Remote Sens. 2012, 4(7), 1974-1994; doi:10.3390/rs4071974

High Resolution Mapping of Peatland Hydroperiod at a High-Latitude Swedish Mire

1,* email, 2email, 3email, 4email, 1email, 1email, 5email and 4email
Received: 28 April 2012; in revised form: 7 June 2012 / Accepted: 26 June 2012 / Published: 29 June 2012
(This article belongs to the Special Issue Remote Sensing by Synthetic Aperture Radar Technology)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Monitoring high latitude wetlands is required to understand feedbacks between terrestrial carbon pools and climate change. Hydrological variability is a key factor driving biogeochemical processes in these ecosystems and effective assessment tools are critical for accurate characterization of surface hydrology, soil moisture, and water table fluctuations. Operational satellite platforms provide opportunities to systematically monitor hydrological variability in high latitude wetlands. The objective of this research application was to integrate high temporal frequency Synthetic Aperture Radar (SAR) and high spatial resolution Light Detection and Ranging (LiDAR) observations to assess hydroperiod at a mire in northern Sweden. Geostatistical and polarimetric (PLR) techniques were applied to determine spatial structure of the wetland and imagery at respective scales (0.5 m to 25 m). Variogram, spatial regression, and decomposition approaches characterized the sensitivity of the two platforms (SAR and LiDAR) to wetland hydrogeomorphology, scattering mechanisms, and data interrelationships. A Classification and Regression Tree (CART), based on random forest, fused multi-mode (fine-beam single, dual, quad pol) Phased Array L-band Synthetic Aperture Radar (PALSAR) and LiDAR-derived elevation to effectively map hydroperiod attributes at the Swedish mire across an aggregated warm season (May–September, 2006–2010). Image derived estimates of water and peat moisture were sensitive (R2 = 0.86) to field measurements of water table depth (cm). Peat areas that are underlain by permafrost were observed as areas with fluctuating soil moisture and water table changes.
Keywords: PALSAR; LiDAR; mire; hydroperiod; high latitude wetlands; permafrost
PDF Full-text Download PDF Full-Text [752 KB, uploaded 19 June 2014 00:29 CEST]

Export to BibTeX |

MDPI and ACS Style

Torbick, N.; Persson, A.; Olefeldt, D.; Frolking, S.; Salas, W.; Hagen, S.; Crill, P.; Li, C. High Resolution Mapping of Peatland Hydroperiod at a High-Latitude Swedish Mire. Remote Sens. 2012, 4, 1974-1994.

AMA Style

Torbick N, Persson A, Olefeldt D, Frolking S, Salas W, Hagen S, Crill P, Li C. High Resolution Mapping of Peatland Hydroperiod at a High-Latitude Swedish Mire. Remote Sensing. 2012; 4(7):1974-1994.

Chicago/Turabian Style

Torbick, Nathan; Persson, Andreas; Olefeldt, David; Frolking, Steve; Salas, William; Hagen, Stephen; Crill, Patrick; Li, Changsheng. 2012. "High Resolution Mapping of Peatland Hydroperiod at a High-Latitude Swedish Mire." Remote Sens. 4, no. 7: 1974-1994.

Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert