
Remote Sens. 2012, 4, 1617-1650; doi:10.3390/rs4061617 

 

Remote Sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Categorizing Wetland Vegetation by Airborne Laser Scanning 

on Lake Balaton and Kis-Balaton, Hungary 

András Zlinszky  
1,2,

* , Werner Mücke  
2
, Hubert Lehner 

2
, Christian Briese 

2,3
 and Norbert Pfeifer 

2
 

1 Balaton Limnological Institute, Centre for Ecological Research of the Hungarian Academy of 

Sciences, Klebelsberg Kuno út 3, H-8237 Tihany, Hungary 

2 Institute of Photogrammetry and Remote Sensing, TU Vienna, E122, Gußhausstraße 27-29,  

A-1040 Vienna, Austria; E-Mails: wm@ipf.tuwien.ac.at (W.M.); hl@ipf.tuwien.ac.at (H.L.); 

cb@ipf.tuwien.ac.at (C.B.); np@ipf.tuwien.ac.at (N.P.) 

3 Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology, Hohe Warte 

38, A-1190 Vienna, Austria 

*  Author to whom correspondence should be addressed; E-Mail: az@ipf.tuwien.ac.at;  

Tel.: +43-1-58801-12212. 

Received: 18 April 2012; in revised form: 29 May 2012 / Accepted: 30 May 2012 /  

Published: 1 June 2012 

 

Abstract: Outlining patches dominated by different plants in wetland vegetation provides 

information on species succession, microhabitat patterns, wetland health and ecosystem 

services. Aerial photogrammetry and hyperspectral imaging are the usual data acquisition 

methods but the application of airborne laser scanning (ALS) as a standalone tool also 

holds promises for this field since it can be used to quantify 3-dimensional vegetation 

structure. Lake Balaton is a large shallow lake in western Hungary with shore wetlands that 

have been in decline since the 1970s. In August 2010, an ALS survey of the shores of Lake 

Balaton was completed with 1 pt/m
2
 discrete echo recording. The resulting ALS dataset 

was processed to several output rasters describing vegetation and terrain properties, 

creating a sufficient number of independent variables for each raster cell to allow for basic 

multivariate classification. An expert-generated decision tree algorithm was applied to 

outline wetland areas, and within these, patches dominated by Typha sp. Carex sp., and 

Phragmites australis. Reed health was mapped into four categories: healthy, stressed, 

ruderal and die-back. The output map was tested against a set of 775 geo-tagged ground 

photographs and had a userôs accuracy of >97% for detecting non-wetland features (trees, 

artificial surfaces and low density Scirpus stands), >72% for dominant genus detection and 

>80% for most reed health categories (with 62% for one category). Overall classification 
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accuracy was 82.5%, Cohenôs Kappa 0.80, which is similar to some hyperspectral or 

multispectral-ALS fusion studies. Compared to hyperspectral imaging, the processing 

chain of ALS can be automated in a similar way but relies directly on differences in 

vegetation structure and actively sensed reflectance and is thus probably more robust. The 

data acquisition parameters are similar to the national surveys of several European 

countries, suggesting that these existing datasets could be used for vegetation mapping 

and monitoring. 

Keywords: LIDAR; wetlands; Phragmites australis; Carex; Typha; ecosystem health; 

vegetation classification 

 

1. Introduction  

Shore wetland vegetation plays an important role in the functioning of lake systems. The ecotone 

between land and water creates a large variety of microhabitats and the high biomass production of 

wetland vegetation feeds energy into the food web [1]. Wetlands are often the least disturbed areas of a 

lake and thus can act as a refuge for wildlife in seasons when pressure of human presence on the 

ecosystem is intensive. Many pelagic or shore species depend on wetlands in general or the presence of 

a specific type of wetland vegetation for overwintering, reproduction and feeding [2]. Some functions 

of shore wetlands, such as erosion, flood protection and pollution demobilization are also important 

from an economic point of view [3]. Pressure on shore wetlands is increasing in Europe, since shore 

areas are intensively used for recreation and industry, and global climate change and local pollution 

also affect these sensitive communities [4]. 

