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Abstract: Outlining patches dominated by different plants in wetland vegetation provides
information on species succession, microhabitat patterns, wetland health and ecosystem
services Aerial photogrammetry and hyperspectral imggare the usual data acquisition
methods but the application of airborne laser scanning (ALS) as a standalone tool also
holds promises for this field since it can be used to quantdym@nsional vegetation
structure. Lake Balaton is a large shallow lakesestern Hungary with shore wettisthat

have been iecline since the 1970& August 2010, an ALS survey of the shores of Lake
Balaton was completed with 1 pfrdiscrete echo recording. The resulting ALS dataset
was processed to several output eestdescribing vegetation and terrain properties,
creating a sufficient number of independent variables for each raster cell to allow for basic
multivariate classification. An expegenerated decision tree algorithm was applied to
outline wetland areasnd within these, patches dominated Byphasp. Carexsp., and
Phragmites australisReed health was mapped irfimur categories: healthy, stressed,
ruderal and dibdack. The output map was tested against a set of 77fagged ground
photographs and haal user 6 s accur acy eavetland edtes ftrees, det e
artificial surfaces and low densi8cirpusstands), >72% for dominant genus detection and
>80% for most reed health categories (with 62% for one category). Overall classification
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accuragy was 82. 5 %, Cohendés Kappa 0.80, whi ch
multispectralALS fusion studies. Compared to hyperspectral imaging, the processing
chain of ALS can be automated in a similar way but relies directly on differences in
vegetation gucture and actively sensed reflectance and is thus probably more robust. The
data acquisition parameters are similar to the national surveys of several European
countries, suggesting that these existing datasets could be used for vegetation mapping
andmonitoring.

Keywords: LIDAR; wetlands; Phragmites australisCarex Typhg ecosystem health;
vegetation classification

1. Introduction

Shore wetland vegetation plays an important role in the functioning of lake systems. The ecotone
between land and watereates a large variety of microhabitats and the high biomass production of
wetland vegetation feeds energy into the food ji¢bWetlands are often the least disturbed areas of a
lake and thus can act as a refuge for wildlife in seasons when pressurmari presence on the
ecosystem is intensive. Many pelagic or shore species depend on wetlands in general or the presence
a specific type of wetland vegetation for overwintering, reproduction and fegjinfgome functions
of shore wetlandssuch as emsion, flood protection angdollution demobilization are also important
from an economic point of vie\8]. Pressure on shore wetlands is increasing in Europe, since shore
areas are intensively used for recreation and industry, and global climate charigeabpallution
also affect these sensitive communi{iéls

The vegetation typical for the studied wetlands consists of emergent macrophytes which are large
grasslike vascular plants with perennial underground stems and roots that can grow in thegedbmer
sediment. Stalks and leaves are active during the growth season, extending up to several meters abo
the water surface and dying back in wintg. These plants can form both monodominant and mixed
stands which can sometimes be separated bydeftled borders. The pattern of patches is not constant
in time [6], but our understanding of temporal changes is limited due to the restricted availability of
species or genus level monitori@genus is a category directly above the level of species)

1.1. TheConservation Statusf Shore Wetlands

The need for species and genus information is enhanced by the fact that madgmeeded
wetlands are in decline in Europd, which is probably mainly due to oxygen depletion of the root
zone[8i 10]. These aras show signs of stress at the level of the whole ecosystem, including stunted
growth, restricted reproduction, encroachment of terrestrial species and the formation of clumps on the
boundary to open wat¢t1,12]. During this process, the patches previpuscupied by reed can be
colonized by other species. Monitoring vegetation health and species composition is necessary tc
understand reed decline and initiate restorafib®14]. While wetland vegetation health can be
understood in a change detectiontext (involving mapping by remote sensing time series), quantitative
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surveyingof the distinctive symptoms of reed stress anebdiek[15] allows reed health to be mapped

by creating only a snapshot in timEhis may provide a less deep understandinthefprocess but
delivers upto-date information for decision supporBeyond the scope of a single species, a healthy
wetland ecosystem is usually a mosaic of patches of different species, where the presence of the
natural zonation is a criterion of a fttioning wetland habitdtL6]. Wherever the mapping of different
wetland plant genera is possible, the presence of zonation and mosaic structure can also be assess
and used as a proxy of wetland vegetation h¢ak/18].

