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Abstract: Modeling sub-canopy elevation is an important step in the processing of 
waveform lidar data to measure three dimensional forest structure. Here, we present a 
methodology based on high resolution discrete-return lidar (DRL) to correct the ground 
elevation derived from large-footprint Laser Vegetation Imaging Sensor (LVIS) and to 
improve measurement of forest structure. We use data acquired over Barro Colorado 
Island, Panama by LVIS large-footprint lidar (LFL) in 1998 and DRL in 2009. The study 
found an average vertical difference of 28.7 cm between 98,040 LVIS last-return points 
and the discrete-return lidar ground surface across the island. The majority (82.3%) of all 
LVIS points matched discrete return elevations to 2 m or less. Using a multi-step process, 
the LVIS last-return data is filtered using an iterative approach, expanding window filter to 
identify outlier points which are not part of the ground surface, as well as applying vertical 
corrections based on terrain slope within the individual LVIS footprints. The results of the 
experiment demonstrate that LFL ground surfaces can be effectively filtered using methods 
adapted from discrete-return lidar point filtering, reducing the average vertical error by 
15 cm and reducing the variance in LVIS last-return data by 70 cm. The filters also 
reduced the largest vertical estimations caused by sensor saturation in the upper reaches of 
the forest canopy by 14.35 m, which improve forest canopy structure measurement by 
increasing accuracy in the sub-canopy digital elevation model. 
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1. Introduction  

Light Detection and Ranging (LiDAR) is a widely used active remote sensing method used to 
produce high accuracy 3-dimensional models of forest structure and sub-canopy topography in 
forested areas. For ground mapping applications, generally high density discrete-return lidar (DRL) is 
used to accurately map sub-canopy topography. To map large heavily forested areas, improved methods 
are necessary which improve the ground detection accuracy of large-footprint lidar (LFL) for the next 
generation of high-altitude airborne and spaceborne lidar sensors. Active remote sensing is particularly 
sensitive to changes in biomass in recently disturbed forest or secondary growth forest. However, most 
active remote sensing systems have saturation problems in areas of high biomass forests [1,2]. Tall 
multi-layered vertically stratified forest canopy conditions can occlude the lidar signal and produce errors 
in the sub-canopy digital elevation model (DEM). This problem is particularly problematic using LFL in 
variable topography. We test new methods for improving sub-canopy DEM accuracy using LFL in a 
densely vegetated Neotropical rainforest.  

Lidar sensors are the best technique for assessing tropical forest structure and biomass at local to 
sub-national scales [3,4]. Lidar can accurately measure the forest’s vertical structure, making possible 
estimates of aboveground biomass, habitat structure and topography [5]. In forests, lidar sensors use 
the return signals to detect the height of the canopy top, ground elevation and the positions of leaves 
and branches [6]. For the purpose of this study, the two types of airborne lidar remote sensing being 
used are DRL and LFL, also commonly referred to as waveform lidar. The Laser Vegetation Imaging 
Sensor (LVIS) is an experimental version of LFL developed by NASA to fly at high altitudes (>1 km) 
and meant as a validation sensor for the Vegetation Canopy Lidar mission [7]. LFL and LVIS can be 
used interchangeably in our study. However, the methods presented are meant for any LFL survey 
including spaceborne lidar, with sufficient point density and should not be restricted to LVIS. 
Although laser altimetry can provide both the sub-canopy topography as well as vertical canopy 
structure, significant differences between DRL and LFL exist and should be emphasized. DRL lidar 
footprints are generally very small (<50 cm), while LFL such as LVIS generally have footprint sizes 
larger than 15 m [7]. In the case of a DRL survey, the ground surface within an average DRL footprint 
can be considered a planar surface [8]. Under most operating circumstances airborne LFL footprints 
are around 20–25 m in diameter and the ground surface can include considerable topographic 
variation, which dramatically affects the last-return’s waveform shape [7]. 

Large-footprint lidar was first tested on a spaceborne platform as the Geoscience Laser Altimeter 
System (GLAS), which was the sole instrument on board the Ice, Cloud and land Elevation Satellite 
(ICESat). The primary mission of ICESat was to measure the polar ice-sheets; however it was also 
used extensively to measure global vegetation height and forest structure [9–11]. One of the largest 
sources of inaccuracy in GLAS measurements was the impact of terrain slope and micro-topography 
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within the GLAS footprint, which average approximately 70 m in diameter [12]. In steep terrain, 
the trailing edge of a waveform can be elongated, stretching the last return over a vertical distance. 
Lefsky et al. showed that topography in a footprint could be directly calculated from the shape of the 
last-peak of the lidar waveforms trailing edge and developed a systematic method to correct GLAS 
waveforms for the effects of topography [13]. Spaceborne LFL is attractive to scientists and policy 
makers because of its ability to measure forest biomass at the global scale. ICESat 2 is currently being 
planned for launch in early 2016, and next generation spaceborne lidar systems will have smaller 
footprint size and increased density of measurements on the ground [14,15].  

Airborne DRL is a highly accurate and spatially explicit altimetry method, due to low collection 
altitudes and repeated passes which can collect multiple laser measurements per square meter (ppm2). 
As DRL laser pulses travel through the canopy multiple laser returns or ‘echoes’ often occur, which 
results in additional discrete point measurements of canopy structure per laser pulse. The high spatial 
resolution allows DRL to measure individual leaves and branches in the canopy profile, which requires 
low-altitude (500 m–1,500 m) airborne operation and results in a narrow mapping swath width. 
Consequently mapping large areas requires extensive flying [16]. Airborne DRL has been used in 
numerous studies in dense tropical forests and has proven effective in accurately estimating biomass, 
determining sub-canopy topography and forest structure [17–19]. 

Airborne LVIS LFL can provide a more cost effective alternative to airborne DRL due to higher 
collection altitudes and subsequently wider mapping swaths on the ground. LFL is especially well suited 
for mapping forest ecosystems due to expanded spatial coverage and a large footprint size, which 
generally exceeds the average crown diameter of large emergent trees in closed canopy forests [20,21] 
and thereby allows laser energy to reach the ground through inter-crown gaps [22]. However, over 
topographically complex terrains, LFL waveforms may suffer from beam-broadening and slope effects 
that can introduce errors in estimating surface elevation. One of the largest sources of uncertainty in 
estimating forest height and vertical structure using both DRL and LFL is accurately determining the 
sub-canopy topography under dense vegetation [23]. Producing accurate sub-canopy DEMs is a high 
priority for lidar and other sensors designed for mapping structure such as Synthetic Aperture Radar 
(SAR). Any improvements in sub-canopy topography have a considerable effect on forest structure 
and biomass estimation [16]. Using DRL data acquired at less than 1 m footprint will allow us to 
examine the errors in LFL data and correct the surface elevation and derived forest structure. 

Techniques for DRL point filtering to improve DEM quality have been well explored by both the 
academic and private sectors [24–27]. However, to our knowledge, LFL point filtering has not yet 
been rigorously examined as a method to improve the sub-canopy DEM and associated forest canopy 
measurements. Once the correction is developed over study areas where both DRL and LFL are 
acquired, the methodology can be implemented on LFL data collected in other regions. LFL can 
potentially cover larger regions compared to low-altitude DRL surveys and has proven effective 
in producing accurate estimations of sub-canopy topography, vertical canopy structure and 
biomass [28–30]. While the LVIS team has made all reasonable efforts to remove questionable data, 
errors are still present [7]. This paper proposes a semi-automated method for filtering LFL data to 
improve DEM quality and increase the accuracy of the resulting waveform data which relates directly 
to forest structure. The proposed methodology will use only the LFL sub-canopy DEM to estimate 
slope, to improve the LFL post-processing methods to account for large errors in ground elevation 
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through filtering and to understand and correct for the effects of terrain slope on sub-canopy 
topography, in the absence of a DRL DEM.  