The vegetation typical for the studied wetlands consists of emergent macrophytes which are large 

grass-like vascular plants with perennial underground stems and roots that can grow in the submerged 

sediment. Stalks and leaves are active during the growth season, extending up to several meters above 

the water surface and dying back in winter [5]. These plants can form both monodominant and mixed 

stands which can sometimes be separated by well-defined borders. The pattern of patches is not constant 

in time [6], but our understanding of temporal changes is limited due to the restricted availability of 

species or genus level monitoring (a genus is a category directly above the level of species). 

1.1. The Conservation Status of Shore Wetlands 

The need for species and genus information is enhanced by the fact that many reed-dominated 

wetlands are in decline in Europe [7], which is probably mainly due to oxygen depletion of the root 

zone [8ï10]. These areas show signs of stress at the level of the whole ecosystem, including stunted 

growth, restricted reproduction, encroachment of terrestrial species and the formation of clumps on the 

boundary to open water [11,12]. During this process, the patches previously occupied by reed can be 

colonized by other species. Monitoring vegetation health and species composition is necessary to 

understand reed decline and initiate restoration [13,14]. While wetland vegetation health can be 

understood in a change detection context (involving mapping by remote sensing time series), quantitative 
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surveying of the distinctive symptoms of reed stress and die-back [15] allows reed health to be mapped 

by creating only a snapshot in time. This may provide a less deep understanding of the process but 

delivers up-to-date information for decision support.  Beyond the scope of a single species, a healthy 

wetland ecosystem is usually a mosaic of patches of different species, where the presence of the 

natural zonation is a criterion of a functioning wetland habitat [16]. Wherever the mapping of different 

wetland plant genera is possible, the presence of zonation and mosaic structure can also be assessed 

and used as a proxy of wetland vegetation health [17,18].  

1.2. Objective 

The objective of this study was to develop a methodology for mapping wetland vegetation 

composition at genus level, and the recognition of the presence as well as health or stress of the 

dominant species, based only on ALS-derived features calibrated to ground truth data. This includes 

testing the accuracy of the proposed method on a survey of a major wetland system against 

independently collected reference data and comparing it to other surveying methods applied to similar 

targets. Mapping vegetation height and structural parameters is often the focus of ALS-based 

vegetation surveys, but was not an objective of the current study. 

2. State of the Art  

2.1. Passive Remote Sensing of Wetland Vegetation 

Vegetation monitoring typically relies on collecting field data on the presence, abundance and health 

of plant species [19]. However, in wetlands, difficult access limits the collection of classical botanical 

data, and airborne [20ï24] or satellite imaging [25ï27] is widely used for monitoring [28]. In addition to 

classical aerial photography, the potential of multispectral and hyperspectral methods for vegetation 

classification and mapping has also proved successful in many surveys [13,26,27,29ï32]. Nevertheless, 

passive optical imaging of wetland vegetation has its limitations: the pixels of high spectral resolution 

images are typically larger that the ALS footprint sizes, and this causes aggregation of the spectral 

information encountered horizontally, which is difficult to resolve during classification [26]. The 

potential of spectrally based classification to identify different types of vegetation is always controlled by 

the de facto differences in their reflectance spectra, which can be limited in some cases [32]. 

2.2. Airborne Laser scanning as a Method for Vegetation Surveys 

Airborne Laser Scanning (ALS) samples the Earthôs surface by measuring the signal travel time of 

laser pulses between the terrain and the airborne platform. The travel time is directly proportional to 

the distance, which can therefore be computed [33]. A dense set of points in a three-dimensional 

coordinate system is created from these distances and the position and orientation of the sensor 

platform. This latter is typically constantly tracked by a synchronized global navigational satellite 

system (GNSS) and an inertial measurement unit (IMU). ALS is traditionally used for mapping terrain 

topography [33], exploiting its ability to penetrate vegetation but removing the echoes corresponding 

to the canopy as they are not informative for terrain modeling [34ï36]. Since the ALS points 

corresponding to the echoes from the canopy provide a strong representation of the vertical and 
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horizontal structure of the vegetation due to the high sampling density and accuracy, ALS holds potential 

for vegetation mapping. ALS mapping of vegetation structure is operational in forests [37ï39], rapidly 

developing in shrublands [40ï44] but applications to riparian vegetation types remain rare [45,46] 

2.3. Wetland Vegetation Mapping Based on ALS as a Standalone Tool 

ALS has sometimes been used as a standalone tool to assess the hydrological roughness of 

floodplain vegetation for hydrological modelling but this has usually not been extended to a level of 

detail suitable for species or wetland condition monitoring [47,48]. Object-based analysis of derivatives 

of the point cloud has been successfully used to outline riparian vegetation and streambed extent [49]. 

