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Abstract: Vegetation mapping based on niche theory has proven useful in understanding the 

rules governing species assembly at various spatial scales. Remote-sensing derived 

distribution maps depicting occurrences of target species are frequently based on 

biophysical and biochemical properties of species. However, environmental conditions, 

such as climatic variables, also affect spectral signals simultaneously. Further, climatic 

variables are the major drivers of species distribution at macroscales. Therefore, the 

objective of this study is to determine if species distribution can be modeled using an 

indirect link to climate and remote sensing data (MODIS NDVI time series). We used 

plant occurrence data in the US states of North Carolina and South Carolina and 19 

climatic variables to generate floristic and climatic gradients using principal component 

analysis, then we further modeled the correlations between floristic gradients and NDVI 

using Partial Least Square regression. We found strong statistical relationship between 

species distribution and NDVI time series in a region where clear floristic and climatic 

gradients exist. If this precondition is given, the use of niche-based proxies may be suitable 

for predictive modeling of species distributions at regional scales. This indirect estimation 

of vegetation patterns may be a viable alternative to mapping approaches using  

biochemistry-driven spectral signature of species. 
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1. Introduction  

Remote-sensing approaches for mapping individual species or plant assemblages frequently rely on 

the biochemistry of the target species/assemblage [1ï3]. Together with biophysical properties, plant 

biochemistry is directly responsible for the spectral signature of vegetation. For vegetation mapping, 

this relationship is inverted and the spectral signal is used to draw conclusions of the presence of a 

species or assemblage (see Figure 1(a)). A unique biochemistry of species along with phenological and 

structural characteristics may enable a discrimination of vegetation, but is inevitable for a reliable 

mapping result. Problems may arise if different species feature a similar spectral response, which is 

a common phenomenon in remote sensing [4,5]. A unique biochemistry and spectral signal is 

considered neither in the biological definition of a species, nor in the ecological classification of plant 

assemblages [6]. Further, species-specific biochemistry and spectral signal show a large spatio-temporal 

variation due to site conditions and other external influences [4]. This hampers a direct inversion of the 

relationship towards a quantification of the floristic composition and makes the direct mapping or 

classification of vegetation with remote-sensing approaches very challenging. However, mapping and 

modeling species distribution using remote sensors is still desirable. In particular at global and regional 

scales, where ground-based mapping is inefficient, remote sensing may be a practical alternative 

approach for vegetation mapping. 

Figure 1. Direct (a) vs. indirect (b) relationships between floristic composition and 

spectral responses of vegetation stands. 
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Environmental conditions, such as climate, also affect the biophysical and biochemical properties of 

species and hence influence their spectral signal [4,7]. Environmental conditions, especially temperature 

and precipitation, are further major determinants of species distribution at macroscales [8,9]. Indirect 

causal relationships between species distribution/occurrences derived from the spectral response of the 

environmental conditions, which define the ecological niche of the species, may hence be promising 

(Figure 1(b)). This is because the spectral signal is a direct reflection of environmental properties, thus 

representing a powerful proxy for floristic composition in species distribution mapping and modeling. 

Therefore, we address in this paper the question whether we are able to model the floristic 

composition based on the ecological requirements of plant species and the spectral response to the 

corresponding environmental conditions. Our goal is to integrate environmental factors/climatic 

variables, floristic composition, and spectral information into a causal framework which has not been 

investigated before. We expect that the outcome of this study might have significant implications to 

remote sensing of floristic vegetation patterns. 

The fundamental range of tolerance of a species, which is a result of limiting factors of the 

environment, is a critical determinant of the resultant distribution pattern [10ï13]. Limiting factors are 

typically related to climate properties, such as temperature and water availability, at a broad geographical 

scale. At a finer scale, resource factors/gradients, including nutrients, amount of light energy for 

plants, food for animals, and moisture level, driven by topographical variations and habitat types, are 

the main driving forces for shaping the patterns of species distribution. Additionally, natural and 

anthropogenic disturbances affect species distribution at various spatial scales.  

From a theoretical point of view, species distribution at difference spatial scales closely ties to the 

fundamental and realized niche concepts proposed by Hutchinson [14]. According to him, the 

fundamental niche refers to abiotic conditions in which a species can persist and maintain a stable 

population, whereas the realized niche describes the environmental conditions in which a species is 

able to survive and reproduce in the presence of biotic interactions, such as competition, predation, and 

symbiosis. The focal part of both niche concepts suggests that ecological niches function as an 

ecophysiological constraint on species distribution. It is expected that individuals living under the 

conditions outside the niche will not be able to maintain a stable population under selection pressure, 

thus a decline in population size can become real and inevitable.  