Barro Colorado Island (BCI), Panama has variable topography and dense canopy vegetation which 
provide an ideal environment to test the canopy penetration capabilities of lidar sensors and the effects 
of sub-canopy topography. We focus on the 50-ha forest dynamics plot on BCI because it has been 
surveyed using conventional methods and is composed of mostly old-growth forest containing some of 
the largest trees on the island. It also encompasses the edge of a plateau at the southern edge of the plot 
where terrain steepness increases. This contiguous condition of steep terrain connected to surveyed old 
growth forest ideally suits our study of sub-canopy topography. The 50-ha plot also provides spatially 
accurate structural information and species composition data, which will be the focus of future 
research. The majority of forest biomass is contained in the largest trees and these are also the specific 
areas in which sensors are likely to saturate and underestimate biomass and overestimate sub-canopy 
topography [31,32].  

2. Materials and Methods 

2.1. Study Area and Field Data 

This study was conducted in the moist lowland tropical forest on Barro Colorado Island (BCI), a 
15.6 km2 island in the Gatun Lake located in the middle of the Panama Canal Zone watershed in 
central Panama (Figure 1). BCI is a research reserve for the Smithsonian Tropical Research Institute 
and is covered in tropical moist forest that receives approximately 2,637 mm of annual precipitation. It 
has a four-month dry season between January and April when 10% of the canopy species lose their 
leaves [33]. In 1980, the Forest Dynamics Plot (FDP), a 50-ha vegetation plot was established in a 
relatively uniform area of BCI’s tropical moist forest with relatively low elevation variation within the 
plot [34]. The plot is located at the top of the main plateau on BCI, although most of the plot is flat 
(<10 degrees), the edge of the plateau is in the south-eastern part of the plot and some slopes exceed 
30–40 degrees.  

In the BCI 50-ha plot, topography was surveyed every 20 m using conventional methods and in a 
finer scale where topography changed sharply (i.e., in the stream gullies) [35]. Using the kriging 
estimation method to interpolate between survey measurements, field elevation data is provided at 5 m 
intervals, resulting in 20,000 separate local ground elevation measurements within the plot. The 
surveyed plot data were used in the analysis to check the relative accuracy of the DRL DEM. In July 
2008, 86 ground elevations were measured using radio-corrected GPS in and around the 50-ha plot. 
The GPS signal is significantly degraded by overhead canopy and points were collected in tree fall 
gaps where a minimum number of satellites could be viewed by the GPS receiver. The GPS signal was 
corrected using the nearby GPS radio-correction beacons used by the Canal Authority. The GPS 
control points were collected only when GPS satellite coverage yielded vertical error of less than ±1 m 
in vertical accuracy. GPS control points were not distributed evenly throughout the plot or island due 
to heavy canopy closure and lack of reliable GPS signal. The most accurate field control points 
available for our study are 36 Differential Global Positioning System (DGPS) survey points which 
were collected in 2009 to ensure the relative and absolute accuracy of the DRM DEM.  
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Figure 1. Study Site: Barro Colorado Island (BCI) and the 50-ha Forest Dynamics Plot 
(top-left) and the discrete-return lidar (DRL) derived hillshade model to show relief, 
regional lidar data coverage (top-right), Republic of Panama (bottom). 

 

2.2. Lidar Data 

DRL data were collected over BCI during the wet season in 10 days and 11 separate flights in 2009 
by Blom Corporation and Northrop Grumman for a joint NASA/JPL and NSF project between 15 
August and 10 September. The data were collected using fixed wing aircraft with an Optech 3100 
scanning at a rate of 70 KHz. The data yielded a total of over 233 million laser shots and over 
528 million individual points, resulting in a point density of 5.6 points per square meter (ppm2) and 
8.1 returns per square meter (rpm2). The DRL data was post-processed by Blom Corporation using 
Bentley’s MicroStation to calibrate and filter the data. In addition to the automated filtering process, 
additional manual editing of the sub-canopy DEM was performed to produce a bare-earth DEM 
product. For the purpose of this study, this bare-earth DEM is considered to be actual ground surface, 
against which the LFL last-pulse elevations are tested. Previous studies have found that DRL is 
capable of creating accurate DEMs even under dense tropical vegetation using inverse distance 
weighted and ordinary kriging geostatistical techniques to estimate sub-canopy topography. A study by 
Clark et al. found a linear correlation of 1.00 m and a Root Mean Squared Error (RMSE) of 2.29 m 
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when compared with 3,859 well-distributed ground survey points at the La Selva Biological Station in 
Costa Rica [17].  

LVIS is an airborne scanning laser altimeter designed and developed at NASA’s Goddard Space 
Flight Center to be the airborne simulator for the Vegetation Canopy Lidar mission. LVIS design goals 
include: wide swath, high-altitude capability, variable sampling pattern and footprint diameter, 
outgoing and return pulse digitization, accurate ranging and automated real-time ground 
finding/tracking [7]. LVIS is a waveform digitizing sensor which records the entire time-varying 
amplitude of the backscattered energy in 30-cm vertical bins. This waveform or profile is related to the 
vertical distribution of intercepted surfaces from the top of the canopy to the ground. The incident laser 
pulse interacts with canopy and ground features and is reflected back to the telescope of the 
instrument. LVIS has demonstrated its ability to determine surface topography (including sub-canopy) 
as well as vegetation height and structure in old growth tropical rainforest [28,30]. The system is 
capable of operating up to 10 km AGL, generating a 1,000 m wide swath of data using a nominal 
footprint size of 25 m. 

LVIS LFL waveform data were collected by NASA over BCI during the dry season on 29 March 
1998 [7,16]. In LVIS post-processing, the LVIS waveforms are analyzed for the last-pulse, as well as 
percentile metrics, which correspond to the level of total light energy reflected throughout the vertical 
profile of the laser pulse as it travels through the canopy. The percent of total waveform energy under 
the waveform curve is referenced to the last-pulse elevation (Zg) to produce relative height (rh) 
quartiles [36], rh25, rh50, rh75 and rh100 (canopy top). For this study, only the last-return LVIS Zg 
elevations were used. The 1998 Panama LVIS survey, which was flown at approximately 1 km above 
ground level, consisted of 215,984 individual LVIS laser shots. 98,040 of the LVIS shots are located 
over BCI and used for the study. Each LVIS footprint was approximately 20–25 m in diameter 
depending on scan angle and topography. We chose to focus solely on the ground data due to the 
inevitable change in forest structure occurring in the nearly 10 years between lidar collections, as well 
as differences in the phenological and physical characteristics of the forest canopy between wet/dry 
seasons [21,37].  