Multiple wavelength or multi-temporal surveys have proved to contain sufficient information for 

vegetation classification beyond the level of growth forms: Spartina stands and the sediment 

accumulation they facilitate in a saltmarsh environment were successfully outlined using two 

consecutive ALS surveys [50]. Dual wavelength ALS has been applied by Collin [51] for mapping 

saltmarsh vegetation (17 categories) and very high accuracy (92%) was reached by multivariate 

classification of rasterized spectral and spatial ALS products as pseudo-bands. 

2.4. Wetland Vegetation Mapping Based on the Fusion of ALS-Derived Data with Other Data 

Due to its potential to sample ground elevation even below a canopy [35], the first applications of 

ALS in wetland ecology were for creating a very detailed digital terrain model (DTM), which was then 

applied as a background variable map to explain the spatial patterns of different vegetation types 

classified from airborne true color or infrared orthophotos. Knight [52] used an ALS-derived DTM to 

calculate tidal inundation patterns in mangrove wetlands and identify potential mosquito habitats. 

Jenkins [53] also used ALS data for outlining upland swamps and identified vegetation categories 

within these boundaries on the basis of multispectral satellite data. Morris [54] combined ALS data 

with multispectral images to map intertidal habitats and evaluate the link between different vegetation 

categories and elevations above tide level. Gilvear [55] used an ALS derived digital surface model 

(DSM) as a background dataset to support visual interpretation of hyperspectral data and found that the 

introduction of vertical structural information in addition to spectral properties increased the accuracy 

of visual interpretation. 

While in the previously listed studies, ALS was used as a background dataset or an introductory 

step of vegetation classification to delineate areas in focus, rasterized ALS data can also be fused with 

imaging spectrometer images on a pixel basis. This creates a raster dataset with several channels, some 

actual spectral bands from the imaging sensor, while others derived from ALS but accessible within 

the same dataset (pseudo-bands) [56]. Several such studies demonstrate a significant increase in 

wetland classification accuracy compared to using only spectral or ALS data [57,58]. In riparian areas 

of Australian savannahs, the fusion of QuickBird images with several ALS-derived data layers allowed 

the identification of riparian vegetation by object-based classification [59]. Hence, according to recent 

research papers, the combination of ALS and optical imagery gives the best results in individual 

species detection. 
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2.5. Enhancing the Information Contained in ALS Point Datasets 

Single-band laser scanning data (e.g., 1,064 nm) alone are apparently considered to contain 

insufficient information to be reliably used for classifying wetland vegetation to health categories and 

genera. This is because the traditional approach to vegetation mapping from remotely sensed data 

involves classification on the basis of spectral differences [56]. However, several methodological studies 

show that the information content of ALS data can be enhanced after collection by various processes 

including intensity correction [60], radiometric calibration [61,62], and dropout modeling [63].  

Most commercially available ALS systems record information on the amount of backscattered 

energy, i.e., the amplitude (often referred to as intensity) and, in case of full-waveform recording 

instruments, also the echo width. This parameter seems to hold significant information for species 

determination [64,65]. The amplitude of the returning laser pulse depends on the reflectance of the 

sampled surface, but is modulated by many other factors including (but not limited to) the energy of 

the laser pulses, the atmospheric transmittance, the angle between the beam and the local surface 

normal (i.e., the angle of incidence) and the distance between the ALS system and the target. Maps of 

echo amplitude can be used for visual interpretation of terrain features [65], but the quantitative 

application of echo amplitude is only possible if it can be calibrated to actually represent the optical 

properties of the surface [61]. Several solutions to this problem have been proposed, ranging from 

applying a smoothing filter [66] to modeling signal path and local surface normals [62] and combining 

this with surface reflectivity measured with an active instrument [61]. If the radiometric calibration of 

the data points is reliable enough, single-channel classification methods can be applied to the dataset. 

