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Abstract: Sensor miniaturisation, improved battery technology and the availability of
low-cost yet advanced Unmanned Aerial Vehicles (UAV) have provided new opportunities
for environmental remote sensing. The UAV provides a platform for close-range aerial
photography. Detailed imagery captured from micro-UAV can produce dense point clouds
using multi-view stereopsis (MVS) techniques combining photogrammetry and computer
vision. This study applies MVS techniques to imagery acquired from a multi-rotor
micro-UAV of a natural coastal site in southeastern Tasmania, Australia. A very dense
point cloud (<1–3 cm point spacing) is produced in an arbitrary coordinate system using
full resolution imagery, whereas other studies usually downsample the original imagery.
The point cloud is sparse in areas of complex vegetation and where surfaces have a
homogeneous texture. Ground control points collected with Differential Global Positioning
System (DGPS) are identified and used for georeferencing via a Helmert transformation.
This study compared georeferenced point clouds to a Total Station survey in order to assess
and quantify their geometric accuracy. The results indicate that a georeferenced point cloud
accurate to 25–40 mm can be obtained from imagery acquired from ∼50 m. UAV-based
image capture provides the spatial and temporal resolution required to map and monitor
natural landscapes. This paper assesses the accuracy of the generated point clouds based on
field survey points. Based on our key findings we conclude that sub-decimetre terrain change
(in this case coastal erosion) can be monitored.
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1. Introduction

Remote sensing technology has improved a great deal in recent decades and the miniaturisation
of sensors and positioning systems has paved the way for the use of Unmanned Aerial Vehicles
(UAVs) for a wide range of environmental remote sensing applications [1,2]. The use of UAVs for
non-military applications has only become possible in more recent times as these miniaturised systems
have become affordable for research and commercial entities [3]. UAVs are now a viable alternative
for collecting remote sensing data for a wide range of practical applications. The miniaturisation
and commercialisation of sensors, positioning systems, and UAV hardware provide scientists with a
means to overcome some of the limitations of satellite imagery and aerial photography, namely spatial
and temporal resolution. The datasets produced by UAV remote sensing are at such high detail that
characteristics of the landscape can be mapped that are simply not distinguishable at the lower resolutions
generally obtainable via manned aircraft (∼10–100 cm) and satellite systems (>50 cm). Furthermore, the
ease of deployment and low running costs of these UAV systems allows for frequent missions providing
very high spatial and temporal resolution datasets on-demand [1]. Recent advances in computer vision
include multi-view stereopsis (MVS) techniques [4], which can derive 3D structure from overlapping
photography taken from multiple angles. Recent studies [5–9] have successfully adopted MVS to derive
dense point clouds from UAV photography. Creating an accurately georeferenced point cloud using
these methods will be referred to as UAV-MVS as it combines photogrammetric and computer vision
techniques to process the UAV data.

1.1. Structure from Motion - Photogrammetry Meets Computer Vision

The UAV-MVS process yields a 3D point cloud similar to that produced using active sensors such
as LiDAR and interferometric RADAR and the point density of the cloud is a function of the image
resolution and camera object separation. The 3D point cloud is a good data structure for storing
complex surface structure and a digital surface model (DSM) can be generated to represent the captured
surface. This complexity is not usually well represented in a digital elevation model (DEM) as these are
commonly 2.5D datasets, i.e., there is only one Z-value at each 2D coordinate (x, y) [10]. An advantage
of UAV-borne sensors is the ability to acquire data from close range at multiple viewing angles (i.e.,
nadir and oblique). A nadir view commonly used in photogrammetry results in more occlusion and
detail can be missed. “The central theme of photogrammetry is accuracy” [11], and the techniques used
in this field for deriving 3D coordinates are well-established and robust. Technological advances have
improved the efficiency and automation of these accurate established techniques. Robotics and computer
vision have also advanced significantly in recent decades. The achievement of human-level capability
for information extraction from image data is the theme of this field [11].
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The 3D reconstruction from imagery relies on the extraction of image correspondences. In recent
years both fields have sought to improve automated image matching. Matched feature points in
overlapping photography enable the derivation of 3D coordinates as point clouds. In computer vision
this is done through a process known as Structure from Motion (SfM) that incorporates MVS techniques
to derive camera position and orientation and 3D model coordinates. The success of MVS via the feature
matching process is hindered by untextured surfaces, occlusions, illumination changes and acquisition
geometry [12]. Of the recent advancements in this area, the Scale Invariant Feature Transform (SIFT)
operator [13] has proven to be one of the most robust to large image variations [12,14]. A number of
alternatives to SIFT exist such as Gradient Location and Orientation Histogram (GLOH) [15], Speeded
Up Robust Features (SURF) [16], LDAHash [17] and Principal Component Analysis (PCA)SIFT [18].
However, they all aim to achieve essentially the same result.

Advances such as SIFT have allowed MVS 3D reconstruction systems to solve for the orientation
of the camera and derive 3D positions of the feature surface points using bundle block adjustment
techniques. As outlined in Triggs et al. [19], the theory and methods for bundle adjustment have been
around for a long time. A number of software solutions exist that perform the bundle adjustment required
to solve the camera parameters (including image orientation) and generate a 3D point cloud of a scene,
including Bundler [20–22], Microsoft Photosynth [23], Agisoft PhotoScan [24] and PhotoModeler [25].
These tools are optimised for consumer-grade cameras with an uncalibrated focal length and close-range
imagery acquired from different view angles. The density of the point clouds created is a function of the
number of unambiguous point matches found. Generally, the density is quite sparse, which is adequate
for the purpose of basic 3D modelling and tourism photo collection management. To increase the
density it is necessary to revisit the images and use the knowledge of camera parameters to extract more
points. Multi-view stereo techniques such as patch-based multi-view stereo (PMVS2) [26] and cluster
multi-view stereo (CMVS) [27]) take the output from a standard bundle adjustment and perform a match,
expand, filter approach to densify the original sparse point cloud [4,28]. This point cloud densification is
usually done using the down-sampled imagery (<3 Megapixels) in order to reduce computing overhead.