1.2. Objective

The objective ofthis study was to develop a methodology for mapping wetland vegetation
composition at genus level, and the recognitof the presence as well bealth or stress of the
dominantspecies, based only on Atderived featuresalibrated to ground trutbata This includes
testing the accuracy of the proposed method on a survey of a major wetland system against
independently collected reference data and comparing it to other surveying methods applied to similar
targets. Mapping vegetation height and structuggdrameters is often the focus of Ab&sed
vegetation surveys, but was not an objective of the current.study

2. State of theArt
2.1 PassiveRemote Sensingf Wetland Vegetation

Vegetation monitoring typically relies on collecting field data on thegmee, abundance and health
of plant specie$19]. However, in wetlands, difficult access limits the collection of classical botanical
data, and airborn0i 24] or satellite imaging25i 27] is widely used for monitorinf2§]. In addition to
classical aeal phobgraphy, the potential of mudpectral and hyperspectral methods for vegetation
classification and mapping has also proved successful in many s{t@82627,29 32]. Nevertheless,
passive optical imaging of wetland vegetation has its limitatithvespixels of high spectral resolution
images are typically larger that the ALS footprint sizes, and this causes aggregation of the spectral
information encountered horizontally, which is difficult to resolve during classificd@6h The
potential of pectrally based classification to identify different types of vegetation is always controlled by
the de facto differences in their reflectance spectra, which can be limited in soni@Zases

2.2 Airborne Laser scanning asMethod forVegetation Surveys

Airborne Laser Scanning (ALS) samples the Ea
laser pulses between the terrain and the airborne platform. The travel time is directly proportional to
the distance, which can therefore be compy®&8]. A dense set of points in a thrdamensional
coordinate system is created from these distances and the position and orientation of the senso
platform This latteris typically constantly tracked by a synchronized global navigational satellite
system (GNSSand an inertial measurement unit (IMU). ALS is traditionally used for mapping terrain
topography33], exploiting its ability to penetrate vegetation but removing the echoes corresponding
to the canopyas they are not informative for terrain modelif@ 36]. Since the ALS points
corresponding to the echoes from the canopy provide a strong representation of the vertical and
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horizontal structure of the vegetation due to the high sampling dansiccuracy, ALS holds potential
for vegetation mapping. ALS apping of vegetation structure is operational in forg&ts39], rapidly
developing in shrubland40i 44] but applications toiparianvegetation types remain rgib,46)

2.3 WetlandVegetation Mapping Basexh ALS as &tandalone Tool

ALS has sometimedveen used as a standalone tool to assess the hydrological roughness of
floodplain vegetation for hydrological modelling but this has usually not been extended to a level of
detail suitable fospeciesor wetland conditiormonitoring[47,48]. Objectbasedanalysis of derivatives
of the point cloud has been successfully used to outline riparian vegetation and streambéd%xtent
Multiple wavelength or mulitemporal surveys have proved to contain sufficient information for
vegetation classification beyonthe level of growth forms:Spartina stands and the sediment
accumulation they facilitate in a saltmarsh environment were successfully outlined twsing
consecutiveALS surveys[50]. Dual wavelength ALS has been applied by Co]id] for mapping
saltmard vegetation (17 categories) and very high accuracy (92%) was reached by multivariate
classification of rasterized spectral and spatial ALS products as pbands.