The presence of open water is important for wetland vegetation mapping but it is difficult to map 

through single-band ALS. A calm water surface is an almost perfect specular reflector and thus only 

reflects a high amount of radiation back into the sensor when observed at approximately nadir (i.e., the 

laser beam and the ray of the reflected echo coincide) [63]. At other observation geometries the amount 

of radiation reflected towards the sensor is often too low to be detected by the receiving unit and this is 

enhanced by the fact that the reflectance of water in the near infrared wavelengths often used for ALS is 

generally low, so echoes from a water surface are often not recorded at all. Brzank et al. [67] propose a 

point-based fuzzy classification procedure that calculates the membership weights of the class ñwaterò 

for each ALS point on the basis of the recorded amplitude, elevation and point density. Höfle et al. [63] 

demonstrate a method based on the combination of radiometrically corrected intensities and relative 

positions of ALS points that allows high accuracy identification and outlining of open water areas. This 

latter solution involves the reconstruction of the missing ALS points (dropouts) that were not recorded 

due to specular reflection on the basis of the GPS time tag of the points, the scanning rate and the scan 

pattern. The point cloud is segmented on the basis of the local surface roughness, the density of points 

with intensity values below a threshold, and intensity variation. 

3 Data and Methods  

3.1. Study Area 

Lake Balaton is a large (594 km
2
) shallow (mean depth 3.3 m) lake in western Hungary, with more 

than half of the shoreline sustaining reed-dominated wetlands [68] (Figure 1). These are protected 
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under Natura 2000 and the Ramsar Convention. Kis-Balaton is a reconstructed wetland of 70 km
2
 

slightly upstream of Lake Balaton, with an average water depth of 1.2 m. Changes in the spatial extent 

of these wetlands were identified on a long-term archive aerial image study [10,69] and the loss of 

wetland vegetation area since the 1970ôs has been documented. However, hardly any spatially explicit 

data exist on the extent of different vegetation types within the wetlands or on the extent of reed stress 

that forecasts future losses of area. The last field-based botanical survey including non-reed wetland 

vegetation was carried out in 1987 on Lake Balaton [70] and 1982 on Kis-Balaton [71]; after this, 

wetland vegetation monitoring has focused on the suitability of reed for industrial use [68]. 

Figure 1. Surveyed ALS flight strips around Lake Balaton and Kis-Balaton. Inset shows 

location of Lake Balaton inside Hungary. 
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3.2. Categories Used for Vegetation Classification 

The categories of the classification were vegetation types selected before the flight based on field 

experience and knowledge from archive aerial photo interpretation [10,69]. The aim was to produce an 

ecologically relevant map with categories that can be recognized in the field, as well as potentially 

including all possible land cover types that were present in the littoral zone: 
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Wetland: For the purpose of this study, wetlands are defined in a vegetation ecology sense contrary to 

other definitions that might be used for geomorphology, hydrology, pedology, etc. Wetlands are areas 

where the water or groundwater surface is regularly near or above the sediment surface or the soil is 

regularly fully saturated with water and where the vegetation is mainly composed of emergent 

macrophytes [5].  

Trees/shrubs (abbreviated as trees in the following): Although trees and shrubs can be present in 

wetlands, separating them into different classes is beyond the scope of this paper, so this category is 

simply defined as areas where the dominant plants have a branching woody stem. Typically, these are 

Populus, Salix or Alnus trees, but other species are also present. These plants are expected to be higher 

than wetland vegetation, and are usually found on slightly elevated patches of dry land on the shore, 

within or near wetlands. Trees typically produce multiple echoes of the ALS pulse, so both the top of 

the canopy and the terrain surface can be identified on a vertical profile of the point cloud (Figure 2). 

Figure 2. Typical ALS profiles of main classification categories. Vertical labels show 

ellipsoidal height in meters. Points included in the profile are within a strip of 15 m width 

and about 120 m length. Point brightness corresponds to ALS echo amplitude: bright 

points have higher amplitudes than dark points. 

