysis.

The major difficulties associated with this validation lie in the difficulty of estimating ζ using actual
satellite data. ζ is a function of the “true” endmember spectra for both vegetation and non-vegetation
surfaces, and a rigorous estimation/determination of these endmember spectra is generally impossible.
Therefore, we circumvent this difficulty by effectively varying the value of ζ according to the following
procedure.

The satellite data presented in Figure 1 were used to simulate the FVC values at various spatial
resolution levels (for a total of seven resolution cases). In this experiment, we processed the data using
different pairs of assumed endmember spectra. The non-vegetation endmember spectra (ρ̂ρρs) were varied
as shown in Table 3, whereas the spectrum of the vegetation endmember was held fixed at (0.05, 0.35),
the spectrum presented in Figure 1. The variations on ρ̂ρρs were implemented to effectively introduce
variations in ζ . Note that the estimation of ζ is impossible because the “true” endmembers are unknown;
however, the variations in ρ̂ρρs most likely shift the value of ζ, as anticipated.

Figure 9 shows the scaling effects in the FVC values as a function of the endmember spectra assumed.
The figure clearly indicates that (1) the trend in the FVC values as a function of the spatial resolution
changes as the value of ζ changes (ζ depends on ρ̂ρρs in this experiment); and (2) FVC is less sensitive
to ζ for some pairs of endmember spectra, which agrees well with the implications of the results
derived above.



Remote Sens. 2012, 4 2172

Table 3. Red and NIR reflectances of the assumed non-vegetation endmember spectra in the
validation experiment.

Red reflectance 0.12 0.13 0.14 0.15 0.16 0.17 0.18
NIR reflectance 0.14 0.16 0.17 0.18 0.19 0.20 0.22

Figure 9. Scaling effects in the FVC, determined for various endmember spectra
corresponding to the non-vegetation surface (Table 3) assumed in the algorithm.
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6. Maximum Variations Induced by the Scaling Effects Observed in the Averaged FVC

6.1. Derivation of the Maximum Variations

The magnitude of the scaling effects depend on the true FVC value within a target area under a
fixed pair of assumed endmember spectra. In this section, we focus on the maximum scaling effects
in the FVC as a function of the true FVC. The magnitude of the scaling effects is measured as the
difference between the two extreme resolutions (the lumped and distributed cases). This difference can
be considered to provide the bounds on the errors resulting from the scaling effects when the assumed
endmember spectra meet the conditions for monotonicity, as described in Theorem 1 (ζ ≥ 0).

The focus of this discussion is on the differences between the FVC values at the coarsest and finest
resolution. Note that the finest resolution corresponds to the case in which all pixels are composed
of only one type of surface. In this case, the spectrum of each pixel may be represented by a single
endmember spectrum (either vegetation or non-vegetation). Comparing the two extremes, the scaling
effects in the FVC may be defined by

∆ω̂1→f = ω̂1 − ω̂(f), (33)

where ω̂(f) is an area-averaged FVC value at the finest resolution (distributed case), with the subscript
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f indicating the “finest” resolution. ω̂(f) is defined by

ω̂(f) = ωω̂(v) + (1 − ω)ω̂(s), (34)

where ω̂(v) and ω̂(s) represent the FVC estimates for the vegetation and non-vegetation endmember
spectra, expressed by

ω̂(v) =
vv − v̂s

(1 − η̂)(vv − v̂v) + v̂v − v̂s

, (35)

ω̂(s) =
vs − v̂s

(1 − η̂)(vs − v̂v) + v̂v − v̂s

, (36)

with the definitions of

vv =
ρv,n − ρv,r

ρv,n + ρv,r

, (37)

vs =
ρs,n − ρs,r

ρs,n + ρs,r

. (38)

In order to derive the maximum of ∆ω̂1→f as a function of the true FVC, we consider a partial
derivative of ∆ω̂1→f with respect to ω, that is,

∂∆ω̂1→f

∂ω
=

∂ω̂1

∂ω
−

∂ω̂(f)

∂ω
. (39)

The first term of Equation (39) becomes

∂ω̂1

∂ω
=

det(∆ρ̂ρρ, ρ̂ρρs) det(∆ρρρ,ρρρs)

[det(∆ρ̂ρρ, ∆ρρρ)ω + det(∆ρ̂ρρs)]
2
. (40)

The second term of Equation (39) becomes

∂ω̂(f)

∂ω
=

vv − v̂s

(1 − η̂)(v − v̂v) + v̂v − v̂s

− vs − v̂s

(1 − η̂)(v − v̂v) + v̂v − v̂s

. (41)

∆ω̂1→f reaches a maximum when

∂∆ω̂1→f

∂ω
= 0. (42)

Solving the system of Equations (39), (40), (41), and (42) for ω yields

ω =
1

1 − ζ
± C

1 − ζ
, (43)

where

C =
1

det(ρρρs, ∆ρ̂ρρ)