2.3. Methodology 

We introduce a new LFL processing methodology based on the comparison of LFL and DRL to 
improve the sub-canopy DEM derived from LFL Zg last-return data. First, we assess the accuracy of 
the DRL DEM and LFL Zg digital-surface model (DSM) compared to the 50-ha plot ground survey 
elevation data. We also test the DRL DEM against Differential GPS (DGPS) and radio-corrected GPS 
control points. When we refer to the DSM, we imply that it is the unfiltered, unadjusted LVIS Zg 
surface model. Once processing occurs, non-ground points are removed from the sub-canopy DSM and 
we refer to it as a DEM, which implies some level of post-processing and an improvement on the 
original LVIS DSM. Secondly, we analyze the relationship between terrain slope and LFL Zg accuracy 
to establish empirical relationships which will be used to correct LFL Zg elevations. Third, we analyze 
topographic anomalies in the LFL DSM and create LFL Zg filters which are capable of removing some 
of the extreme outliers from the LFL sub-canopy DEM. Lastly, we test a new applied LFL processing 
methodology which applies both filtering and slope correction methods to create an improved LFL 
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DEM. The new methodology has four distinct steps to improve LFL ground detection, which draw from 
the initial analysis (Figure 2). The first is to pre-filer the LFL DSM to remove all extreme outliers and 
generate a preliminary DEM, the second uses the preliminary DEM to apply vertical corrections based 
on approximate slope to the original LFL Zg points. The third is to re-apply the filters to the slope 
adjusted LFL Zg points to produce a filtered and slope corrected DEM. The final step is a manual editing 
process to remove LFL Zg values which were not removed by the filters but appear visually anomalous. 
The end result is an improved LFL DEM and associated corrections to LFL canopy heights. The 
approach is designed to be applied over regions where DRL data is not available.  

Figure 2. The four-step methodology for improving large-footprint lidar (LFL) sub-canopy 
digital elevation model (DEM) and associated waveform canopy metrics. Data sets are in 
the upper-left (light grey) and data products are in the bottom-right (dark grey).  

 

2.3.1. Assessment of DRL and LVIS to Ground Survey Elevations in the 50-ha Plot 

To verify the accuracy of the DRL DEM, we tested the vertical differences between the survey data 
within the 50-ha plot and GPS control points. To quantify absolute elevation accuracy and compliance 
with the DRL survey precision requirements, the ground surface was independently verified using 36 
ground surveyed points on flat, hard, well defined surfaces, free of obstacles which occlude GPS 
signal. Elevation data from the 1981 field survey of the 50-ha plot were used to create a grid of 20,000 
elevation measurements at 5 m spacing. These elevations were not originally referenced to the GPS 
ellipsoid (WGS84) and were therefore used to check the relative accuracy and not the absolute 
accuracy of the DRL DEM. A third set of radio-corrected GPS control points were also used to test the 
DRL DEM under canopy cover.  

After the verification of the DRL DEM, we perform the statistical assessment of LFL Zg elevation 
and the associated DRL bare-earth DEM. By viewing both DRL and LFL points simultaneously, the 
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DRL control surface can be used to determine the best possible estimate of LFL accuracy under dense 
tropical vegetation. In this section, the DRL DEM is the Triangulated Irregular Network (TIN)  
bare-earth surface created from filtered and manually edited DRL last-return data. For the purpose of 
our study, it is considered the true surface DEM. The difference between the control DRL DEM 
surface and LFL DSM provide an assessment of the canopy penetration capabilities of LFL (Figure 2). 
The vertical differences between the LFL Zg elevation and the DRL DEM are determined by using the 
‘run control report’ function in Terrascan. This function is generally used to calculate vertical accuracy 
of DRL DEMs from ground based control points. The LFL Zg elevation is compared to the TIN 
surface created by the three nearest DRL points, using three specific parameters. The maximum size of 
the triangle is the first parameter, which was set at 20 m, the maximum slope allowed in the triangle 
was set to 90 degrees and the third parameter z-tolerance was not used due to the large triangle size. 
The control report output calculates the vertical difference by subtracting the LFL Zg elevation from 
the elevation of the TIN surface of the three nearest neighbors of the DRL DEM. All results will be 
presented in this manner, with vertical differences being DRL TIN surface minus the center of the LFL 
footprint. Negative values indicate an LFL point which is above the ground surface and positive values 
indicate a LFL Zg elevation below the DRL DEM surface. 

Figure 3. Two Triangulated Irregular Network (TIN) digital surface models colored by 
elevation. Inside the 50-ha plot (black grid) the coarse scale unfiltered LFL digital-surface 
model (DSM) and the fine scale control DRL DEM surface outside the 50-ha plot. 
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2.3.2. Establishing Empirical Relationships between LFL Zg Accuracy and Terrain Slope and 
Applying Slope Dependent Elevation Adjustments 

To quantify and model the effects of terrain slope on LFL Zg accuracy, the DRL derived DEM was 
used as a control surface to determine the terrain slope at the center of each LFL footprint. The DRL 
derived DEM was output in Terrascan from the filtered DRL bare earth TIN at three (1, 5 and 10 m) 
spatial resolutions and was used as the control surface to test LFL Zg elevation measurements. Using 
3D analyst in ArcGIS 9.3, we created three terrain slope maps derived from the DRL DEM at the same 
spatial resolutions (Figure 4). These three separate spatial resolutions were used to determine if 
changes in spatial scale had an impact on the LFL correction. Different spatial resolutions were chosen 
to ensure a smaller slope pixel size than the LFL footprint and to simulate different DRL ground point 
densities, which can be sparse in areas of heavy vegetation. As the spatial resolution becomes 
increasingly coarse, the maximum slope within the LFL footprint decreases from 68, to 66, to 48 
degrees, respectively at 1, 5 and 10 m pixel resolutions. The coarser the spatial resolution of the DEM 
image data, the fewer small terrain features are captured and the flatter the overall topography appears. 
It is important to use fine resolution slope data, in order to effectively measure small changes in terrain 
topography, which are effectively lost at larger footprints of LVIS. 

Figure 4. Map of DRL–derived slope on BCI at three spatial resolutions, 1 m (left), 5 m 
(center), 10 m (right). LFL laser pulse center points are displayed on slope map to display 
the variation in terrain at different spatial resolutions.  

 

The LFL laser energy is Gaussian in nature and focused at the center of laser footprint which is 
approximately 20–25 m in diameter, depending on terrain and laser incidence angle. The DRL DEM 
was used to determine the terrain slope in the center of each LFL footprint. To quantify the differences 
in slope, the slope image was classified into small (2 degree) bins and then converted to polygons, each 
with its own terrain slope class. The DRL-derived slope class polygons were used to sort LFL Zg 
points into separate slope classes and tested independently of each other. BCI has areas of steep 
terrain, including areas at the southern edge of the 50-ha plot on a plateau in the middle of the island, 
as well as numerous stream channels and gullies. However, LFL shots in high (+45°) slope areas were 
very rare on BCI (only 0.01% of the total LVIS shots) and were not used for this analysis. The 
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average, maximum/minimum errors, the standard deviation, average magnitude (average absolute 
value) and root mean squared (RMS) where all calculated for the LFL points in each 2 degree 
slope class.  

To remove the slope dependent biases from the LFL Zg elevations, the 10 m DRL DEM was used 
to match the spatial scale coincident with the center of the LVIS footprint. For each slope class 
determined by the slope map, the average difference between LFL Zg elevation and the DRL DEM 
was the value which was subtracted. Vertical adjustments of less than a meter were applied to slopes 
less than 30 degrees. However in terrain slopes of greater than 30 degree, progressively larger vertical 
biases were removed. In the instance that no DRL DEM is available, the LVIS pre-filtered DEM could 
be used to approximate slope at the center of each LFL footprint. The process of removing the slope 
dependent elevation bias in the absence of a control DRL DEM is detailed in Section 2.3.4.  