 

Scripus/Schoenoplectus/Typha angustifolia (abbreviated in the following as Scirpus): Although these 

are also emergent shore macrophytes, their stand structure differs from wetland macrophytes, because 

they grow at a much lower stem density and although the tips of the leaves emerge from the water, 

most of their length is submerged. Such areas are typically found on the most exposed edges of 

wetlands because of their ability to tolerate wave energy. 

Water/artificial: This class contains water surfaces and man-made structures. For the purpose of 

mapping wetland vegetation, water surfaces do not have to be separated from artificially cultivated or 

covered areas (grazed or mown grasslands, agricultural areas, asphalt and concrete surfaces), bare soil 

or otherwise unvegetated structures. Water typically has a very low reflectance in the near infrared 

spectral band where the instrument operates [63,72] similar to tarmac surfaces and railway 

embankments, while very high reflectance is produced by the dense closed canopies of cultivated 

fields, the flat surface of mowed grasslands, and gravel or concrete surfaces (Figure 2). Depending on 

the roughness of the water surface, the observed reflectances are very low (or the points can be 

completely missing), or extremely high wherever the local water surface is perpendicular to the 

incoming pulse (on wave slopes and/or at sensor nadir). 

The wetland class as defined above is further divided into vegetation classes containing reed stress 

categories and genera of other species. Classification to species level was not attempted because 
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identification of wetland macrophyte species is usually based on properties of flower structure and leaf 

veins, and is thus difficult and often uncertain even when done in the field. Different genera mostly 

represent different forms of growth and are thus relevant categories for habitat identification. 

Typha: Typha plants are characterized by their narrow and long leaves, which all grow from the base 

of the stem, and can reach up to 250 cm of height. The leaves are relatively thick and rigid, so they are 

usually near-vertical for most of their length. This means that the penetration of the ALS pulse is high 

in these areas, often reaching the ground or water surface, where most of the pulse energy is lost to low 

reflectance of water and bare soil or specular reflection from water. This and the dark green color of 

the leaves means that Typha areas are usually characterized by low ALS reflectance (Figure 2). Typha 

is very tolerant to anoxic sediment but is sensitive to wave action; therefore it is mostly found in the 

central areas of wetlands, in water depths between 50 and 100 cm, surrounded on all sides by Carex or 

reed. It can also form monodominant stands on the open water boundary in sheltered areas or mixed 

stands with other species. 

Carex: Carex plants also have leaves that all sprout from the bottom of the stem but these are less rigid 

and usually have a curved shape as they bend towards the ground. The canopy height can also reach 

200 cm, but this is rare: 50ï130 cm is typical. These leaves interlock to form a dense closed canopy 

which restricts ALS signal penetration and reflects most of the pulse energy (Figure 2). Carex stands 

are characteristic on the shore side of wetlands, in periodically dry areas with water shallower than 

50 cm year round.  

Reed: Phragmites australis is the dominant wetland macrophyte of the study area, and is the only 

Phragmites species known in the area [68,73]. The canopy of Phragmites consists of leaves growing in 

regular intervals along the stem, which can reach a height of up to 4 meters above the water level [74]. 

This means that signal penetration is initially high but the signal rarely reaches the water surface as it 

gets reflected from the subsequent layers of leaves (Figure 2). The echo amplitude is usually high as 

the canopy is dense but in some cases (especially on the SW shore of the lake) canopy density can be 

low enough to allow some penetration and thus loss of energy to specular reflection from water. Reed 

can grow in a wide range of habitats from dry roadside ditches to several meters of open water but it is 

typically found on organic sediment accumulating on sheltered stretches of shore. Reeds standing in 

deep water have high conservation value, because they provide an essential habitat for spawning fish 

and nesting birds [75]. 

Healthy reed: A reed stand was regarded during ground truthing and validation as healthy if the stalks 

were high (above the approximate height of 1.5 m), had an even density with no open water between 

them, and if the majority of the stalks was vertical. 

Die-back reed: Reed areas were categorized as being in a state of die-back if the density and height 

was very low or if clumps were present [7], separated by open water areas. 

Stressed reed: Stressed reed was defined by alternating areas of low and high stalk density [15], with 

the canopies closing over any open water patches.  

Ruderal reed: Ruderal reed areas are those where abundant nutrients and light allow the encroachment 

of terrestrial species, mainly weeds (e.g., Urtica dioica) or climbing plants (Humulus lupulus, Solanum 
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dulcamara). These are typically found on the shore side of wetlands, around paths and artificial 

openings and in areas where waves deposit organic debris. 