In this paper we propose a modified workflow so that full-size images can be used in PMVS2
resulting in much denser and more accurate point clouds. Seitz et al. [29] compares over one
hundred MVS algorithms [30] and this approach outperforms most other algorithms (although the
objects were not natural landscapes). Strecha et al. [31] used LiDAR reference data to compare
the Furukawa and Ponce [4] approach to the Strecha and Fransens [32] and Strecha et al. [33] approaches
and their results favoured the Furukawa and Ponce [4] algorithm for completeness and relative
accuracy. A number of alternative MVS approaches have been developed such as Semi-Global Matching
(SGM) [34,35], Plane-sweep strategies [36], and the MVS pipeline developed by Vu et al. [37], some
of which are now also freely available and may be evaluated in a future study. The PMVS2 software is
open source; it integrates easily with Bundler, and creates a very dense and accurate point cloud. Whilst
SfM and MVS were not designed for environmental monitoring and modelling nor intended for UAV
imagery, these techniques are proving to be well suited to UAV data capture as they combine images
from multiple angles and varying overlap. The low UAV flying height also improves feature definition
as the technique can capture complex shapes allowing for the representation of features such as hollows
and overhangs.



Remote Sens. 2012, 4 1576

1.2. UAVs for 3D Reconstruction of Natural Landscapes

The use of UAVs for 3D reconstruction and point cloud generation via aerial imagery has been
considered in the past, particularly in recent years [5–9,38–41]. These studies usually focused on
assessing the accuracy of similar techniques, however, this manuscript presents the first attempt to
quantify the accuracy of the whole UAV-MVS close-range data capture and georeferencing process
applied to a natural landscape based on a comparison with Total Station survey data. Eisenbeiss
and Sauerbier [38] examined the use of UAVs in archaeological applications. They employed a
more traditional photogrammetric approach to obtaining 3D data (DSM and ortho-images) from UAV
photography. Neitzel and Klonowski [5] compared a number of web services and software packages
that “automatically generate 3D points from arbitrary image configurations” [5]. Whilst the accuracy
assessment performed in Neitzel and Klonowski [5] provided some insight into the comparative accuracy
of the successfully generated point clouds, they were not able to derive a general rule or prediction of
accuracy due mainly to their uncertainty relating to the influence of topography on the point clouds
produced. The images used were down-sampled from 12 Megapixels to 3 Megapixels and only PMVS2
and Photoscan produced point clouds dense enough (∼90 and ∼110 points per m2 respectively) to see
the ground control points (GCPs) across the entire study site (a relatively flat parking lot with few
GCPs). Küng et al. [39] used Pix4D [42] to generate and compare georeferenced DEMs and orthmosiacs
based on UAV GPS camera positions (geotags) and GCPs measured using DGPS and identified in the
captured imagery. They flew at 130–900 m over non-natural sites and found that the accuracy of the
geotagging was 2–8 m and the GCP method was accurate to 5–20 cm. The accuracy was strongly
influenced by the resolution of the imagery and the texture and terrain in the scene [39]. Vallet et al. [40]
compared georeferenced DTMs produced from LiDAR, Pix4D and NGATE (in SOCET SET [43]). The
UAV flew at 100–150 m over a semi-natural scene containing 12 GCPs measured using static DGPS.
The results suggest 10–15 cm accuracy is achievable when flying at 150 m. Rosnell et al. [44] looked at
imaging conditions in different seasons and how the point cloud generation performed. They chose more
natural sites but focused on a comparison between a 1 m resolution DEM resampled from a relatively
sparse Photosynth point cloud (2–3 points per m2) and a detailed terrain produced using NGATE. The
photography was captured from an altitude of 110–130 m and it is unclear how the GCPs were found
in the imagery. Hirschmüller [41] briefly discussed the use of Bundler and SGM with UAV imagery
and provided a qualitative accuracy assessment. Dandois and Ellis [8] focused on vegetation structure
mapping and chose to use GCPs from photography and DEMs resulting in poor georeferencing precision.
They compared their tree height estimates from point clouds to LiDAR methods and found that DTMs
produced using SfM techniques suffered from inaccuracy due to the complex canopy structure resulting
in poor ground point extraction. The canopy surface was well represented and compared well to the
LiDAR equivalent. Lucieer et al. [9] used the UAV-MVS technique to create point clouds of complex
terrain with 1–2 cm point spacing. The 1 cm resolution DEMs generated were used to derive terrain
derivatives such as topographic wetness index. Turner et al. [7] used the Bundler to create DSMs from
point clouds with an estimated accuracy of ∼10 cm. The derived transformations were then applied to
the matched SIFT feature locations in each image to allow georectified image mosaics to be created.
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1.3. Georeferenced Point Clouds and Reference Data

The point cloud generated by UAV-MVS is generally in an arbitrary reference frame and needs to
be registered to a real-world coordinate system. This is achieved by identifying key features in the
point cloud that can be matched to known real world coordinates. In natural environments GCPs
that stand out are not often available. The solution is to distribute highly visible targets. Once the
coordinates for feature points have been established and matched (manually or automatically) a 3D
Helmert transformation (with seven parameters: three translations, three rotations and one scale) can
be used to transform the point cloud from an arbitrary reference frame into a real-world coordinate
reference frame. The georeferenced point clouds produced need to be compared to reference data. The
use of a Total Station survey to accurately map a set of reference points around the study area is an
accepted method of obtaining “ground truth”. Walker and Willgoose [45] assessed the accuracy of their
Total Station data using error propagation theory and found that uncertainty in position is ∼1 cm and
uncertainty in elevation is ∼2 cm. Shrestha et al. [46] used traditional surveying techniques to acquire
profiles to assess the accuracy of LiDAR; Töyrä et al. [47] used Total Station elevation data to assess
LiDAR; and Farah et al. [48] used Total Station data to assess the accuracy of DEMs derived from
GPS. In a number of these studies the Root Mean Squared Error (RMSE) for each dimension and the
total RMSE have been used as accuracy metrics. There are other possible metrics such as the mean
difference, standard deviation, correlation length, minimum/maximum difference and bias [45,49,50].
The RMSE is a recognised and relatively easily understood proxy for answering this question when the
“ground truth” dataset is a set of distributed points rather than a continuous “truth” surface.