2.3.3. Filtering LVIS Zg Points to Remove Non-Ground LVIS Elevation Measurements  

The ‘Zg’ value is the elevation of the ‘last pulse’ or the lowest detected peak in the waveform signal 
which exceeds a predefined threshold in LVIS processing and usually corresponds to the ground 
surface. We used a TIN to visualize the DSM created from the LFL Zg and found numerous LFL Zg 
points that were clearly topographic outliers and not at the forest floor. Although the last-pulse is 
generally at or near the ground surface, a last pulse can sometimes be located in the canopy layers if 
the ground signal is not strong enough to exceed the processing threshold, due to light attenuation in 
the canopy. LFL signals can also bounce or echo in the canopy and terrain surface and report values 
which are actually below the ground surface. All the waveform metrics are specifically calculated to 
the full energy in each waveform and referenced to the lowest detectable peak or Zg in the waveform 
curve. This results in some canopy heights which are negative when referenced to the Zg elevation. 

To remove such outliers, a fully-automated point filtering algorithm uses multiple iterations to 
progressively remove non-ground measurements from the sub-canopy DEM. The filtering algorithms 
are separated into two steps. The first is meant to identify low points below the ground surface and the 
second identifies high points. Each filter uses iterative expanding windows based on comparing each 
LFL Zg elevation to its neighboring points within the expanding widows, removing points that are 
statistically unlikely to be part of the ground surface and replacing them with interpolated points 
between neighboring ground points.  

For the low point filter (Table 1), the routines ‘ClassifyLow’ and ‘ClassifyBelow’ are used to filter 
the LFL Zg elevations. The filter uses 7 iterations using ClassifyLow and 2 iterations using 
ClassifyBelow. The first 7 iterations use ClassifyLow to change LVIS_GRND (LFL ground data 
assumed to be Zg) to LVIS_ZG whenever non-ground points are encountered. The ClassifyLow will 
remove local minimum points which are more than Dz (Vertical Threshold) than any other source 
point within XyDst (Search Radius). The iterations use increasing Dz values and an increasing search 
radius as the iterations progress. The 6th and 7th iterations using ClassifyLow look for groups of 
points as opposed to single points, since sometimes groups of low points occur together and can be 
missed by the filters. The final two iterations of the filter are using the ClassifyBelow routine which 
compares each point to a plane equation fitted to closes neighbors. If the point is outside the statistical 
range (Limit STDEV) or outside an absolute elevation, the point is removed (Table 1). The Z-tolerance 



Remote Sens. 2012, 4              
 

 

1504

is the vertical limit at which the point is clearly not a part of the same plane and is therefore filtered out 
of the ground model. 

Table 1. Technical description of the Low Point filter used to identify LFL Zg points 
below the ground surface.  

Low Point Filter 

Filtering 
Iteration 

Routine From To Search for 
Vertical 

Threshold 
(m) 

Search 
Radius 

(m) 

Limit 
STDEV 

Z-
Tolerance 

1 ClassifyLow LVIS_GRND LVIS_ZG single point 2 15 NA NA 
2 ClassifyLow LVIS_GRND LVIS_ZG single point 3 20 NA NA 
3 ClassifyLow LVIS_GRND LVIS_ZG single point 3 25 NA NA 
4 ClassifyLow LVIS_GRND LVIS_ZG single point 3 30 NA NA 
5 ClassifyLow LVIS_GRND LVIS_ZG single point 3.5 35 NA NA 
6 ClassifyLow LVIS_GRND LVIS_ZG group of points 2 15 NA NA 
7 ClassifyLow LVIS_GRND LVIS_ZG group of points 3 20 NA NA 
8 ClassifyBelow LVIS_GRND LVIS_ZG single point 3 NA 3 5 
9 ClassifyBelow LVIS_GRND LVIS_ZG single point 4 NA 4 4 

The high point filter used the same expanding window filter which iteratively increases from 10 to 
60 m over 8 steps (Table 2). To filter high points from the sub-canopy DSM, the ‘ClassifyAir’ routine 
is used. The ClassifyAir routine removes isolated points that have fewer than ‘Points Required’ within 
a 3D search radius. Like the low point filter, the high point filter also looks for groups of points in 
addition to single points in two iterative steps. In dense vegetation multiple LFL signals can be lost in 
the canopy which can be missed by the filter if these routines are not used. As the window size and the 
number of points that are used in the analysis increases, the range of true elevations that may occur in 
the window potentially increases and thus the threshold used to identify if the central value is 
anomalously high or low should also increase. This threshold is specified in terms of standard 
deviations of elevations from LFL points within each window. If the LFL Zg point is statistically 
outside the statistical mean by 1–2.5 standard deviations (Table 1), it is determined to be a topographic 
outlier. As the window size increases, the number of surrounding points required for analysis increases 
and the value of standard deviations required determining a low or high point also increases which 
accommodates terrain variation within larger windows. These limits were defined by visually finding 
obvious error points in the LFL DSM and experimenting with various window sizes and statistical 
limits until no obvious error points were present in the DEM. Particular points can be targeted 
(Figure 5) by experimenting with three main parameters, filtering window size (search radius), number 
of surrounding points needed and standard deviation of surrounding points to remove each error point. 
The process of determining the correct parameters is largely a visual exercise to remove outliers and 
repeated trial and error is required to achieve the optimal filtering parameters. Using the DRL 
classification/filtering tools in Terrascan, we adapted the new filtering algorithms which account for 
the coarse spatial resolution of LFL. The Terrascan filtering algorithms (macros) will be made 
available upon request.  
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Table 2. Technical description of the High Point filter used to identify LFL Zg points 
above the ground surface. 

High Point Filter 

Filtering 
Iteration 

Routine From To Search for 
Vertical 

Threshold 
(m) 

Search 
Radius 

(m) 

Points 
Required 

Limit 
STDEV 

1 ClassifyAir LVIS_GRND LVIS_ZG single point 2 10 3 1 
2 ClassifyAir LVIS_GRND LVIS_ZG single point 3 15 3 1.5 
3 ClassifyAir LVIS_GRND LVIS_ZG single point 3 20 3 1.5 
4 ClassifyAir LVIS_GRND LVIS_ZG single point 3 25 4 2 
5 ClassifyAir LVIS_GRND LVIS_ZG single point 3.5 30 5 2.5 
6 ClassifyAir LVIS_GRND LVIS_ZG group of points 2 40 7 2 
7 ClassifyAir LVIS_GRND LVIS_ZG group of points 3 50 15 2 
8 ClassifyAir LVIS_GRND LVIS_ZG single point 3 60 20 1.5 

Figure 5. The iterative expanding windows (solid concentric circles) used by the filtering 
process is shown around a visually significant outlier LFL center point within the 50-ha 
plot (top). Concentric expanding windows occur at 10, 15, 20, 25, 30, 35, 40, 50 and 60 m. 
The filtering process is applied to all LFL Zg points across the island (middle/bottom). 
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Since the points at the edges of the island have fewer neighboring points, they often fail to be 
identified as errors due to lack of surrounding measurements. To study this effect, we included only 
the LFL Zg points 20 and 40 m inside the coastline of the island to quantify the contribution of edge 
effects on filtering accuracy. One trial was also run using only visual identification, subjective 
judgment and manual editing techniques to remove non-ground measurements, without the assistance 
of the DRL DEM. The final iteration was filtered automatically and then edited manually to remove 
any obvious errors the filters failed to remove. Over fifty attempts at improving LFL filters were used 
on the LFL Zg points and the results were compared to determine the effectiveness of each. However, 
only the most accurate filtering iterations are presented in the results section.  