2.4. WetlandVegetation Mapping Basexh theFusion of ALSDerived Datawith Other Data

Due to its potential to sample ground elevation even below a cdB8hythe first applicationsf
ALS in wetland ecology werfor creating a very detailed digital terrain model (DTM), which was then
applied as a background variable map to explain theaspgaditerns of different vegetation types
classifiedfrom airborne true color or infrared orthophotos. Kniff] used an ALSlerived DTM to
calculate tidal inundation patterns in mangrove wetlands and identify tiabterosquito habitats.
Jenkins[53] also used ALS data for outlining upland swamps and identified vegetation categories
within these boundaries on the basis of multispectral satellite data. Nefisombined ALS data
with multispectral images to map intertidal habitats and evaluate thbdimleen different vegetation
categories and elevations above tide le@lvear [55] used an ALS derived digital surface model
(DSM) as a background dataset to support visual interpretation of hyperspectral data and found that the
introduction of vertichstructural information in addition to spectral properties increased the accuracy
of visual interpretation.

While in the previously listed studies, ALS was used as a background dataset or an introductory
step of vegetation classification to delineate suiagocus, rasterized ALS data can also be fused with
imaging spectrometer images on a pixel basis. This creates a raster dataset with several channels, sor
actual spectral bands from the imaging sensor, while others derived from ALS but accessible withi
the same dataset (psedoands)[56]. Several such studies demonstrate a significant increase in
wetland classification accuracy compared to using only spectral or AL$58]. In riparian areas
of Australiansavannahghe fusion of QuickBird imagewith several ALSlerived data layers allowed
the identification of riparian vegetation by objbetsed classificatiofb9]. Hence, according to recent
research papers, the combination of ALS and optical imagery gives the best resots/idual
species detection.
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2.5. Enhancing theénformation Containedh ALSPoint Datasets

Singleband laser scanning date.d., 1,064 nm) aloneare apparently considered to contain
insufficient information to be reliably used for classifying wetland vegetation téthhestiegories and
genera.This is because the traditional approach to vegetation mapping from remotely sensed data
involves classification on the basis of spectral differefg8ls However, several methodological studies
show that the information conteat ALS data can be enhanced after collection by various processes
including intensity correctiof60], radiometric calibratiof61,62], and dropout modeling3].

Most commerially available ALS systemsecord information on the amount of backscattered
erergy, i.e,, the amplitude (ofte referred to as intensity) anth case of fulwaveform recording
instruments, also the echo width. This parameter seems to hold significant information for species
determination[64,65]. The amplitude of the returning laspulse depends on the reflectance of the
sampled surface, but is modulated by many other factors including (but not limited to) the energy of
the laser pulses, the atmospheric transmittance, the angle between the beam and the local surfac
normal {.e, the angle of incidence) and the distance between the ALS system and the target. Maps of
echo amplitude can be used for visual interpretation of terrain fedgsbut the quantitative
application of echo amplitude is only possible if it can be calirageactually represent the optical
properties of the surfadél]. Several solutions to this problem have been proposed, ranging from
applying a smoothing filte66] to modeling signal path and local surface norrfi@® and combining
this with surfaceeflectivity measured with an active instrum§®t]. If the radiometric calibration of
the data points is reliable enough, singt@annel classification methods can be applied to the dataset.

The presence of open water is important for wetland vegetatampimg but it is difficult to map
through singleband ALS. A calm water surface is an almost perfect specular reflector and thus only
reflectsa high amount of radiation back into the sensor when observed at approximately.aathe(
laser beam and ¢hray of the reflected echo coincidép]. At other observation geometries the amount
of radiation reflected towards the sensor is often too low to be detected by the receivamgl tini$ is
enhanced by the fact that the reflectance of water in thrdnfesred wavelengths oftarsed for ALS is
generally low, so echoes from a water surface are often not recorded at all. &rahf&7] propose a
pointbased fuzzy <classification procedure that ¢
for each ALS point on the basis of the recorded amplitude, elevation and point densitt s3]
demonstrate a method based on the combination of radiometrically corrected intensities and relative
positions of ALS points that allows high accuracgntification and outlining of open water areas. This
latter solution involves the reconstruction of the missing ALS points (dropouts) that were not recorded
due to specular reflection on the basis of the GPS time tag of the points, the scanning rateeard th
pattern. The point cloud is segmented on the basis of the local surface roughness, the density of point
with intensity values below a thgieold, and intensity variation.