It is fairly common in ecological studies that direct or indirect relations between measurable and 

nearly unmeasurable variables are contemplated for seeking causal driving factors for species 

distribution and abundance. For instance, ecological variables based on field sampling are necessary 

inputs for niche models. However, many of these variables are impossible to measure in reality. To 

overcome this problem, ecologists usually rely on information derived from available maps, such as 

digital elevation models to obtain topographical variables to develop predictive models for species 

occurrence [15,16]. Climatic data are also collected or interpolated from climate stations for a large 

spatial scale modeling such as the bioclimatic envelope models [17ï19]. Similarly, remotely-sensed 

reflectance data are also employed as a good proxy for floristic composition/pattern recognition in 

vegetation studies [20ï21]. However, remote sensing data have not been used frequently in species 

distribution modeling, even though they can provide greater coverage in space and time. 

More recently, there is an increasing trend in using remote sensing information based, e.g., on 

various spectral indices recorded from airborne or space-borne sensors as predictor variables in species 
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distribution modeling [22ï26]. A few studies have shown that niche models developed by 

incorporating remotely-sensed predictors are more robust; in particular, these data can improve the 

prediction accuracy and tend to refine mapped distribution of species and habitats, compared with 

climatic/topographical variables-only models [27ï29]. Remotely-sensed indices, such as NDVI, may 

hence provide the opportunity to complement or improve niche models based on climate data alone. 

This is even more evident considering the fact that many climatic variables are the results of 

interpolation from potentially sparse weather stations and derived from different statistical 

approaches [30]. Therefore, in this paper, we attempt to model the floristic composition of vegetation 

using an indirect link to climate and remote sensing data and we further contemplate the causal 

linkages between climate, phenology detected by remote sensors, and floristic gradients expressed by 

principal components.  

2. Material and Methods 

2.1. Study Area 

We chose the two states of North Carolina and South Carolina in the United States as our entire 

study area, due to the enormous ecological and biological diversity in the region. The two states 

contain a wide range of land cover types, including coastal lowlands, large river floodplain forests, 

rolling plains and plateaus, and forested mountains. There are four EPA level III ecoregions 

(http://www.epa.gov/wed/pages/ecoregions/level_iii.htm#Ecoregions) in the area including Piedmont 

(55 counties), a part of temperate hardwood forests found in the eastern North America; Middle 

Atlantic Coastal Plain (35 counties), containing mostly swamps and salt marshes; Southeastern Plains 

(35 counties), a mosaic of forest woodland and pasture/cropland; and Blue Ridge (20 counties), 

including Appalachian oak forests, northern hardwood forests and spruce-fir forests. Detailed 

ecoregion maps including all counties in the two states can be found in He et al. [21]. 

2.2. Floristic Data 

The floristic composition of the vegetation in North and South Carolina was extracted on a county 

base from the USDA plant database (http://plants.usda.gov/java/). The database listed 3,151 species 

with an occurrence in at least one county. No data were available for the Alamance County in North 

Carolina. This county was hence excluded from all analyses, reducing the data set to a total of 145 

counties. The compiled floristic data consisted of binary records of species presences and absences. No 

information on species cover fractions, dominances, or abundances was given in this dataset. The 

spectral signal of vegetation assemblages is dependent on species cover fractions as reflectance 

captured by remote sensors. A very weak direct relation between these binary floristic data and the 

actual spectral signal of the assemblages was hence expected. 

2.3. Bioclimate Variables 

At this regional scale, we assumed that climate is a major determinant of floristic patterns in North 

Carolina and South Carolina. We hence extracted 19 bioclimatic variables for each county from the 

BIOCLIM dataset (http://www.worldclim.org/) (Table 1). These 19 bioclimatic variables were 
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obtained from more than 4,000 weather stations between 1950 and 2000 [30]. The spatial resolution of 

the bioclimate data was 30 arc-seconds (~1 km) and we calculated the means of each variable for  

each county. 

Table 1. Bioclimatic variables used to describe the climatic variation across counties in the 

two states of North Carolina and South Carolina. 