√
det(ρ̂ρρs, ∆ρ̂ρρ) det(ρρρs, ∆ρρρ)

ω̂v − ω̂s

, (44)

The coefficient C is always positive because all determinants in Equation (44) are positive, given that
the following four relationships hold; vv > vs, v̂v > v̂s, v̂v > vs, and ω̂v > ω̂s. If ζ exceeds unity
in Equation (43), the two terms are negative, and the negative sign must be selected in Equation (43)
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by noting the range of FVC values, (0 ≤ ω ≤ 1). Similarly, if ζ is less than unity, the first term in
Equation (43) exceeds unity. As a result, the negative sign must be selected. In summary, the FVC value
(ωmax) that provides the maximum value of ∆ω̂1→f is

ωmax =
1 − C

1 − ζ
. (45)

The maximum of ∆ω̂1→f , denoted ∆ω̂1→f (ωmax), can be derived by substituting Equation (45) into
Equation (33), which implicitly includes ω as a parameter. The result is a ratio of quadratic forms in the
variable xxx =t(1 − ζ, 1 − C),

∆ω̂1→f (ωmax) =txxxAAAxxx/ txxxBBBxxx, (46)

where

AAA =

[
det(ρρρs, ρ̂ρρs) [det(∆ρρρ, ρ̂ρρs) − det(∆ρ̂ρρ,ρρρs)(ω̂(v) + ω̂(s))]/2

[det(∆ρρρ, ρ̂ρρs) − det(∆ρ̂ρρ,ρρρs)(ω̂(v) + ω̂(s))]/2 det(∆ρ̂ρρ, ∆ρρρ)(ω̂(v) + ω̂(s))

]
,

(47)

BBB =

[
det(∆ρ̂ρρ,ρρρs) det(∆ρ̂ρρ, ∆ρρρ)/2

det(∆ρ̂ρρ, ∆ρρρ)/2 0

]
. (48)

6.2. Numerical Validation

The results derived to express the maximum variations in FVC in terms of the scaling effects were
validated by numerical experiments. The variables ωmax and ∆ω̂1→f (ωmax) were computed for the set
of endmember spectra listed in Table 4. The non-vegetation endmember spectrum was varied along the
soil line. The slope and offset of the assumed soil line are 1.2 and 0.0, respectively. The red reflectance
was varied from 0.03 to 0.38 at intervals of 0.05 (total of eight cases).

Table 4. True endmember spectra for the vegetation (ρρρv) and non-vegetation (ρρρs) surfaces
(over a target field), and assumed endmember spectra for vegetation (ρ̂ρρv) and non-vegetation
(ρ̂ρρv) surfaces in the FVC retrieval algorithm during the numerical simulations.

ρρρv ρρρs ρ̂ρρv ρ̂ρρs

Red reflectance 0.05 0.10 0.05 0.03∼0.38 at 0.05 (8 cases)
NIR reflectance 0.40 0.12 0.36 NIR=1.2Red

Simulations were conducted according to the following steps. First, the values of ∆ω̂1→f (ω) were
computed by varying the true FVC from zero to unity for each of the eight cases involving soil
endmember spectra assumed in the retrieval algorithms. The scaling effects were then plotted as a
function of the true FVC value for the eight cases involving different soil endmembers. The results are
indicated by the eight distinct lines in Figure 10. In the second step, the variables ωmax and ∆ω̂1→f (ωmax)

were computed from Equations (45) and (46) separately based on the results from the previous step. The
computed pairs of ωmax and ∆ω̂1→f (ωmax) (denoted by the empty circles) were then plotted along with
the simulated results in the figure. The figure clearly shows the validity of the derived results (ωmax and
∆ω̂1→f (ωmax)).
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Figure 10. Numerical demonstration of ωmax and ∆ω̂1→f (ωmax). The values of ∆ω̂1→f

were computed over the domain of true FVC values (from zero to unity) using the eight
endmember sets listed in Table 4. The non-vegetation endmember spectrum was varied over
the red reflectance range from 0.03 to 0.38 in increments of 0.05, and the slope of the soil line
was assumed to be 1.2. The red reflectance in the non-vegetation endmember are identified
based on the colors and lines. The variables ωmax and ∆ω̂1→f (ωmax) are plotted over the
results and are denoted by empty circles.
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7. Discussion

Previous studies of the scaling effects attempted to derive appropriate error bounds and to develop
algorithms for correcting scaling effects [33,39,49–51]. In this sense, the motivation and objectives of
the present study are somewhat similar to previous studies; however, the framework of the analysis
presented here differ substantially from the previous studies, which focused on the uncertainties
associated with parameter retrieval at the two extreme resolutions (finest and coarsest) due to variations
in the spectral measurements at each point within a pixel. The pixel-scale reflectance was held constant
at all resolutions. In their work, the endmember spectral ranges (spectral variations) were parameters
that eventually determined the error bounds based on the characteristics of the function (e.g., convex
or concave) [39]. By contrast, both the spectral and spatial contributions to the scaling effects were
investigated in this study. By parameterizing both contributions for a given set of spectral and spatial
variables, the monotonicity of the FVC could be determined, leading to a discussion of the error bounds.
Note that the resolution transformation model introduced in our previous study enabled us to perform an
analysis over the entire set of resolution cases.