2.3.4. Applied LVIS Ground Detection Methodology 

The DRL DEM is crucial for identifying the slope-dependent bias in the LFL data. However, in the 
absence of a high resolution DRL DEM, the filtering steps to remove outliers in the LFL elevation data 
can still be applied. The last step in our methodology is to use only LFL Zg data to filter and correct 
the sub-canopy DEM for slope effects and then the subsequent re-adjustment of the canopy height 
metrics. After LFL DSM data undergoes a pre-filtering process to determine the best estimate of  
sub-canopy topography, the resulting TIN is output into a gridded DEM and used to calculate slope 
across BCI. The gridded DEM is used instead of the TIN to average out large topographic outliers that 
were not removed by the filters. The slope image produced in ArcGIS was then used to perform the 
vertical adjustments to the LFL Zg points. These adjustments were made by using the pre-filtered LFL 
DEM to calculate the average vertical difference for each slope class (2 degree intervals) and removing 
the vertical bias accordingly. The empirical relationships derived from the comparison of elevation 
bias and the DRL-derived slope maps were used to determine how much vertical adjustment is made 
per slope class. After the slope corrections were applied to all unfiltered LVIS Zg points, the points 
were filtered again to remove the topographic outliers using the same filtering methods described in 
Section 2.3.3. By pre-filtering the LFL DSM, a good estimate of sub-canopy slope can be achieved, 
thus making the slope corrections more accurate. The post-filtering procedure will create the smoothed 
bare-earth surface which will provide the highest level of DEM vertical accuracy possible without a 
DRL DEM. The final step was to visually inspect the processed LFL DEM and manually remove any 
remaining topographic outliers which were not removed during the automated processing.  

3. Results and Discussion  

3.1. Assessment of DRL and LVIS to Ground Survey Elevations in the 50-ha Plot 

The results of the 36 DGPS survey points vertical accuracy assessment determined an average error 
in height of 6.9 cm, RMS value of 7.6 cm and a standard deviation of 3.2 cm. These results confirm the 
absolute and relative accuracy of the DRL survey in relation to the WGS-84 ellipsoid. The average 
vertical difference between local 50-ha plot elevation and WGS-84 DRL lidar elevations ranged from 
survey elevations 3.74 m below to 3.41 m above the DRL DEM. While the minimum and maximum 
differences are larger than 3 m, the RMS and standard deviation values are both 81.1 cm. This result 
indicates that 95% of the 50-ha field surveyed elevation is within 1.59 m of the DRL DEM. 
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Of the 86 ground elevations surveyed in 2008 under canopy cover using radio-corrected GPS, the 
average error was 53.2 cm below the DRL DEM, the differences in GPS derived elevations 
ranged from 3.4 m below the DRL DEM to 4.7 m higher than the DRL DEM. The variance between 
sub-canopy radio-corrected GPS and DRL DEM determined a RMS value of 1.75 m and a standard 
deviation of 1.68 m. This result indicates that the ground survey elevations are less variable compared 
to radio-corrected sub-canopy GPS elevations across the 50-ha plot. The 36 independent DGPS points 
provide the most accurate validation of the DRL DEM for both relative and absolute accuracy. 

A total of 98,040 individual LFL last-pulse Zg points were compared with the DRL DEM (Table 3). 
A total of 337 (0.34%) LFL shots were outside the range of the DRL or exceeded the maximum 
parameters for DEM triangulation size. These points were not considered in the analysis. Comparison 
showed that the remaining 97,703 LFL shots were on average 28.7 cm lower (bias) than the DRL 
DEM, with a root mean square error (RMSE) of 2.33 m (‘Raw’ iteration in Table 1). This analysis 
provides encouraging results, showing that 95% (2 × RMSE) of the points are lying within 4.66 m of 
the actual ground surface observed by DRL, in all terrain types and canopy conditions (Figure 6). The 
comparison also highlights some of the main outliers of greater than 10 m that should clearly be 
removed from the DSM to create the DEM. While there was a small bias between the LFL and DRL 
ground elevation, the difference could reach to 35.68 m overestimation, or 16.38 m underestimation by 
LVIS. There were a number of instances where LFL signal saturates high in the canopy (>25 m), 
which are shown in the peak of the vertical difference, however on average the LFL pulses were lower 
than the DRL surface, presumably due to slope and topography. The bias may also be systematic 
within the LVIS sensor itself but cannot be readily determined unless we perform additional GPS 
elevation assessment over flat, paved, non-vegetated targets to test the vertical accuracy in comparison 
to DRL. Such targets do not exist in the overlapping regions of LFL and DRL data over BCI. 

Table 3. Multiple filtering iterations of Laser Vegetation Imaging Sensor (LVIS) LFL Zg 
points, including interior island and slope corrected points. All distance units are meters 
and the table is organized by increasing Root Mean Squared (RMS). 

Iteration 
Total 

Points 

Points 

Removed 

% 

Removed 

DRL-

Zg 

Minimum 

Change 

Maximum 

Change 

Ave Abs 

Value 
RMS STDEV 

Filtered Interior −40 m 76,056 21,984 22.42% 0.33 −18.26 13.57 0.986 1.505 1.469 

Filtered Interior −20 m 81,315 16,725 17.06% 0.36 −18.26 13.57 1.006 1.533 1.490 

Filtering/Manual Editing 86,363 11,677 11.91% 0.44 −18.98 14.90 1.049 1.580 1.517 

Filtered -> Slope  

Corrected ->Filter 
86,397 11,643 11.88% 0.13 −21.33 14.97 0.997 1.610 1.605 

Slope Corrected -> Filtered 86,498 11,542 11.77% 0.14 −22.66 14.93 1.002 1.617 1.612 

Automatic Filtering 86,806 11,234 11.46% 0.42 −21.06 14.90 1.067 1.645 1.589 

Manual Editing 96,144 1,896 1.93% 0.34 −30.76 16.38 1.193 1.928 1.898 

Raw Interior ( −20 m) 92,074 5,966 6.09% 0.22 −35.68 16.38 1.289 2.309 2.298 

Raw Interior ( −40 m) 86,063 11,977 12.22% 0.18 −35.68 15.04 1.277 2.314 2.307 

Raw (Slope Corrected) 97,788 252 0.26% 0.00 −35.85 16.33 1.273 2.318 2.318 

Raw 98,040 0 0.00% 0.28 −35.68 16.38 1.325 2.329 2.312 
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Figure 6. Distribution of vertical errors between LFL Zg values and the DRL DEM. 
Filtered 20 and 40 m indicate only LFL Zg values that have been filtered and sampled from 
the interior of the island, 20 and 40 m from the shoreline respectively. Negative numbers 
indicate the LFL Zg value is above the ground surface. The y-axis is logarithmic to 
accentuate the edges of the histogram. 