3.3. Data and Processing 

3.3.1. Airborne Laser Scanning Data 

The ALS data were collected during the EUFAR AIMWETLAB survey in August 2010, by the 

NERC (Natural Environment Research Council) Airborne Research and Survey Facility. The detailed 

rationale and full technical background of the survey is explained in Zlinszky et al. [76]. The surveyed 

area was the shore zone of Lake Balaton and the area of the Kis-Balaton wetland, adding up to 1000 

km
2
 of total measured area. Kis-Balaton and the larger shore wetlands on the lake were measured with 

a pattern of parallel strips, but to save flight time, most of the lake was covered by an irregular pattern 

of strips following the shoreline (Figure 1). A Leica ALS50 sensor operating at 1,064 nm wavelength 

with a sinusoidal scan pattern was employed. With this instrument a maximum of four echoes can be 

distinguished for each pulse. The instrument settings and mission parameters were chosen to provide a 

1 pt/m
2
 point density, 22 cm footprint diameter and ca. 1 km swath width from an elevation of 1,200 m 

above ground level. Horizontal and vertical point position accuracies were 0.15 and 0.1 meters 

respectively, according to sensor specifications. Echo amplitudes were modulated by an automatic gain 

control (AGC) and the AGC and amplitude values were included in the attributes of each point. The 

dataset was pre-processed by the NERC Data Analysis Node to the level of ASPRS .las files, and 

erroneous points resulting from atmospheric or multi-path echoes were identified. 

3.3.2. Ground Truth Data 

During the months before the flight, ground truth polygons were outlined in the field using a 

differential GNSS receiver (Leica GS 20, Leica Geosystems, Heerbrugg, Switzerland). These polygons 

were approximately 10 × 10 m areas where the abundance of the main macrophyte species was found 

to be homogeneous. Water depth, vegetation height, reed health and the abundance of the 17 most 

frequent species (including macrophytes, submerged and floating-leaved plants and trees) in the study 

area were recorded on a Braun-Blanquet scale (with 0 for absence and 5 for full monodominant cover) 

as attributes of these polygons. In order to have a number of reference areas clearly dominated by a 

single species, some nearly monodominant plots were cleaned of sub-dominant plants by hand 

clipping. Out of 82 plots altogether surveyed, 46 were monodominant and 36 were mixed, adding up to 

about 8,000 m
2
 of reference data for about 100 km

2
 of wetland vegetation within a full surveyed area 

of ca. 1,000 km
2
. A set of 60 control points was also collected, where the dominant genus and its 

health was registered for quality control using the categories defined above (3.2). In order to facilitate 

radiometric calibration, the reflectance of an adjacent bright surface (white dolomite gravel parking 

space, reflectance at 1,064 nm: 53.5 ± 3.8%) and a dark surface (freshly deposited bare topsoil, 

reflectance at 1,064 nm: 13.8 ± 2.0%) were measured with a spectroradiometer (ASD Fieldspec 3, 

Analytical Spectral Devices, Boulder, CO, USA) simultaneously with the flight on one of the survey 

days. Since the flight also involved hyperspectral imaging [76], care was taken to collect data only under 

ideal atmospheric and illumination conditions. Because of this, it was assumed that the slight variability 
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of atmospheric conditions during the flight period of ten days is negligible and the calibration constants 

calculated on the basis of the reflectance measurements are valid for the whole survey. 

3.3.3. Visualization and Quality Control 

ALS point clouds were visually inspected in FugroViewer (Fugro Inc, Leidschendam,  

The Netherlands) in planar and profile views (Figure 2). After calculation of elevation rasters using 

moving planes interpolation in OPALS software [77] the remaining elevation differences in the 

overlapping areas created by the flight pattern were mapped. The errors in the calibration of the sensor 

system (misalignment) resulted in different elevations (in the range of up to 10ï50 cm) of the same 

areas. These could not be resolved due to the relatively small overlapping area of strips, therefore it 

was decided to continue on the basis of individual strips and exclude absolute elevation of points from 

the classification scheme. Small variations in ground sampling density (<10%) were also present 

between strips. 