Variable Description Unit  

Tma Annual mean temperature °C  

DRm Mean diurnal temperature range (mean of monthly (max temp - min temp)) °C  

TS Temperature Seasonality (standard deviation of temperatures) °C  

Tmaxwm Maximum temperature of the warmest month °C  

Tmincm Minimum temperature of the coldest month °C  

TRa Temperature annual range (Tmaxwm ī Tmincm) °C  

I Isothermality (DRm/TRa) - 

Tmwtq Mean temperature of wettest quarter °C  

Tmdq Mean temperature of driest quarter ° C  

Tmwq Mean temperature of warmest quarter ° C  

Tmcq Mean temperature of coldest quarter ° C  

Pa Annual precipitation mm 

Pwtm Precipitation of the wettest month mm 

Pdm Precipitation of the driest month mm 

PS Precipitation seasonality (coefficient of variation) mmī1 

Pwtq Precipitation of the wettest quarter mm 

Pdq Precipitation of the driest quarter mm 

Pwm Precipitation of the warmest quarter mm 

Pcq Precipitation of the coldest quarter mm 

2.4. MODIS-NDVI Time Series 

Reflectance-derived vegetation indices have been widely used among ecologists to study 

compositional changes of vegetation under the changing climate at a large spatial scale. One of the 

most commonly used indices is the Normalized Difference Vegetation Index (NDVI), stating a ratio 

between red and near-infrared reflectance captured by satellite sensors [31,32]. NDVI metrics have 

been successfully used to estimate biomass and net primary productivity [33], because NDVI values 

are associated with the photosynthetically-active radiation of plant canopies [31,32,34].  

The MODIS (Moderate-resolution Imaging Spectroradiometer) NDVI data used in this study have a 

spatial resolution of 250 meters and temporal resolution of 16 days. There are 23 time points for a 

whole year. We downloaded the 23 NDVI images for the year 2005 (http://glcf.umiacs.umd.edu/ 

data/ndvi). For areas covered by vegetation, the NDVI is strongly related to the phenological 
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development and hence to the climatic conditions. The NDVI-values of each date were averaged to 

county-based values that were used for the subsequent analyses. 

2.4. Statistical Analyses 

We subjected the floristic data to a principal component analysis (PCA) to reduce its dimensionality. 

Binary records of speciesô presence and absence (1 or 0) for each county were used as the original 

dataset for PCA. The resulting principal components (i.e., floristic gradients) comprise hierarchically 

large parts of the information content of the original data. The countiesô scores on the main principal 

components are a quantitative and continuous measure of the changing floristic composition according to 

Gleasonôs continuum concept [35,36]. Counties with a similar floristic inventory feature similar scores 

on the floristic gradients, while dissimilar species show larger inter-distances in the PCA-space. We used 

the spatial distribution of PC-scores as the basis for all subsequent analyses. 

The 19 climatic parameters used in this study are highly inter-correlated. This inter-correlation 

hampers any interpretation and analysis. We hence used a PCA of the climate data to eliminate the  

inter-correlation and to extract independent climatic gradients. Subsequently, we analyzed the loadings 

of the parameters on the PCs and identified for each PC a corresponding parameter to ease interpretation. 

These ómaster variables/descriptorsô were passed to the subsequent analyses. 

We assumed causal relations between both climate and floristic patterns, as well as between climate 

and NDVI. In order to test whether these assumptions correspond to statistically significant relations, two 

sets of correlation analyses were used. First, we tested for correlations between the climatic master 

variables and floristic composition as expressed by the floristic gradients extracted by PCA. These 

analyses were used to evaluate the assumption that the distribution of floristic vegetation patterns in 

North Carolina and South Carolina is dependent on climatic conditions. In a second set of analyses we 

tested for significant correlations between the climatic variables and the NDVI pattern on different dates. 

Finally, we tested the statistical relationship between the floristic gradients and the NDVI time series 

with regression analyses. To cope with the inter-correlation inherent to the NDVI data, we used Partial 

Least Squares regression (PLSR, [37]). This regression approach was originally developed in the field of 

chemometrics to analyze spectral data. It was subsequently adopted in remote sensing and has since then 

successfully been used in numerous studies targeting different vegetation properties (e.g., [6,38ï43]). 

PLSR is basically a multivariate regression, including so-called latent vectors (LVs) as independent 

variables. These LVs are statistically independent linear combinations of the original variables (i.e., 

the inter-correlated NDVI time series). Contrary to the PCs in PCA, the LVs are generated under 

simultaneous consideration of both independent and the dependent (i.e., the floristic gradients) 

variables. Therefore, the LVs are optimized towards the explanation of the response variable and the 

model parsimony can be increased [37]. Model validation took place by 10-fold cross-validation. For 

each floristic gradient we built multiple models that included step-wise increasing numbers of LVs. To 

reduce the possibility of over-fitting and to optimize the trade-off between model fit and model 

parsimony, we selected the model with the number of LVs resulting in the smallest root mean squared 

error in validation (RMSEval). A backward selection approach (following [44]) was used to further 

refine this model and to reduce the set of NDVI dates to the time steps showing a stable and significant 

relation to the floristic pattern. The residuals of the final model for each floristic gradient were 
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tested for spatial autocorrelation by calculating Moran's i for increasing distance classes between 

county centroids.  