 

3.2. Establishing Empirical Relationships between Terrain Slope and LVIS LFL Zg Vertical Accuracy  

The terrain slope analysis showed an exponential degradation of LFL ground detection accuracy as 
terrain slope increased. The analysis was performed using three independent slope maps made at 1, 5 
and 10 m resolutions. The coarser the resolution of the underlying DEM and subsequent slope map, the 
less extreme the LFL vertical errors appeared to be. When a fine spatial resolution was used to 
determine the slope at the center of the LFL footprint, the LFL vertical errors were larger. In general, 
the coarser resolution DEM will produce lower average slope across the landscape by overlooking 
small undulations in the ground surface or micro topography. The relationship between the errors in 
LFL DEM with respect to terrain slopes is shown in Figure 7. The corrections for slope are far less 
significant in terms of vertical differences compared to the large outliers removed in the filtering 
algorithms. However, slope corrections are more widespread and are applied to all LFL pulses. 
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Figure 7. Average vertical difference (x-axis) between LFL and DRL DEM (m), as a 
function of terrain slope by relative percentage of LFL points in each slope class. Negative 
vertical difference values indicate LFL points are higher than DRL DEM, i.e., DRL − LFL 
= vertical difference. Percentage of LFL points in each slope class (y-axis.) Flat terrain is 
represented at the back of the chart and increasing in steepness towards the front (z-axis). 
Each slope class is a 2 degree interval. Examined at 1 m pixel resolution. 

 

The analysis suggests that the average vertical error between LFL Zg elevations and the DRL DEM 
is a slightly parabolic function of the terrain slope (Figure 8), with flatter areas yielding more error 
than surfaces which are gently sloped (~20 degrees) and with errors increasing progressively and 
becoming more variable at higher slopes (Figure 9). This implies that in flat areas, LFL is slightly 
underestimating ground elevation, although they have lowest level of variance. Based on our 
examination of the data, we found a systematic bias in vertical error between the two sensors. However 
the exact cause has yet to be determined. This is manifested by the parabolic bend between these slope 
ranges. It is possible that if slightly taller trees are present on moderate slopes of 10–25 degrees, the 
overall accuracy of LFL Zg points will be skewed more in the positive direction due to large trees 
resulting in additional ‘high’ LFL points compared to flat terrain. Previous research has suggested that 
multilayered forest stands on slopes and ridges, are often taller compared to valley stands, some of 
which are mono-layered [38]. A systematic bias between LFL points at the edge of the swath 
compared to points in the middle of the swath could result due to the scanning angle of LVIS. The use 
of a LFL calibration flight to collect data over large flat open surfaces could potentially provide extra 
assurance that there is no systematic bias in the LFL vertical accuracy. 
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Figure 8. Average Vertical Error between LFL and DRL derived DEMs, as a function of 
terrain slope. Difference in vertical elevation (dz) between DRL DEM and LFL Zg., 
examined at three pixel sizes (1 m, 5 m, 10 m). 

 

Figure 9. Root Mean Squared Error between LFL and DRL derived DEMs, as a function 
of terrain slope, examined at three pixel sizes (1 m, 5 m, 10 m). 

 

3.3. Filtering of LVIS Zg Elevation Data 

By filtering the LFL points using only the automated process (Figure 10), we found 11,234 points 
(11.46%) misrepresenting the ground surface and identified for further adjustment (‘Automatic 
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Filtering’ iteration in Table 1). The most effective semi-automated process includes pre-filtering using 
the automatic filters, vertical adjustment based on terrain slope and a final post-processing filter. It 
results in 11,643 (11.88% of total) points removed from the DEM, resulting in a standard deviation of 
1.605 m (‘Filtered->Slope Corrected->Filtered’ iteration in Table 1). To further improve the accuracy 
of the sub-canopy DEM, an additional visual inspection and manual editing to remove non-ground 
points which were not removed by the filters was performed. The filters have more success removing  
high-points rather than low points. The maximum elevation is a single LFL Zg point above the ground 
surface is 35.7 m, which decreases to 21.06 m after filtering. Conversely, the maximum elevation of a 
LFL Zg point below the ground surface was 16.4 m, which only decreased to 13.7 m after filtering. 
The preferential removal of these high points skewed the average difference towards an increasing 
vertical bias between LFL and DRL. Before filtering, LFL was an average of 28.2 cm lower than the 
DRL DEM. After using the semi-automated filtering process, the average vertical difference decreased 
to 13 cm lower than DRL DEM. The RMS decreased from 2.3 m to 1.6 m after the semi-automatic 
filtering. It indicates the new LFL processing methodology both increases average LFL accuracy and 
reduces variance.  

Figure 10. Results of the fully-automated point filtering algorithms without manual editing 
(Iteration ‘Automatic Filtering’ in Table 1) in the area of the 50-ha forest dynamics plot on 
BCI. Raw unfiltered DSM (left), Filtered DEM (right).  

 

The filtering algorithms eliminated the majority of points which were vastly different than the 
surrounding LVIS LFL points (Table 1). The combination of a low point and high point filtering 
algorithm managed to decrease the average error in the ground height measurements and significantly 
improved the sub-canopy DEM. To address the effectiveness of the LFL point filters at the edges of 
the island, we added two LFL filtering iterations. These only included points within the interior of 
BCI, 20 and 40 m from the shoreline (‘Filtered Interior −20 m/−40 m’ iterations in Table 1). A 
noticeable increase in LFL ground detection error occurs on the coastlines of the island, or at flight line 
edges or cloud gaps where LFL points have fewer neighboring points. The results indicate that the 
filtered interior points provide a more accurate representation of the actual ground surface than 
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including LFL shots on the shorelines. All the tested measures of variance (average magnitude, RMS 
and standard deviation) decrease as fewer shoreline LFL points are analyzed. Average vertical 
difference between LFL and DRL also decreases when edge effects were excluded. The results 
indicate that the most extreme points lower than the ground surfaces were almost all on the coastlines, 
while high-points were generally inland. After filtering, only 9 of 32 LFL low points with errors 
greater than 10 m vertically were on the interior of the island and the majority of the extreme low point 
errors from 5 to 10 m vertical difference were on the coastlines. High points on the other hand were 
more concentrated in the interior of the island and were much easier to identify. However both high 
and low points with vertical errors of less than 6.5 m were difficult to identify visually. A particularly 
large number of double-bounce LFL measurements at the coastlines may systematically bias the data, 
particularly in an environment like BCI which has a very large coastline. Such an effect might be 
particularly important in coastal forests such as mangroves. The systematic average error bias may be 
explained by these edge effects, and further research is necessary to determine the importance of 
these errors.  

If filtering algorithms are too aggressive in removing outlier points, ground points can be filtered 
out, resulting in an artificial flattening of topography. The filtering methodology in this study is 
relatively simple, only using two distinct steps to remove high and low points. The methodology can 
potentially be refined and adjusted to account for terrain slope, using more aggressive point filters in 
flat terrain and more conservative filters in steep terrain. As the LFL point filtering algorithms are 
refined, the time and attention required for a manual editing process will likely be reduced. Additional 
refinements of the presented methods are highly encouraged and we plan to test our methods in 
different study sites and more highly variable terrain. Although the highest topographic variation on 
BCI is in the stream gullies and at the edge of the plateau, there are no large topographic breaks or 
large sub-canopy features. A similar study in a tall, dense forest on steep terrain would expand our 
understanding of the empirical relationships between slope and LFL ground detection accuracy. 