This study seeks to evaluate the accuracy of the UAV-MVS point cloud generated from imagery
of a natural environment, namely a section of protected coastline. This accuracy will be assessed by
comparing georeferenced point clouds to a Total Station and differential GPS (DGPS) survey. The site
was chosen due to the fact that it is gradually eroding and this erosion may serve as an indicator for
climate change. The erosion on this protected section of coastline is subtle and may not be visible via
traditional aerial and satellite change detection techniques. We aim to use the UAV-MVS technique to
generate dense and accurate 3D point clouds of this site and detect and quantify change over time.
This investigation into the accuracy of UAV-MVS is the first step in a series of investigations into
the application of these systems and processes to hyperspatial and hypertemporal earth observation
and environmental monitoring using UAVs. To reliably quantify change we must first verify that the
technique is sufficiently accurate to allow subtle (sub-decimetre) changes to be detected and measured.
This accuracy assessment will serve to validate our GCP georeferencing process and quantify the
uncertainty in the absolute position of the point cloud. We hypothesize that sub-decimetre change can
be monitored using the UAV-MVS process.

2. Methods

2.1. Study Area

The site chosen for this study is a 100 m section of coast in a sheltered estuary in southeast Tasmania,
Australia (Figure 1). The site was selected to evaluate the suitability of the UAV-MVS technique to
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fine-scale change detection. The southern end of the site is a salt marsh and the remainder contains
grasses along an erosion scarp with intermittent scrub bush (Figure 2).

Figure 1. Coastal monitoring site in an estuary in southeast Tasmania.
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Figure 2. Images of the site (the first two are taken looking east, the third is taken looking
west). The first image shows a ∼2 m high erosion scarp and the second shows the much
smaller 5–10 cm scarp. The third image shows that this section of coast is representative of
the area.

2.2. Hardware

The TerraLuma UAV used for this study is based on the OktoKopter platform [51]. The OktoKopter is
an electric, multi-rotor system with an approximate payload limit of 1 kg. When carrying a full payload
the flight time is approximately 6 minutes, which is more than enough to capture UAV-MVS imagery
for a ∼1–2 ha area. The on-board GPS and navigation sensors provide 5–10 m positional accuracy and
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the on-board computer is able to navigate the UAV to pre-defined GPS waypoints. The OktoKopter has
a stabilised camera mount that can carry different sensors. To create UAV-MVS point clouds a standard
digital camera can provide imagery with sufficient resolution. We have chosen the Canon 550D digital
SLR camera as it has excellent image quality and a lightweight body. The focus of the lens is fixed to
infinity, the ISO is set to 200, and the aperture is fixed to f3.5 resulting in a minimum shutter speed of
1/2000th of a second. These settings reduce motion blur. The camera is triggered once per second (1 Hz)
by the OktoKopters flight controller acquisition interval. This frequency provides a great deal of overlap
(70%–95%) and redundant photography (over 300 photos per flight).

A Leica Viva real-time kinematic dual-frequency differential GPS (RTK DGPS) was used to survey
the GCPs for UAV-MVS point cloud georeferencing. A Leica Total Station (TC407) was also used to
survey the GCPs and create a reference dataset for accuracy assessment.

2.3. Data Collection

For accurate georeferencing of the UAV imagery accurate GCP coordinates are required. We
distributed around 90 orange circular flat disks, ∼10 cm in diameter, across the study site at a spacing of
∼3–5 m. Initially traffic cones (witches hats) were used for GCPs, however the exact centre and height
reference were difficult to establish when surveying the GCPs. These disks were our first attempt at
ground control and this study was partially set up to assess if their small size was potentially reducing
georeferencing accuracy. To evaluate an alternative 21 larger 22 cm pizza trays have been used. A hole
was drilled in the centre of each tray. A 3 cm wide rim of was painted on each tray in colours designed to
allow automated unique identification (since the datasets used for this study were captured the colour has
been reconsidered and the trays now have an orange rim). For future studies we are considering custom
made cones that may provide better centre point matching once point clouds have been extracted.

The larger trays were distributed along the two sides of the study area at intervals of ∼6 m. Figure 3
shows the layout of the GCP trays and disks. We carried out both an RTK DGPS survey and an additional
Total Station survey (with the prism mounted on a pole) to provide a reference dataset of GCP coordinates
for all trays and disks. The orthometric height obtained from the Total Station survey was converted to
an ellipsoid height by subtracting a geoid-ellispoid separation value (or N value) of 3.256 m (derived
using AUSGeoid09 Geoid-Ellispoid Separation Interpolation [52]). These GCPs were surveyed using
RTK DGPS which were compared to Total Station coordinates to gauge the accuracy of the GCP survey
technique. The UAV was deployed at a flying height of 30–50 m above ground level (AGL) capturing
a photograph every second. The first flight captured nadir photography and the second flight captured
oblique photography with the camera tilted to approximately 45°. The captured photos were screened
and a subset of clear (i.e., not blurred) photos of the area were selected for the UAV-MVS process.
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Figure 3. Map of GCP layout. The trays are mainly along the edge of the study area and a
number are placed toward the central portion. This distribution is considered favourable to
accurate georeferencing. The smaller GCP disks are spread throughout the study area.

2.4. UAV-MVS

The first stage in the UAV-MVS process is feature extraction. Automated methods rely on features
that can be distinguished, described, and matched in multiple views of a scene. This is done using
the method described in Snavely et al. [21] and Snavely et al. [22] whereby a least squares bundle
adjustment is performed based on the matching of SIFT features from down-sampled versions of
the images. Lowe [13] describes the SIFT process as follows. A 128 element SIFT feature vector (or
invariant descriptor vector) is created for each interest point in the image that is determined to be
invariant to scale and orientation. The vector describes a chosen stable keypoint and is designed to
reduce the effects of illumination and shape distortion. A database of these keypoints is then created
and the matching process exhaustively compares each feature from a new image to all features in the
database. Candidates are chosen based on Euclidean distance of their feature vectors using a nearest
neighbour algorithm. A typical image can contain thousands of SIFT keypoints [13,53].

The matching of these features across overlapping photography produces a sparse set of 3D
coordinates of the surface features, the position and orientation of the camera, and radial distortion
parameters for each photograph. These outputs from the bundle adjustment are based on the lower
resolution images. The PMVS2 software can be used to “fill in” or “densify” the point cloud [4].
However, this is usually done using the down-sampled imagery rather than the original full resolution
imagery, which potentially reduces the density and accuracy of the final point cloud.