3 Data andM ethods
3.1 StudyArea

Lake Balaton is a large (594 Rpshallow(meandepth 3.3 m) lake in western Hungary, with more
than half of the shoreline sustaining resmminated wetland§68] (Figure 1). These are protected
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under Natura 2000 and the Ram&mmvention. KisBalaton is a reconstructed wetland of 70?°km
slightly upstream of Lake Balaton, with an average water depth of 1.2 m. Changes in the spatial extent
of these wetlands were identified on a lgegn archive aerial image stud¥0,69] and the loss of
wetland vegetation area since the 187@as been documentddowever, hardly any spatially explicit

data exist on the extent of different vegetation types within the wetlandstloe extent of reed stress

that forecasts futurtbsses of arealhe last fieldbased botanical survey including Amred wetland
vegetaibon was carried out in 1987 on Lake Bala{di®] and 1982 on Kidalaton[71]; after this,
wetland vegetation monitoring has focused on the suitability of reed for industr[@8jise

Figure 1. Surveyed ALS flight strips around Lake Balaton and-Baata. Inset shows
location of Lake Balaton inside Hungary
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3.2 CategoriedJsed forVegetation Classification

The categories of the classification weegetation typeselected before thdidght based on field
experienceand knowledge fromarchiveaerial ghoto interpretatiol0,69]. The aim was to produce an
ecologically relevant map with categories that can be recognized in the field, as well as potentially
including all possible land cover types that were present in the littoral zone:
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Wetland: For the gwrpose of this study, wetlands are defined in a vegetation ecology sense contrary to
other definitions that might be used for geomorphology, hydrology, pedatgyVetlands are areas
where the water or groundwater surface is regulaelyr orabove thesediment surface or the solil is
regularly fully saturated with water and where the vegetation is mainly composed of emergent
macrophyte$5].

Trees/shrubs (abbreviated as trees in the following): Although trees and shrubs can be present ir
wetlands, sepating them into different classes is beyond the scope of this paper, so this category is
simply defined as areas where the dominant plants have a branching woody stem. Typically, these ar
Populus, Salior Alnustrees, but other species are also pregdrgse plants are expected to be higher
than wetland vegetation, and are usually found on slightly elevated patches of dry land on the shore,
within or near wetlands. Trees typically produce multiple echoes of the ALS pulse, so both the top of
the canopy amthe terrain surface can be identified on a vertical profile of the point diogur€2).

Figure 2. Typical ALS profiles of main classification categoridsertical labels show
ellipsoidal height in meter®oints included in the profile are within aigtof 15 mwidth

and about 120 m lengtHPoint brightness corresponds to ALS echo amplitude: bright
points have higher amplitudes than dark points
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Scripus/Schoenoplectus/Typha angustif¢dbbreviated in the following as Scirpus): Although these

are dso emergent shore macrophytes, their stand structure differs from wetland macrophytes, because
they grow at a much lower stem density and although the tips of the leaves emerge from the water,
most of their length is submerged. Such areas are typicallydfen the most exposed edges of
wetlands because of their ability to tolerate wave energy.