However, it was also shown that different vegetation types have different point cloud profiles and 

reflectance characteristics. It was assumed that the echoes themselves did not contain enough information 

for point-based classification without full waveform recording such as Wagner et al. [78,79]. 

Therefore, a raster approach was selected: a number of parameters were calculated in grid cells from 

the neighborhood of each point and these rasters were used as the input values for the classification 

algorithm. 

3.3.4. Input Parameters and Calculations 

The ALS data were processed using modules of the scientific laser scanning software OPALS [77]. 

Depending on the nature of each variable, raster sizes were selected to average across several ALS 

points or to map their parameters to a high resolution raster. Parameters used for classification were the 

following: 

Surface reflectance: (Figure 3(aïc)) As described in Section 2.5, the echo amplitude is influenced by 

the atmospheric attenuation, the range, the incidence angle and the area and reflectance of the 

footprint. In the case of the laser scanning system applied here, the recorded signal was additionally 

dependent on an automatic gain control which amplified the received signal strength in order to keep it 

within an 8 bit range. These effects were corrected by the OpalsRadioCal module [61]. This tool 

corrected each echo amplitude value for the above mentioned influencing factors by determining a 

sensor specific calibration constant derived from ground truth calibration targets with in situ measured 

reflectance (cf. Section 3.3.2). 

Applying the calibration constant to the ALS amplitude data yields calibrated reflectance values for 

each echo as a dimensionless number between 0 and 1 [80]. These reflectance values were rasterized to 

a 1 m grid to conserve each reflectance observation from the 1 pt/m
2
 data as far as possible. 
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Figure 3. (a) Uncalibrated ALS echo amplitude of the area used for radiometric 

calibration. Range 0 (black)ï255 (white). Polygons outlined in red are areas where reference 

spectra were collected. Note alternating bright and dark scan lines caused by differing 

levels of gain values of the scan lines. (b) Gain control values. Range 152 (black)ï170 

(white). Note abrupt change in gain control due to the low reflectance of water in the top 

(void) area of the image, and alternating high and low levels of gain control values of 

alternating scan lines caused by the presence of a low reflectance surface (water). 

(c) Calibrated surface reflectance. Range 0 (black)ï1 (white). Note that the linear feature 

visible on Figure 3(a) caused by a major change in gain control level has been corrected as 

well as the alternating bright and dark scan lines. 
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Figure 3. Cont. 

 

Dropout point count: (Figure 4(a,b)) While healthy reed stands have well-defined and usually 

straight boundaries between the vegetation and the water, stands affected by die-back diminish towards 

open water in a series of clumps, islands or ñpeninsulasò, creating a complicated boundary shape. In 

order to find a simple method to quantitatively locate these areas, the shape of the reed edge and the 

position of open water leads and lagoons had to be assessed. From specularly reflecting surfaces, 

hardly any light reaches the sensor system, so open water is shown by missing points called 

dropouts [63]. This is especially true in reed stands or near the boundary where the vegetation creates a 

wind shadow and thus the water surface is very flat. Since the sensor has a continuous sinusoidal scan 

pattern, any dropout points caused by the presence of water are expected to be somewhere along the 

line joining the preceding and following points. For the purpose of this study, only the presence of 

missing points (and not their exact number or location) was used to outline water, creating one point 

marking the gap of any size in each scan line. 

Since each point has a recorded GPS time, missing points could be detected by a Matlab 

(Mathworks, Natick, MA, USA) script wherever the GPS time difference between two echoes was 

above a threshold derived from the pulse repetition rate. To create a set of points representing the 

missing echoes of the water surface, the coordinates of the points preceding and following each 

dropout were averaged, so that the new point was created in the midpoint between them. If one edge of 

the scanned strip was above water, this created a row of estimated dropout points along the water 

boundary instead of on the area of the open water. For the size of gaps typical for die-back reed (1ï5 m 

according to field experience), this simple algorithm created a row of interpolated dropout points along 

the center of the gap and parallel to the flight direction. These points were not written into the original 

point cloud, but a separate raster with 5 × 5 m cell size was created containing the number of such 

dropout points in each cell. The threshold of 3 was applied based on signature analysis (see 