Our UAV-MVS process improves the densification by utilising the full resolution imagery in
the PMVS2 process. As portrayed in Figure 4, the process extracts SIFT features (in fact
“SIFTFast” [54] features) from a reduced resolution dataset and performs the bundle adjustment to
retrieve a sparse point cloud and camera parameters. We then transform the coordinates of the sparse
point cloud and the camera coordinates to match their equivalent values for the full resolution imagery,
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i.e., essentially scaling up the coordinate system. The radial distortion of the full resolution images is
removed and these images are then processed with PMVS2 resulting in a dense set of 3D coordinates,
including point normals. To evaluate the point derivation performance increase and assess the increase
in computation time, PMVS2 was run on down-sampled imagery and full resolution imagery. The
point cloud produced (see example point cloud from the full resolution imagery in Figure 5) is
in an arbitrary reference frame and must be transformed into a real-world coordinate system via a
Helmert transformation.

Figure 4. The UAV-MVS point cloud generation process. The key difference from the
standard work flow is at Step 6 where the full resolution imagery is undistorted and provided
to PMVS2 for point cloud densification.

1. Full size image 
stack 

3. Extract SIFTFast features 

 

 

 

 

Bundler PMVS2 

2. Resized image stack 

5. Bundle 
adjustment  
derives  
camera 

parameters 

6. Remove radial 
distortion from full  
size images 

7. Densify 
point cloud 
via PMVS2 

4. Match 
SIFTFast  
features 

PMVS2 



Remote Sens. 2012, 4 1582

Figure 5. A dense UAV-MVS point cloud after PMVS2 processing with full resolution
imagery. The majority of the surface is represented in the cloud at <1–3 cm point spacing.
The patches with no points are either scrub bush or tussock grass. The erosion scarp is
usually bare earth (see Figure 2) and is well represented in the cloud.

The georeferencing of the point cloud can be done in a number of ways. The simplest and least
accurate method is direct georeferencing. This is done by geotagging the photography using the
navigation-grade GPS on-board the UAV with approximate GPS locations of the time-synchronised
camera at the moment of capture. These coordinates are then used to calculate the Helmert
transformation parameters by matching the camera coordinates in the arbitrary reference frame to the
corresponding GPS locations. The second method, which shall be referred to as “semi-automatic GCP
georeferencing” (portrayed in Figure 6), analyses the colour attributes of the points in the point cloud
and extracts the point subsets that match the colour of the orange GCP disks. This colour is based on
a threshold collected from a selection of images of the disks (i.e., disks are located in a random set of
images and a colour picker is used to calculate an RGB average for the disks). The threshold is applied to
the Euclidean distance for each point in RGB colour space to find points that match the disk colour. When
all disk points are extracted, the reference points for the point clusters (an example of which is shown
in Figure 7(a)) need to be determined to identify the centre coordinate for each disk. An alternative
approach may be to use least squares template matching [55–57] or ellipse fitting [58] to determine
corresponding GCP locations in multiple images and then compute 3D centre point coordinates in the
arbitrary coordinate system based points in the cloud (found using cluster extraction) and their matched
feature descriptor vectors (containing corresponding image coordinates). This has not been attempted
here and is being considered for future studies. The automated extraction of GCP clusters has potential,
particularly if GCP target design is improved further. The approach will therefore be used here to
evaluate its feasibility and the resulting centre location determination accuracy.

A third method, which shall be referred to as “manual GCP georeferencing”, produces the
transformation parameters based on manually selected point clusters representing the large GCP trays
(see Figure 7(b)). The Helmert transformation derived from the large GCP trays can be validated against
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the cluster centres for the automatically extracted orange GCP disks. As with the automated approach
the cluster centres are calculated and matched to the GCP positions.

Figure 6. The UAV-MVS georeferencing process. The filter in Step 1 can either be manual
or automatic. The match in Step 3 could either be based on cluster centroid or cluster
mean. In Step 4 a Helmert transformation is derived for transforming the point cloud or
generated DSMs.
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Figure 7. GCP Clusters in the point cloud used for georeferencing by matching cluster
centres to GCP locations. (a) A small ∼10 cm orange GCP disk. The orange points can
be extracted from the cloud by applying a colour threshold. These disks do not result in
clusters with many points when flying at ∼50 m, larger disks or cones are now considered
more suitable unless flying lower or for terrestrial MVS; (b) A large 22 cm GCP tray. The
GCP tray clusters were manually extracted from the point cloud due to their varying colour.
Future studies will ensure these GCP trays (or cones) are designed and painted so that they
result in dense clusters of many points and can be found automatically.

(a) (b)

2.5. Accuracy Assessment

The accuracy of the GPS GCP survey impacts on the subsequent transformation, therefore the GPS
survey is compared to the Total Station survey results. The initial assessment relates to the choice of
mean or centroid cluster centre. To assess the effect of the cluster centre derivation method on the derived
transformations, the 12 best centroid-based and 12 best mean-based transformation results are compared
(those with a RMSE of less than 40 mm). Subsequently, an assessment of the layout and number of
GCP clusters used to derive the Helmert transformation is conducted by evaluating the results from a
number of scenarios (Scenarios 1, 2 and 3). In each scenario the transformed cluster centre locations of
the validation disks are compared to the GCP reference coordinates (Total Station data). The validation
set is a subset of GCPs not used to derive the transformation.

The first and second scenarios use a set of GCP clusters extracted manually from the large trays, i.e.,
manual GCP georeferencing. All 21 GCP trays are used for the initial transformation derivation. To
assess the effect of the number of GCPs on the accuracy of the transformation, ten and six GCP trays
distributed across the area are used (see Figure 3). Ideally, the reference dataset would be a continuous
coverage over the entire study area, unfortunately this is not available at sufficient accuracy and precision
in the study area to allow us to compare with UAV-MVS point clouds. For validation a set of orange
disk GCP clusters made up of eight or more points will be used to derive a set of cluster centres. This
validation set (see Figure 3) will be transformed using each version of the Helmert transformation derived
from the 21, 10, and 6 GCP tray sets respectively. The results will then be compared.

In the first scenario (Scenario 1), only Total Station coordinates for the GCP trays are used in the
Helmert transformation and then its accuracy is assessed against the Total Station coordinates of the
GCP disks. This provides a “best case” accuracy, even though the additional time required to undertake
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a Total Station survey may not be viable for most cases. If required, the Total Station could use tripod
mounted prisms instead of pole mounted prisms to further improve the accuracy of the GCP survey. The
second scenario (Scenario 2) uses the RTK DGPS tray coordinates for manual GCP georeferencing and
the transformed GCP disk cluster centres are compared to the Total Station GCP coordinates.