Unfortunately, all data used in this study are on a per-county basis. Apart from being not 

ecologically meaningful, this basis is likely to affect the results of the study, since the area of the 

counties is unequal (ranging from 450 to 3,180 km
2
). The unequal area may in particular affect the 

number of observed species per county which generally grows with increasing area. To test if such an 

area effect exists, we plotted the species-area curve and formally tested the relation using the Mantel 

test. Resemblance matrices were generated using Euclidian distance for both county area and species 

richness per county as the input for the Mantel test. 

3. Results  

The PCA revealed three prominent floristic gradients in the vegetation data (Figure 2(a)). The 

spatial distribution of the PC scores (Figure 2(b)) showed that these gradients formed a clear spatial 

pattern, and floristic composition gradually changed from the coastline in the east to the mountains in 

the west. The cumulative variance explained by the first three PCs of floristic data was 55%. A weak 

relationship (Mantel test: r = 0.13, p = 0.006 from Monte-Carlo permutation test) was found between 

county area and species richness per county (Figure 3). 

The PCA of the county-based bioclimate data revealed three strong climatic gradients (Figure 4(a)). 

The cumulative variance explained by the first three PCs was 50%. The analysis of the loadings 

showed that the main PCs represent a temperature gradient, a precipitation gradient, and a gradient 

from marine to continental climate. Three variables: mean annual temperature, annual precipitation, and 

mean diurnal temperature range were identified to represent these climatic gradients (Figure 4(cïe)). 

Figure 2. Results of the PCA on the floristic data of North Carolina and South Carolina.  

(a) distribution of the counties in the floristic PCA space and the variances explained by 

the PCs, and (b) spatial distribution of PC-scores across these two states.  
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Figure 3. Relationship between county area and number of species per county. 

 

Figure 4. Results of the PCA of the bioclimate data (a), spatial distribution of the  

PC-scores (b), and spatial distribution of mean annual temperature (c), mean annual 

precipitation (d), and mean diurnal temperature range (e). 
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We summarized the correlations between these three climatic variables and the floristic gradients.  

The first and second floristic gradients showed a highly significant correlation with the climatic 

variables. The 3rd PC of the floristic data was almost independent of climate (Table 2). 

Table 2. Correlations between floristic gradients (PC1, PC2, and PC3) and main climatic 

variables (Tma = mean annual temperature, Pa = annual precipitation, DRm = mean diurnal 

temperature range). Asterisks indicate the significance level (*** < 0.0001 < ** < 0.001 < 

* < 0.05 < . < 0.1 < ns). 

 Tma Pa DRm 

PC1 0.89
***  

ī0.31
***  

ī0.30
***  

PC2 0.29
***  

ī0.66
***  

0.40
***  

PC3 ī0.17
*  

0.19
*  

0.04
ns 

We also analyzed the correlations between the three climatic variables/composite PCs and the 

NDVI pattern on different dates (Figure 5). Strong correlations between Tma and the NDVI were 

observed throughout the year. However, the sign of the correlation coefficients changed from summer 

to winter and vice versa. In summer, colder temperatures were related to a high NDVI signal; in 

winter, the NDVI values increased with warmer temperatures. Further, we observed positive 

correlations between NDVI and both precipitation and diurnal temperature range. 

Figure 5. Correlation coefficients for correlations between the NDVI on different dates 

(Julian days) and three climatic variables (composite PCs).  

 

Lastly, we analyzed the relationship between floristic gradient and NDVI time series using PLSR. 

Results of the PLSR regressions between floristic gradients and NDVI time series are shown in  

Figure 6. The model for the main floristic gradient (PC1) resulted in R
2
 = 0.9, the model for the 2nd 

PC in R
2
 = 0.73, and the model for the 3rd PC in R

2
 = 0.33 in cross-validation. The residuals of all 

three models showed positive spatial autocorrelation for shorter distances based on Moranôs i analysis 

(Figure 7). No global autocorrelation was observed in the residuals. 
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Figure 6. Results of PLS regressions between floristic gradients (PC1-3) and NDVI time 

series. Bar plots show the RMSE in model calibration and validation for models based on 

increasing numbers of LVs. Arrows in the RMSE-plots indicate the number of LVs 

considered in the final model. Scatterplots illustrate the relationship between actual (i.e., 

observed) PC scores and the model predictions. The influence of different dates throughout 

the year in the models is indicated by the regression coefficients. Numbers in these plots 

correspond to the Julian day of the respective NDVI time series. 

 

Figure 7. Spatial autocorrelation (Moranôs i) in the residuals of PLSR-models at different 

centroid distances between counties.  

 