Water/artificial: This class contains water surfaces and-made structures. For the purpose of
mapping wetland vegetation, water surfaces do not have to betsepfaoan artificially cultivated or
covered areas (grazed or mown grasslands, agricultural areas, asphalt and concrete surfaces), bare s
or otherwise unvegetated structures. Water typically has a very low reflectance in the near infrared
spectral band fhere the instrument operatd63,72] similar to tarmac surfaces and railway
embankments, while very high reflectance is produced by the dense closed canopies of cultivated
fields, the flat surface of mowed grasslands, andgjrawvconcrete surfacé€Bigure 2). Depending on
the roughness of the water surface, the observed reflectances are very low (or the points can be
completely missing), or extremely high wherever the local water surface is perpendicular to the
incoming pulse (on wave slopes and/or assemadir).

The wetland class as defined above is furtheided into vegetation classes containing reed stress
categories and genera of other species. Classification to species level was not attempted becaus
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identification of wetland macrophyte speciesisually based on properties of flower structure and leaf
veins, and is thus difficult and often uncertain even when done in the field. Different genera mostly
represent different forms of growth and are thus relevant categories for habitat identificatio

Typha: Typhaplants are characterized by their narrow and long leaves, which all grow from the base
of the stem, and can reach up to 250 cm of height. The leaves are relatively thick and rigid, so they are
usually neawvertical for most of their lengti his means that the penetration of the ALS pulse is high

in these areas, often reaching the ground or water surface, where most of the pulse energy is lost to lo\
reflectance of water and bare soil or specular reflection from water. This and the darkaoeeof

the leaves means thayphaareas are usually charactedey low ALS reflectanceRigure?2). Typha

is very tolerant to anoxic sedimemtit is sensitive to wave actiothierefore it is mostly found in the
central areas of wetlands, in water thspbetween 5@nd100 an, surrounded on all sides IBarexor

reed. It can also form monodominant stands on the open water boundary in sheltered areas or mixe
stands with other species.

Carex:Carexplants also have leaves that all sprout from the botttine stem but these are less rigid

and usually have a curved shape as they bend towards the ground. The canopy height can also rea
200 cm, but this is rare: 5030 cmis typical These leaves interlock to form a dense closed canopy
which restricts ALSsignal penetration and refleatsost of the pulse energ¥igure2). Carexstands

are characteristic on the shore side of wetlands, in periodically dry areas with water shallower than
50cm year round.

Reed:Phragmites australiss the dominant wetland awrophyte of the study area, and is the only
Phragmitesspecies known in the arg@8,73]. The canopy oPhragmitesconsists of leaves growing in
regular intervals along the stem, which can reach a height of up to 4 meters above the wiel.level
This means that signal penetration is initially high but the signal rarely reaches the water surface as it
gets reflected from the baequent layers of leaveSigure 2). The echo amplitude is usually high as

the canopy is dense but in some cases (especiatlyeo8W shore of the lake) canopy density can be

low enough to allow some penetration and thus loss of energy to specular reflection from water. Reed
can grow in a wide range of habitats from dry roadside ditches to several meters of open water but it is
typically found on organic sediment accumulating on sheltered stretches of shore. Reeds standing ir
deep water have high conservation value, because they provide an essential habitat for spawning fisl
and nesting birdf75].

Healthy reed: A reed stand wagarded during ground truthing and validation as healthy if the stalks
were high (above the approximate height of 1.5 m), had an even density with no open water betweer
them, and if the majority of the stalks was vertical.

Die-back reed: Reed areas wer¢egarized as being in a state of-th&ck if the density and height
was very low or if clumps were presgii}, separated by open water areas.

Stressed reed: Stressed reed was defined by alternating areas of low and high stalKl8Egnsiti
the canopas closing over any open water patches.

Ruderal reed: Ruderal reed areas are those where abundant nutrients and light allow the encroachme
of terrestrial species, mainly weeasd.,Urtica dioica) or climbing plantslumulus lupulus, Solanum
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dulcamarg. These are typically found on the shore side of wetlands, @rpaths and atrtificial
openingsand in areas where waves deposit organic debris.