The results of this study are encouraging for future LFL studies and implementation of filtering 
processes should be considered in any case where ground penetration of the LFL pulses do not create a 
smooth initial DSM. By visualizing the last detected mode points in a DSM, large errors will become 
apparent. If such errors are visible, the LFL points should be filtered and the resulting waveforms 
should be corrected. If these errors go uncorrected, the corresponding canopy height measurements 
will be biased. In less dense forests with open canopies and sparse tree spacing, a visual inspection of 
the LFL Zg DSM may reveal fewer errors and filtering may be less important.  

This methodology does not address canopy height directly, but rather ground elevation and the 
subsequent adjustment of the waveform data resulting from incorrect Zg elevation accuracy. 
Improvements in the sub-canopy DEM may be applied to the associated LFL waveform metrics to 
improve the quantification of the vertical canopy structure. Since all waveform metrics are referenced 
to the Zg elevation, the waveforms whose Zg value is determined to be significantly different from the 
ground must be recalculated. Although the canopy top (rh100) value can be accurately adjusted, there 
is no attempt to recalculate intermediate waveform metrics (rh25, rh50, rh75). The waveform relative 
height (rh) metrics can potentially be recalculated by adding the vertical elevation difference between 
DRL-LFL to the waveform profile in waveforms whose Zg values are below the ground surface. 



Remote Sens. 2012, 4              
 

 

1513

However the waveforms whose Zg values are above the ground will be difficult to recalculate due to 
the lack of waveform signal from the Zg elevation to the ground [7]. 

The empirical relationships between terrain slope and LFL vertical accuracy provide equations to 
predict expected errors and a method to adjust LFL ground heights based on terrain slope. Even in the 
absence of a DRL survey, a filtered LFL DEM can provide slope estimations which improve the 
average vertical accuracy compared with a raw LFL Zg DSM. Particular attention should be given to 
LFL laser pulses which do not reach the ground surface and emerge as significant ‘high point’ outliers 
after filtering. It is possible that these ‘high points’ deserve additional analysis, as they represent the 
tallest and densest parts of the forest canopy where light is significantly occluded from the ground 
surface. Implications of inaccurate LFL last-pulse in tall forests with high canopy closure can be 
significant to biomass estimates. Lastly, the LFL structural information and filtered DEMs should 
serve as a baseline surface for forest monitoring and change detection, which would be highly 
complementary to multiple types of remote sensing including multi-spectral, hyperspectral,  
multi-angle and repeat-pass IfSAR. The fusion of filtered LFL DEMs and other types of remote 
sensing will require further research. 

This study had the benefit of having a high-density DRL survey which gave a high-resolution, high 
accuracy DEM for cross validation. The use of DRL to provide highly accurate measurements of forest 
structure and topography make it an invaluable calibration tool. However the lack of spatial coverage 
and the cost associated with DRL collection make it impractical for regional/global forest monitoring. 
When these data are available, highly accurate filtering algorithms can be written which use the DRL 
DEM to calibrate DRL. However, these filtering algorithms are designed to be used in the absence of 
such a high resolution DRL survey and are expected to stand-alone in order to be considered a viable 
solution for future wide-area LFL mapping missions. LFL is a more practical method for collecting 
wide areas from high-altitudes and has proven to be highly correlated with DRL metrics [17,29]. 
Studies using DRL and LFL in Costa Rica have shown that there is immense potential of lidar 
technology for tropical rain forest research and monitoring efforts [7,23,28–30,39].  

Remote sensing based height estimates of the tropical forest canopy have a variety of potential 
applications such as determining canopy surface roughness [40], modeling light penetration [41], 
mapping wildlife habitat [42] and studying forest dynamics, such as gap formation, distribution and 
turn-over [43]. Lidar remote sensing has been used to characterize vertical changes in structure due to 
invasive species [18] and has been fused with hyperspectral imagery to further characterize tropical 
rain forest dynamics [21,39,44]. Lidar remote sensing should be considered for habitat characterization 
and suitability studies, particularly to avifauna. Ecological theory suggests that the vertical distribution 
of the forest canopy is the most important attribute for many canopy dwelling species [45]. Vegetation 
height is allometrically related to forest structure parameters such as estimated aboveground 
biomass [46] and size-frequency spatial distribution curves [47]. More recently, Asner et al. have 
proposed a universal airborne lidar approach for tropical forest carbon mapping using DRL which will 
potentially be applied to international efforts such as UN-REDD. The methods utilize DRL to 
characterize biomass to a high degree of certainty in four different tropical forests around the world. 
However, this approach may not be applicable to coarser resolution airborne and spaceborne LFL [4]. 
This study highlights the need to further develop LFL processing and filtering techniques in order to 
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bridge the spatial gap between low-altitude DRL and regional airborne and spaceborne LFL mapping 
efforts to support UN-REDD goals.  

4. Conclusions 

The primary aim of this study was to develop a methodology to quantitatively correct sub-canopy 
elevation derived from large-footprint lidar data in dense tropical forests using small footprint  
discrete-return lidar measurements. The correction reduced the average digital elevation model error 
and variance significantly, particularly over sloped terrain. Majority (about 82%) of large-footprint 
lidar last-returns were within 2 meters of the discrete-return lidar detected ground surface, indicating 
the high accuracy of large-footprint lidar measurements in dense tropical forests. However, there were 
outliers and large errors particularly in areas of sloped terrain (about 18% of areas) with differences 
ranging from 16 to −35 m, with significantly positive bias (28 cm), suggesting relatively lower 
elevation than small footprint detected surface. By utilizing the filtering methods developed in this 
study, we improved most of the major outliers in large footprint elevation data and significantly 
reduced the digital elevation errors over Barro Colorado Island, Panama.  

There is a strong correlation between terrain slope and large-footprint lidar ground detection 
accuracy. We developed an exponential model to approximate the elevation accuracy of large-footprint 
lidar last-return as a function of within footprint slope variation. The model can be used to predict 
average large-footprint lidar elevation biases and expected errors. Over the study area, the average 
vertical error in the large-footprint lidar elevation model was a parabolic function of terrain slope, 
suggesting a systematic bias between the lidar sensors. The shape and magnitude of the errors depend 
on the density of vegetation, underlying terrain slope, and potential double bounce interaction between 
vegetation and the sloped terrain. Forest edges next to bare surfaces such as the coastline at BCI may 
also create an ideal double-bounce environment for large-footprint lidar, causing a bias in detected 
elevation with respect to DRL digital elevation model. This testing should enable us to better quantify 
the nature of the parabolic average error function as it relates to terrain slope and edge effects.  

From a lidar remote sensing perspective, Barro Colorado Island is a densely vegetated environment 
with well-studied old-growth Neotropical rainforest which provides some of the most difficult 
vegetation conditions large-footprint lidar is likely to encounter. Thus, the study’s results are 
encouraging and validate the ability of large-footprint lidar to accurately determine sub-canopy 
topography, and forest structure even under dense vegetation and topographic variation. The 
immediate implications of this study can impact how large-footprint lidar data is processed in the 
future. Implementation of filtering and slope correction methods will improve the data quality from the 
Laser Vegetation Imaging Sensor or similar large-footprint lidar sensors, designed for future NASA 
satellite sensors such as ICESAT-II or any future reincarnations Vegetation Canopy Lidar (VCL) or 
Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynl). Steep topography and dense 
vegetation could be targeted as small calibration sites to be flown with discrete-return lidar and then 
used to refine filtering algorithms and vertical slope adjustments.  