The third scenario (Scenario 3) assesses the accuracy of our semi-automatic georeferenced UAV-MVS
technique. The small orange disk GCPs are automatically extracted from the point cloud and the cluster
centres are used to derive a Helmert transformation by matching cluster centres to DGPS GCPs (i.e.,
semi-automatic GCP georeferencing). The number of points per disk cluster and GCP disk layout are
examined and six sets of disk GCPs are chosen to examine the effect of GCP density and distribution,
and the impact of cluster point count on accuracy. The GCP disk layout and the effect of poor orange
point cluster extraction (i.e., a low number of points in the cluster) can then be evaluated. Similar to
the first scenario, these sets are used to derive Helmert transformations which are applied to validation
sets of GCP cluster centres, one validation set being automatically selected GCP disks and the other
being manual extracted trays. Both validation sets are evaluated to assess whether the semi-automatic
cluster extraction or manual cluster selection processes have a systematic influence on accuracy. After
transformation the resulting cluster centre coordinates are compared. By changing the distribution and
number of GCP disks used to derive the transformation, the optimal number of GCPs and the optimal
GCP layout can be evaluated and the minimum number of points in a cluster required to achieve accurate
georeferencing can be determined.

3. Results and Discussion

The data collection and processing methods described are the proposed technique for future change
monitoring studies, hence there is a need for a clear understanding of the geometric accuracy of the
UAV-MVS point clouds. Our georeferencing technique relies on accurate and sufficient ground control
and RTK DGPS is the most time efficient means of surveying GCPs. The accuracy of the Total Station
survey is within ±10–15 mm in both horizontal and vertical components with respect to fixed control.
When these coordinates are compared to the RTK DGPS coordinates they are typically ±17 mm apart
and always less than 26 mm horizontally and less than 40 mm vertically. These results correspond to the
standard deviations reported by the GPS.

There were three UAV flights flown over the site on the 30th of November 2010, two flights for nadir
photography and one flight for oblique photography. Almost 1000 photographs were taken and from this
large set a subset of 105 photographs were chosen based on image clarity and content. These images
were down-sampled (5,184× 3,456 pixels⇒ 2,000× 1,333 pixels) and processed by Bundler. An initial
point cloud containing approximately 230,000 points was extracted (including points for each of the 105
camera locations). The Bundler output was prepared for use with PMVS2 (including transforming the
parameters to suit full resolution imagery). The full resolution images were radially undistorted using
the calculated coefficients and PMVS2 was run to produce a dense point cloud. The resulting point
cloud contained over seven million points. The processing time was 26 h 43 min 54 s (or 96,234 s) on a
Dell PowerEdge R815 with four AMD Opteron processors (32 cores at 2.2 GHz), 256 GB of RAM, and
15K RPM SAS drives. The PMVS2 processing time was 11 h 34 min 3 s (or 41,643 s). The resulting
point spacing was <1–3 cm. When PMVS2 was run on the down-sampled imagery the resulting point
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clouds had only ∼1.3 million points (or a ∼5–15 cm point spacing) and the PMVS2 processing time was
1 h 33 min 15 s (or 5595 s). The use of full resolution imagery in PMVS2 results in 5 times more points
in ∼11 times the processing time.

The colour matching parameters for orange GCP disks were determined and 67 GCP disk clusters
were extracted. The cloud was manually processed to extract 21 GCP tray clusters. Figure 3 shows the
layout of the GCP trays and disks.

3.1. Cluster Centres—Centroid or Mean?

The initial question relates to the choice of cluster centre calculation, i.e., the choice between centroid
and mean. If we consider the 24 GCP disk cluster set transformations with a total RMSE of less than
4 mm and analyse the mean RMSE for the “centroid” derived results versus the “mean” derived results
(as portrayed in Table 1) there is evidence to favour the mean over the centroid if the overall RMSE (i.e.,
ENHRMSE or combined Easting, Northing and Height Root Mean Squared Error) is used as the main
accuracy metric. However, there is only a 1.1 mm difference. The other accuracy metrics shown are
Easting RMSE (ERMSE); Northing RMSE (NRMSE); Height RMSE (HRMSE); and combined Easting
and Northing RMSE (ENRMSE).

Table 1. RMSE errors (in millimetres) for Means vs. Centroids. Height is the least
accurate dimension. The Easting and Northing error or horizontal position error is higher
for the mean based transformations. This is important for GCP matching and georeferencing
accuracy, therefore the centroid based transformation is the favoured method for determining
cluster centre.

ERMSE NRMSE HRMSE ENRMSE ENHRMSE

Centroid based transformations 15.2 14.4 53.1 14.8 34.4
Mean based transformations 18.0 15.4 49.0 16.7 33.5

These cluster points are filtered based on colour and proximity. If the filter has identified more
coloured points on one side of a disk than the other, then the mean will be biased to one side. The
centroid, on the other hand, is based on the bounding box of all pixels in a cluster, which is less
influenced by the distribution of points within the bounding box. Both methods result in a poor centre
calculation when points are only found on one side of a disk and not the other, so perhaps a measure
of shape would help highlight good GCP cluster candidates in future studies. As discussed, template
matching and ellipse fitting may be alternatives worth considering. The centroid option results in a better
ENRMSE and less favourable HRMSE with a 4 mm difference, which impacts on the overall accuracy
(i.e., ENHRMSE). The disks are flat and usually placed so that they are reasonably level, therefore the
variation in height across the disk should be much less than the variation in horizontal position. The
control is captured using DGPS and the predicted accuracy for height measurements is usually ∼4 cm,
which is an order of magnitude more than the cluster point height difference (∼4 mm) seen between the
two cluster centre options in that dimension. Based on these considerations the centroid of the clusters
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will be used to define cluster centre, as it is more robust to poor cluster point distribution and it results
in a more accurate horizontal position of the disk centres.

3.2. Automated GCP Disk Cluster Extraction Performance

Figure 8 provides a histogram of frequency distribution cluster point counts along with the mean,
median and standard deviation of those counts. These results indicate that the majority of clusters contain
between five and thirteen points, with eight being the average. More than half the clusters contain more
than eight points. The scenarios discussed below will compare the effect of using only clusters with
more than eight points versus allowing clusters with six or more points to be used.

Figure 8. A histogram of the number of automatically extracted points per cluster
representing each of the orange disks. The mean is 8.5 points per cluster, the median is
8 and the standard deviation is 3.5.

To estimate the accuracy of the georeferenced point clouds and to evaluate the effect on accuracy of
GCP layout for Scenarios 1 and 2, the Helmert transformations are compared using the RMSE derived
from the comparison of the reference Total Station dataset to the 34 transformed GCP disk cluster centres
(i.e., those with eight or more points in a cluster, see GCP tray validation set in Figure 3).

3.3. Scenario 1 and 2

Scenario 1 tests the accuracy of the georeferenced point cloud based on the manually selected GCP
tray clusters Helmert transformation (Table 2) and a Total Station GCP survey. Scenario 2 uses the
manually selected GCP tray clusters Helmert transformation (Table 3) and a DGPS GCP survey for
the accuracy assessment. The comparative accuracy of the three transformation outcomes for the
two scenarios is summarised in Tables 4 and 5. The distribution and orientation of these errors were
visualised in 3D in Eonfusion [59], allowing the visual assessment of the X, Y, and Z components of the
error. Two example views are shown in Figure 9 for the residuals for the GCP disks transformed using
the tray centroid transformation for all 21 trays (Figure 9(a)) and for 6 trays (Figure 9(b)).
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Table 2. Scenario 1 Helmert transformation results (translation parameters are in metres,
rotation parameters are in degrees and accuracies are in millimetres). Only Total Station
coordinates for the GCP trays are used in this Scenario, its accuracy is assessed against the
Total Station coordinates of the GCP disks.

Description Tx ± Ty ± Tz ± Rx ± Ry ± Rz ± Scale +/−

All trays 536, 154.565 61.1 5, 262, 637.035 98.2 30.916 68.6 −6.216 1.1 −18.8783 2.5 −32.9718 0.9 9.4409 8.2

10 trays 536, 154.522 108.6 5, 262, 636.977 169.9 30.837 118.6 34.6250 1.9 9.4528 4.3 −73.8128 1.4 9.4383 13.4

6 trays 536, 154.401 154.2 5, 262, 636.794 244.2 30.6975 165.2 3.2108 2.5 −3.1168 6.2 −48.6806 1.9 9.4352 17.8

Table 3. Scenario 2 Helmert transformation results (translation parameters are in metres,
rotation parameters are in degrees and accuracies are in millimetres). This scenario uses the
RTK DGPS tray coordinates for manual GCP georeferencing and compares the transformed
GCP disk cluster centres to the Total Station GCP coordinates.

Description Tx ± Ty ± Tz ± Rx ± Ry ± Rz ± Scale ±

All trays 536, 154.554 60.7 5, 262, 637.027 97.6 30.947 68.1 −56.4816 1.1 −31.4445 2.5 −32.9719 0.9 9.4415 8.1

10 trays 536, 154.511 108.1 5, 262, 636.970 169.1 30.870 118.1 −40.7732 1.8 3.1694 4.3 −42.3968 1.4 9.4389 13.4

6 trays 536, 154.392 152.8 5, 262, 636.792 242.0 30.732 163.7 3.2107 2.5 −3.1168 6.1 −48.6806 1.9 9.4358 17.6

Table 4. Scenario 1 result for manually selected tray transformation validation against Total
Station GCP disks (accuracies in millimetres). Total Station coordinates for the GCP trays
are assessed against the Total Station coordinates of the GCP disks.

Description GCP Count Test Count ERMSE NRMSE HRMSE ENRMSE ENHRMSE

All trays 21 34 28.1 18.7 49.2 23.4 34.4
10 trays 10 34 67.5 43.8 102.9 55.6 75.4
6 trays 6 34 143.0 97.0 171.0 120.0 140.4

Table 5. Scenario 2 result for manually selected tray transformation validation against DGPS
GCP disks (accuracies in millimetres). In this scenario RTK DGPS tray coordinates are
used to transform GCP disk cluster centres. These are assessed against the Total Station
GCP coordinates.

Description GCP Count Test Count ERMSE NRMSE HRMSE ENRMSE ENHRMSE

All trays 21 34 36.8 19.6 21.0 28.2 27.0
10 trays 10 34 76.9 43.8 73.6 60.3 66.5
6 trays 6 34 153.2 97.5 143.7 125.3 133.7
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Figure 9. Eonfusion screen captures of 3D residuals for the validation GCP set (red arrows
of residuals for each GCP are scaled by a factor of 20). The underlying surface model is
derived from the UAV-MVS point clouds (the two holes in the foreground are due to dead
scrub bushes resulting in no points). The view angle is from the west looking down on the
site. (a) The 21 tray set (i.e., All trays). The largest horizontal residuals of ∼25 cm occur
at either end of the study area (vertically the largest residuals are as high as ∼40 cm) whilst
the majority of the residuals are ∼14 cm. The smallest residuals occur on the beach; (b) The
6 tray set. The largest residuals of ∼−31 cm occur in the central portion of the study area
near the steep scarp whilst the majority of the residuals are ∼−14 cm. Again, the smallest
residuals occur on the beach.

(a)

(b)
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The higher accuracy Total Station survey of the GCP trays was expected to result in a more
accurate transformation. However, the GPS survey surprisingly showed a slightly higher accuracy
(7 mm difference in ENHRMSE). The ENRMSE is lower in all three GPS-based transformations
(approximately 0.5 mm more accurate). The HRMSE is driving the overall accuracy down, similar to
what occurred in the cluster centre centroid versus mean comparison. The error estimates for each of
the DGPS GCP derived Helmert transformation parameters (Table 3) are slightly better than the error
estimates for each of the Total Station GCP derived Helmert transformation parameters (Table 2). The
differences are small, however, as can be seen in the 3D residual portrayals (Figure 9), these slight
differences and the often major differences in the parameter values can affect the transformation results
by millimetres. Figure 9(a,b) shows that removing the majority of the GCPs from the transformation
has a significant impact on the error in the central portion of the transformed point cloud. This region
coincides with the portion of the site with most topographic relief. In both scenarios, the number of
GCPs used has a major impact on the accuracy. The size of the error doubles in each case, from <35 mm
to >75 mm in scenario 1 and <30 mm to >65 mm in scenario 2; and finally to ∼140 mm and ∼130 mm
respectively when only 6 GCPs are used.

3.4. Scenario 3

The question that arises from the previous scenarios relates to an optimal GCP distribution and number
of GCPs. Scenario 3 was developed to evaluate GCP layout and the success of automated orange disk
cluster extraction. For this scenario, a number of GCP disk subsets were used to derive transformations
via semi-automated georeferencing and the results compared to two validation sets, i.e., the GCP tray
dataset and the set of the GCP disks that were not used to derive the transformation and that had a cluster
point count of eight or more.

Figure 10 portrays the chosen GCP sets and the number of points in the clusters. Table 6
provides the derived Helmert transformation results, this set of transformations was applied to the
two validation sets. Table 7 compares the validation sets of the transformed GCP disk cluster centres
to the corresponding Total Station coordinates of the validation GCPs. Similarly, Table 8 compares
the transformed centres of the manually selected tray clusters to the reference data validation GCPs.
Figure 11 compares the RMSE of the two validation scenarios. The resulting transformed validation
sets show that the automatically extracted disk clusters provide a better georeferencing accuracy, the
maximum ENHRMSE is approximately <5 mm in all sets except set (b) (Figure 11); this effect is
similar to the results seen in the other scenarios. The choice of cluster extraction method (manual or
semi-automatic) has a systematic impact on accuracy. The impact of cluster density and distribution can
therefore be evaluated by examining either validation set result.

The four remaining GCP sets test the effect of fewer GCPs where set (c) and set (e) contain a cluster
with six points whereas sets (d) and (f) also have an additional four GCPs in the central portion of the
study area. In some cases the removal of the six point cluster improves accuracy (Table 7) whereas in
others it reduces accuracy (Table 8). The disk validation set shows a more accurate result, particularly
in the horizontal dimension. The height dimension is the major contributor to the overall error. Set
(f) using disk validation is by far the most accurate of these three options in the horizontal dimensions
(ENRMSE of 1 mm) and the HRMSE is 59 mm which is similar to other HRMSE values for the other
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four sets. Removing disks with relatively few points (<8) might improve the overall accuracy, however,
this reduction will result in fewer available GCP clusters to contribute to the transformation, which
could ultimately lead to a poorer fit of the transformation model. Due to this potential impact, and
due to the less than definitive results, it may be better to allow these six point clusters to remain in
the transformation derivation. In addition, the shape of the cluster may need to be measured to help
rank the clusters and discard those that are not circular enough in shape. The size and colour of GCP
targets is important. The ∼10 cm disks often result in GCP disk clusters of fewer than eight points.
This is influenced by both the disk size and by the height of surrounding vegetation and other occluding
surfaces. The accuracy of the cluster centre calculation is therefore affected. The larger 22 cm trays with
a higher percentage of painted surface area might provide more accurate cluster representations in the
generated point cloud.

Figure 10. GCP disk layouts, (a) Dense GCP coverage; (b) Very sparse GCP coverage;
(c) GCPs along edge (≥6 cluster points); (d) GCPs along edge (≥8 cluster points); (e) GCPs
along edge and within (≥6 cluster points); (f) GCPs along edge and within (≥8 cluster
points). The disk distribution suffers when GCPs are removed due to low point counts.
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Table 6. Scenario 3 Helmert transformation results (translation parameters are in metres, rotation parameters are in degrees and accuracies
are in millimetres). In this scenario, the small orange disk GCPs are automatically extracted from the point cloud and the cluster centres
are used to derive a Helmert transformation by matching cluster centres to DGPS GCPs.

Description Tx ± Ty ± Tz ± Rx ± Ry ± Rz ± Scale ±

Dense GCP coverage 536, 154.462 39.3 5, 262, 636.876 73.4 30.905 46.4 −6.2140 0.8 −18.8730 2.0 −58.1048 0.6 9.4474 5.9
Very sparse GCP coverage 536, 154.393 94.9 5, 262, 636.718 193.5 30.812 104.6 0.0695 1.8 −0.0215 5.4 −45.5388 1.4 9.4445 13.1
GCPs along edge
(≥6 cluster points) 536, 154.484 64.5 5, 262, 636.881 117.0 30.935 73.9 −15.6391 1.3 9.4484 3.3 −36.1137 1.0 9.4451 9.7
GCPs along edge
(≥8 cluster points) 536, 154.483 68.4 5, 262, 636.875 125.5 30.941 79.1 0.0689 1.4 −0.0236 3.5 −39.2554 1.2 9.4465 11.0
GCPs along edge and
within (≥6 cluster points) 536, 154.468 50.9 5, 262, 636.866 96.1 30.928 59.4 12.6356 1.0 −6.3064 2.7 −26.6889 0.8 9.4479 7.7
GCPs along edge and
within (≥8 cluster points) 536, 154.466 53.0 5, 262, 636.860 101.7 30.934 62.1 −12.4972 1.1 −6.3063 2.8 −58.1050 0.9 9.4495 8.5

Table 7. Result for automatically extracted GCP disk cluster transformation (based on subsets of GCP disks) validated against GCP disks
(accuracies in millimetres), see Figure 10 for mapped distributions.

Description Map GCP Count Test Count ERMSE NRMSE HRMSE ENRMSE ENHRMSE

Dense GCP coverage a 27 13 15.2 3.0 40.0 9.1 24.8
Very sparse GCP coverage b 5 31 87.9 77.6 38.7 82.7 71.3
GCPs along edge
(≥6 cluster points) c 12 24 15.5 1.3 63.1 8.4 37.5
GCPs along edge
(≥8 cluster points) d 11 24 9.6 1.7 61.7 5.7 36.1
GCPs along edge and
within (≥6 cluster points) e 16 21 6.6 2.8 59.9 4.7 34.8
GCPs along edge and
within (≥8 cluster points) f 15 21 0.7 1.3 59.1 1.0 34.1
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Table 8. Result for manually extracted GCP tray cluster transformation (based on subsets of
GCP disks) validated against manually extracted GCP trays (accuracies in millimetres), see
Figure 10 for mapped distributions.

Description Map GCP Count Test Count ERMSE NRMSE HRMSE ENRMSE ENHRMSE

Dense GCP coverage a 27 21 8.1 22.6 41.0 15.4 27.5
Very sparse GCP coverage b 5 21 64.8 47.7 44.0 56.3 53.0
GCPs along edge
(≥6 cluster points) c 12 21 6.3 25.4 62.9 15.9 39.3
GCPs along edge
(≥8 cluster points) d 11 21 13.8 28.9 61.0 21.3 39.8
GCPs along edge and
within (≥6 cluster points) e 16 21 17.0 22.8 59.7 19.9 38.2
GCPs along edge and
within (≥8 cluster points) f 15 21 24.6 24.5 58.5 24.5 39.3

Figure 11. Comparison of RMSE for each of the automatically extracted GCP disk cluster
transformations assessed against remaining GCP disks (blue) and GCP trays (red). Set (a)
(27 GCPs) performs the best due to the distribution and density of control. Set (b) (5 GCPs)
performed poorly as expected. The remaining sets show mixed results, the differences
between sets (c) and (d) and sets (e) and (f) are not definitive. This may suggest the number
of GCPs is more important than avoiding clusters with only six or seven points.

3.5. GCP Distribution

The georeferencing accuracy is strongly influenced by GCP distribution and to a lesser degree by
the cluster centre to GCP match. Based on this assessment the best distribution of GCPs is evenly
distributed throughout the focus area with a spacing of one fifth to one tenth the UAV flying height
(AGL). The terrain variation is important and GCPs should be closer together in steeper terrain. The
GCP targets should be clearly visible at the chosen flying height, camera resolution and focal length
(>10 cm in diameter for a 40–50 m flying height with the Canon 550D), and they should be visibly
different in colour to the surrounding landscape.
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3.6. Applications and Limitations

SfM was developed mainly for 3D reconstruction of buildings and other objects from overlapping
photography. Examples include modelling tourist destinations captured by hundreds of people who
made their photos available on community Internet sites and modelling from photographs and video
footage for applications such as architecture, archaeology, robotics and computer graphics. UAV-MVS
point clouds have a great deal of potential due to their high point density. This results in an extremely
detailed record of the surface at the time of data capture. A major limitation of the process is that the
point clouds generated by the UAV-MVS do not represent areas in the landscape where vegetation is
dense and complex (such as dead or dry bush with many overlapping branches) and when the surface
has a homogeneous texture (e.g., water or a tin roof). These features do not provide the visible
attributes needed for algorithms such as SIFT [13]. Techniques are emerging that may overcome these
problems [60,61].

Natural environments present a range of complexities, including variable vegetation cover, strong
topographic relief and variability in texture. Future studies will need to assess the impact of these
complexities on the accuracy of the generated point clouds as landscape snapshots. Unlike LiDAR,
the technique is not well suited to penetrating vegetation and, therefore, in vegetated areas it may not
produce an accurate DEM when applying ground filtering algorithms [8,12]. In applications where the
ground is not the focus, the point clouds can provide a very detailed picture of the surface/terrain. The
technique is well suited to canopy monitoring, particularly when combined with LiDAR derived DEMs.
Furthermore, in areas where vegetation is sparse such as along the coast, on mine sites and on farm land,
the technique offers affordable hyperspatial and hypertemporal data.

4. Conclusions

This study presented an assessment of the accuracy and applicability of point clouds derived by
multi-view stereopsis (MVS) based on Unmanned Aerial Vehicle (UAV) photography for natural
landscape mapping and monitoring. The UAV-MVS technique generates dense point clouds (1–3 cm
point spacing) of natural environments using Structure from Motion (SfM) techniques to process
imagery captured from a micro-UAV and georeferences the derived point cloud using Differential Global
Positioning System (DGPS) surveys of ground control points (GCPs). In general, the use of UAV-MVS
for 3D surface reconstruction and monitoring of natural landscapes has a lot of potential. There have
been previous studies that have looked at assessing the accuracy of similar techniques. However, this is
the first attempt to quantify the accuracy of the whole data capture and georeferencing process applied to
a natural landscape. We developed new additions to existing SfM workflows that allow for full resolution
imagery to be used instead of down-sampled imagery, resulting in denser point clouds (∼80% increase
in point density for an 87% increase in processing time based on 12 Mega-pixel versus 3 Mega-pixel
imagery). We present a case study of UAV-MVS point clouds for a natural coastal area in southeastern
Tasmania, Australia. Accurate and dense 3D point clouds are required to quantify the impact of erosion
events on the coastline. The main objective of this study was to test the geometric accuracy of the point
clouds based on Real-Time Kinematic (RTK) DGPS and Total Station surveys of GCPs. We found that,
when flying at 40–50 m, an accuracy of 2.5–4 cm can be achieved provided sufficient, clearly visible
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GCPs are distributed evenly throughout the study area, and the flight planning ensures a high degree of
overlap (70%–95%) between images. The accuracy obtained by UAV-MVS when properly controlled
is, in fact, within the magnitude of accuracy achievable by DGPS. In this study the distribution and
number of GCP disks used to derive the transformation was varied to assess the optimal GCP layout, the
number of GCPs, and the best methods for automated GCP extraction. The use of RTK DGPS to survey
the ground control compared favourably to the Total Station survey results. The estimated accuracy
of the Total Station data is ∼1 cm in position and ∼2 cm in elevation compared to DGPS accuracy of
∼2.5 cm and ∼4 cm in position and elevation respectively. Semi-automatic GCP point cluster extraction
where clusters have greater than six points can allow a cluster centroid to be calculated. When GCP
targets are well placed, large (>10 cm in diameter) and visibly different in colour to the surrounding
landscape, this cluster extraction will be more successful. Future studies will investigate improving GCP
design and matching. Semi-automatic cluster extraction enables georeferencing to sufficient accuracy
such that sub-decimetre terrain change can be detected and monitored. Assessing the accuracy of these
point clouds was an essential first step towards proving the viability of the UAV-MVS technique for
fine-scale landform change monitoring. In particular, coastal erosion monitoring requires sub-decimetre
dense and accurate 3D point clouds. Fine scale change mapping cannot be achieved to sufficient spatial
and temporal resolution with traditional airborne surveys and satellite sensors. The study site used in
this paper will be monitored in the future to assess whether subtle coastal erosion in a sheltered estuary
can be used as a climate change indicator. The MVS technique used fails to find sufficient features for
matching in areas of complex vegetation and where surfaces have a homogeneous texture, as these result
in gaps or sparse areas in the point cloud. The technique does not penetrate dense vegetation and the
resulting point cloud contains very few ground points beneath vegetation. Despite these limitations, the
techniques have great potential in a wide range of application areas beyond coastal monitoring, including
mining, agriculture and habitat mapping, and this accuracy assessment will serve to solidify the viability
of the process.
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