This study was conducted as an extension of our previous work, in which we analyzed the scaling
effects in the calculation of area-averaged NDVI (the monotonicity of the NDVI) [41]. If the averaged
FVC shifts monotonically within a given resolution class (ζ equals to or exceeds zero), the FVC values at
either extreme resolution (the coarsest and finest resolution levels) are either the maximum or minimum
values. The reasoning behind this conclusion is as follows: the extreme resolutions belong to the same
resolution class, and any resolution case certainly belongs to at least one of the resolution classes;
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therefore, the FVC values strictly specify the error bounds on the scaling effects in an FVC estimate
caused by changes in the spatial resolution.

In light of the findings associated with the error bounds discussed above, we further derived the
maximum difference between FVC values at the two extreme resolution levels as a function of a true
FVC value for a fixed set of true and assumed endmember spectra. We derived the expression for the
maximum difference as a function of both the “true” endmember spectra and the “assumed” spectra in
the algorithm.

The scope of practical applications that lend themselves to the findings of this study is limited due
to the difficulties associated with accurately estimating the “true” endmember spectra in a target area.
Nevertheless, the estimations of the error bounds in FVC calculations are only one type of application;
any technique may be used to measure the ranges over which the true endmember spectra vary across
the red–NIR reflectance space. Such approaches can lead to uncertainty in the estimates of the averaged
FVC values across spectral data collected at multiple resolutions. One often encounters this type of
application in the context of long-term observations of biophysical variables by multiple sensors, where
the inter-sensor calibration between sensors of two different resolutions plays an important role. Further
studies are needed to explore this possibility.

8. Conclusions

This work investigated the mechanism underlying the scaling effects in an fraction of vegetation cover
(FVC) retrieval algorithm using an NDVI-isoline-based linear mixture model (LMM) in an extension
of our previous analysis (which treated the scaling effects on NDVI). The analysis was performed by
focusing on the monotonicity of area-averaged FVC calculations as a function of the spatial resolution.
The assumption of a two-endmember LMM facilitated the analytical treatment, which was found to
be consistent with our previous investigations of NDVI scaling effects. Interestingly, the monotonic
behavior of the FVC was somewhat different from that observed in NDVI calculations, even though the
FVC algorithm used NDVI as a condition. The NDVI changes monotonically within a resolution class
under the two-endmember LMM, whereas the FVC computed by the NDVI-isoline-based LMM does not
necessarily change monotonically. This non-monotonic behavior occurs when the endmember spectra
satisfies a certain condition. In other words, the NDVI and FVC may behave differently regarding their
monotonic aspect, which is one of the findings of this study.

The condition of monotonicity was determined by the factor ζ , which is a function of the “true”
vegetation and non-vegetation endmember spectra over a target field and the endmember spectra
“assumed” in the algorithm. Remarkably, this factor was independent of the true value of the FVC
over a target field. It means that distribution and fraction of the endmember components do not affect the
monotonic behavior. This clearly suggests that the monotonicity was determined only by the two sets
of endmember spectra. If ζ ≥ 0, then the average FVC varied monotonically with the spatial resolution
within a resolution class (generated by repeated application of a simple partitioning rule). In contrast,
the average FVC varied non-monotonically for ζ < 0.

If FVC varies monotonically (ζ ≥ 0), the error bounds on the FVC due to the scaling effects may
be determined from the FVC values at the extreme resolution levels for a target field consisting of two
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endmembers (vegetation and non-vegetation). In contrast, if the FVC varies non-monotonically (ζ < 0),
it becomes difficult to determine the error bounds because it is not possible to identify the positions
of the maximum and minimum values during the resolution transformation. Further investigations will
be needed to address this issue. The maximum scaling effects in an averaged FVC calculation (the
difference between the FVC values at the extreme resolution levels), along with the actual FVC values,
are then derived. These values were also found to be a function of the endmember spectra assumed in
the model and over the target area.

The mechanism underlying the scaling effects observed in FVC calculations was analyzed in terms
of the function monotonicity and the error bounds. The treatment developed here provides a theoretical
basis for the scaling effects, which is strength of this work. The findings of this study can contribute to
development of a scale-invariant algorithm for FVC retrieval under scenarios in which multiple datasets
collected at different spatial resolutions are integrated in a single analysis.

Since the analyses have been performed based on two-endmember linear mixture model, the number
of endmember spectra might be the major limitations of this work. For instance, increase of the number
of endmember spectra would cause differences in the monotonic behavior to some extent. This point still
remains unclear from this work, which should be solely investigated in the future. In addition, further
validations of the findings with actual satellite data will also be needed as future efforts.
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