3.3 Data andProcessing
3.3.1 AirborneLaser Scanning Data

The ALS data were collected during the EUFAR AIMWEB survey in August 2010, by the
NERC (Natural Environment Research Council) Airborne Research and Survey Facility. The detailed
rationale and full technical background of the survey is explained in Zliretzkly[ 76]. The surveyed
area was the shor@ze of Lake Balaton and the area of the-Badaton wetland, adding up to 1000
km? of total measured area. K&alaton and the larger shore wetlands on the lake were measured with
a pattern of parallel strips, but to save flight time, most of the lakeeoxesed by an irregular pattern
of strips following the shorelineRigurel). A Leica ALS50 sensor opating at 1064 nm wavelength
with a sinusoidal scan pattern was employed. With this instrument a maximum of four echoes can be
distinguished for each me. The instrument settings and mission parameters were chosen to provide a
1 pt/nf point density, 22 cm footprint diameter and ca. 1 km swath width from an elevatic@06fri
above ground level. Horizontal and vertical point position msas were 03 and 0.1 meters
respectively, acading to sensor specificatiorischo amplitudes were modulated by an automatic gain
control (AGC) and the AGC and amplitude values were included in the attributes of each point. The
datessetwas preprocessed by the NERCala Analysis Node to the level of ASPRS .las files, and
erroneous points resulting from atmospheric or rpdth echoes were identified.

3.3.2 GroundTruth Data

During the months before the flight, ground truth polygons were outlined in the field using a
differential GNSS receiver (Leica GS 20, Leica Geosystems, Heerbrugg, Switzerland). These polygons
were approximately 18 10 m areas where the abundance of the main macrophyte species was found
to be homogeneous. Water depth, vegetation height, reeth laeal the abundance of the 17 most
frequent species (including macrophytes, submerged and fldatiagd plants and trees) in the study
area were recorded on a BraBlanquet scale (with O for absence and 5 for full monodominant cover)
as attributes offtese polygons. In order to have a number of reference areas clearly dominated by a
single species, someearly monodominant plotsvere cleaned of suttominant plants by hand
clipping. Out of 82 plots altogether surveyed, 46 were monodominant and 36 wetk adding up to
about 8000 nf of reference data for about 100 kof wetland vegetation within a full surveyed area
of ca 1,000 knf. A set of 60 control points was also collected, where the dominant genus and its
health was registered for quality casitusing the categories defined above (3.2). In order to facilitate
radiometric calibration, the reflectance of an adjacent bright surface (white dolomite gravel parking
space, reflectance at064 nm: 53.5 + 3.8%) and a dark surface (freshly deposited bapsoil,
reflectance at 064 nm: 13.8 +2.0%) were measured with a spectroradiometer (ASD Fieldspec 3,
Analytical Spectral Devices, Boulder, CO, USA) simultaneously with the flight on one of the survey
days. Since the flight also involved hyperspedtrelging[76], care was taken to collect data only under
ideal atmospheric and illumination conditions. Because of this, it was assumed that the slight variability
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of atmospheric conditions during the flight period of ten days is negligible and the catilm@tstants
calculated on the basis of the reflectance measurements are valid for the whole survey.

3.3.3 Visualization andQuality Control

ALS point clouds were visually inspected in FugroViewer (Fugro Inc, Leidschendam,
The Netherlands) iplanar andorofile views Eigure 2). After calculation of elevation rasters using
moving planes interpolation in OPALS softwaré/7] the remaining elevation differences in the
overlapping areas created by the flight pattern were mapped. The errors in the calibitiosensor
system (misalignment) resulted in differentvalgons (in the range of up to i1&D cm) of the same
areas. These could not be resolved due to the relatively small overlapping area of strips, therefore i
was decided to continue on the basfisndividual strips and exclude absolute elevation of points from
the classification scheme. Small variations in ground sampling density (<10%) were also present
between strips.

However, it was also shown that different vegetation types have differentgbomud profiles and
reflectance characteristics. It was assumed that the echoes themselves did not contain enough informatic
for pointbased classification without full waveform recording such as Wagheal. [78,79].
Therefore, a raster approach watested: a number of parameters were calculated in grid cells from
the neighborhood of each point and these rasters were used as the input values for the classificatio
algorithm.

3.3.4 Input Parameters an@alculations

The ALS data were processed usingdules of the scientific laser scanning software OPMNMZ.
Depending on the nature of each variable, raster sizes were selected to average across several AL
points or to map their parameters to a high resolution raster. Parameters used for classvicattbe
following:

Surface reflectanceF{gure 3(ai ¢)) As described irBection 2.5 the echo amplitude is influenced by
the atmospheric attenuation, the range, the incidence amglethe area and reflectance of the
footprint. In the case of the lasstanning system applied here, the recorded signal was additionally
dependent on an automatic gain control which amplified the received signal strength in order to keep it
within an 8 bit range. These effects were corrected by the OpalsRadioCal m@tul&his tool
corrected each echo amplitude value for the above mentioned influencing factors by determining a
sensor specific calibration constant derived from ground truth calibration targeis sitinmeasured
reflectancedf. Section 3.3.2.

Applying the calibration constant to the ALS amplitude data yields calibrated reflectance values for
each echo as a dimensionless number between 0[80¢ These reflectance values were rasterized to
a 1 m grid to conserve each reflectance observation fromptiefldata as far as possible.
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Figure 3. (a) Uncalibrated ALS echo amplitude of the area used for radiometric
calibration. Range 0 (bladk}55 (whte). Polygons outlined in reare areas where reference
spectra were collected. Note alternating bright dack scan lines caused by differing
levels of gain values of the scan lin€ls) Gain control values. Range 152 (blackjo
(white). Note abrupt change in gain control due to the low reflectance of water in the top
(void) area of the image, and alternatinigh and low levels of gain control values of
alternating scan lines caused by the presence of a low reflectance surface. (water)
(c) Calibrated surface reflectance. Range 0 (blatKyvhite). Note that the linear feature
visible onFigure3(a) caused by major change in gain control level has been corrected as
well as the alternating bright and dark scan lines.
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Figure 3. Cont.

Dropout point count: Kigure 4(a,b) While healthy reed stands have wedifined and usually
straight boundaries betweerethegetation and the water, stands affected byaié diminish towards
open water in a series of c¢clumps, i sl ands or
order to find a simple method to quantitatively locate these areas, the shhpeedd edge and the
position of open water leads and lagoons had to be assessed. From specularly reflecting surface:
hardly any light reaches the sensor system, so open water is shown by missing points called
dropoutq63]. This is especially true in rdestands or near the boundary where the vegetation creates a
wind shadow and thus the water surface is very flat. Since the sensor has a continuous sinusoidal sca
pattern, any dropout points caused by the presence of water are expected to be somawhtre alo
line joining the preceding and following points. For the purpose of this study, only the presence of
missing points (and not their exact number or location) was used to outline water, creating one point
marking the gajpf any size in each scan line.

Since each point has a recorded GPS time, missing points could be detected by a Matlab
(Mathworks, Natick, MA, USA) script wherever the GPS time difference between two echoes was
above a threshold derived from the pulse repetition rate. To create as@htsfrepresenting the
missing echoes of the water surface, the coordinates of the points preceding and following each
dropout were averaged, so that the new point was created in the midpoint between them. If one edge c
the scanned strip was above wathis created a row of estimated dropout points along the water
boundary instead of on the area of the open water. For the size of gaps typicabswidieed (15 m
according to field experience), this simple algorithm created a row of interpolajgalitipoints along
the center of the gap and parallel to the flight direcfidrese points were not written into the original
point cloud, but a separate rastath 5 x 5 m cell size was created containing the number of such
dropout points in each celllThe threshold of 3 was applied based on signature analysis (see