Improvements in the large-footprint lidar derived sub-canopy digital elevation model in heavily 
vegetated environments are a prerequisite to accurate large-scale tropical forest monitoring efforts. The 
authors are not aware of previous attempts to apply discrete-return lidar point cloud filtering 
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techniques and sub-canopy ground detection methods to a large-footprint lidar forest survey. This 
study is a proof-of-concept at this stage and further research is necessary to further quantify the 
impacts of variable topography, high canopy closure, data gaps and vegetated shorelines. In areas of 
high relief, prior knowledge of terrain and ground control data will help future large-footprint lidar 
sub-canopy detection efforts. Future efforts to accurately measure forest structure using large-footprint 
lidar in dense forest conditions should focus on algorithm development, waveform analysis, extreme 
terrain and investigation into the heterogeneous spatial distribution of the double-bounce phenomenon 
occurring at the edge of the forest. The results of this study present a repeatable method to improve 
large-footprint lidar forest structure measurements by creating a more accurate sub-canopy digital 
elevation model.  

Acknowledgments 

The authors thank Jim Dalling who generously provided the BCI DRL dataset to our research team. 
J. B. Blair generously offered help and guidance for LVIS data processing and Richard Condit and 
Stephen Hubbell provided information about the field survey data in the 50-ha plot. Evan Lyons and 
Vena Chu assisted the project with technical programming expertise. This research would not be 
possible without Todd Stennett, Bryant Bertrand, Arthur Edwards, Sean Bowers, Jerome Gregory and 
Donovan Tunay of Airborne 1, for providing data processing tools, data storage and use of company 
facilities and resources. Chuck Anderson, Mark Hanus, Olavi Kelle and Alastair Jenkins of Geodigital 
International Corporation were very generous in providing material support, as well as guidance and 
advice. Gregory Okin and Marc Simard for scientific guidance and research design. We owe Nicole 
Corpuz an extended credit for her work, performing the manual LVIS DSM editing and Chelsea 
Robinson for reviewing the manuscript and providing notes.  

Data set acknowledgement: Data sets were provided by the Laser Vegetation Imaging Sensor 
(LVIS) team in the Laser Remote Sensing Branch at NASA Goddard Space Flight Center with support 
from the University of Maryland, College Park. Authors: J. Bryan Blair, NASA Goddard Space Flight 
Center, David Lloyd Rabine, SSAI at GSFC, Michelle Hofton, University of Maryland College Park. 
http://lvis.gsfc.nasa.gov.  

Funding for the collection and processing of the 1998 Central America data were provided by the 
Vegetation Canopy Lidar (VCL) Science team (NASA grant number NAS597160) and NASA’s 
Interdisciplinary Science Program (IDS) (NASA grant number NNG04GO05G). Publisher: Code 694 
NASA Goddard Space Flight Center. ESRI world map data (Figure 1).  

References  

1. Ranson, K.J.; Sun, G. Mapping biomass of a northern forest using multifrequency SAR data. 
IEEE Trans. Geosci. Remote Sens. 1994, 32, 388-396. 

2. Imhoff, M.L. Radar backscatter and biomass saturation: Ramifications for global biomass 
inventory. IEEE Trans. Geosci. Remote Sens. 1995, 33, 511-518. 

3. Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon 
stocks: Making redd a reality. Environ. Res. Lett. 2007, 2, 045023. 



Remote Sens. 2012, 4              
 

 

1516

4. Asner, G.; Mascaro, J.; Muller-Landau, H.; Vieilledent, G.; Vaudry, R.; Rasamoelina, M.; Hall, J.; 
van Breugel, M. A universal airborne lidar approach for tropical forest carbon mapping. 
Oecologia 2012, 168, 1147-1160. 

5. Lefsky, M.A.; Cohen, W.B.; Parker, G.G.; Harding, D.J. Lidar remote sensing for ecosystem 
studies. BioScience 2002, 52, 19-30. 

6. Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M. Remote sensing 
for biodiversity science and conservation. Trends Ecol. Evol. 2003, 18, 306-314. 

7. Blair, J.B.; Rabine, D.L.; Hofton, M.A. The laser vegetation imaging sensor: A medium-altitude, 
digitisation-only, airborne laser altimeter for mapping vegetation and topography. ISPRS J. 
Photogramm. 1999, 54, 115-122. 

8. Sheng, Y. Quantifying the size of a lidar footprint: A set of generalized equations. IEEE Geosci. 
Remote Sens. Lett. 2008, 5, 419-422. 

9. Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; 
Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical 
regions across three continents. Proc. Natl. Acad. Sci. 2011, 108, 9899-9904. 

10. Lefsky, M.A. A global forest canopy height map from the moderate resolution imaging 
spectroradiometer and the geoscience laser altimeter system. Geophys. Res. Lett. 2010, 37, 
L15401. 

11. Simard, M.; Zhang, K.; Rivera-Monroy, V.H.; Ross, M.S.; Ruiz, P.L.; Castaneda-Moya, E.; 
Twilley, R.R.; Rodriguez, E. Mapping height and biomass of mangrove forests in everglades 
national park with srtm elevation data. Photogramm. Eng. Remote Sensing 2006, 72, 299-311. 

12. Harding, D.J.; Carabajal, C.C. IceSat waveform measurements of within-footprint topographic 
relief and vegetation vertical structure. Geophys. Res. Lett. 2005, 32, L21S10. 

13. Lefsky, M.A.; Keller, M.; Pang, Y.; De Camargo, P.B.; Hunter, M.O. Revised method for forest 
canopy height estimation from geoscience laser altimeter system waveforms. J. Appl. Remote 
Sens. 2007, 1, 013537-013518. 

14. Carabajal, C.C.; Harding, D.J.; Suchdeo, V.P. IceSat Lidar and Global Digital Elevation Models: 
Applications to DesDyni. In Proceedings of 2010 IEEE International Geoscience and Remote 
Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010; pp. 1907-1910. 

15. Chen, Q. Assessment of terrain elevation derived from satellite laser altimetry over mountainous 
forest areas using airborne lidar data. ISPRS J. Photogramm. 2010, 65, 111-122. 

16. Dubayah, R.O.; Drake, J.B. Lidar remote sensing for forestry. J. For. 2000, 98, 44-46. 
17. Clark, M.L.; Clark, D.B.; Roberts, D.A. Small-footprint lidar estimation of sub-canopy elevation 

and tree height in a tropical rain forest landscape. Remote Sens. Environ. 2004, 91, 68-89. 
18. Asner, G.P.; Hughes, R.F.; Vitousek, P.M.; Knapp, D.E.; Kennedy-Bowdoin, T.; Boardman, J.; 

Martin, R.E.; Eastwood, M.; Green, R.O. Invasive plants transform the three-dimensional 
structure of rain forests. Proc. Natl. Acad. Sci. 2008, 105, 4519-4523. 

19. Kellner, J.R.; Clark, D.B.; Hubbell, S.P. Pervasive canopy dynamics produce short-term stability 
in a tropical rain forest landscape. Ecol. Lett. 2009, 12, 155-164. 

20. King, D.A. Allometry and life history of tropical trees. J. Trop. Ecol. 1996, 12, 25-44. 
  



Remote Sens. 2012, 4              
 

 

1517

21. Drake, J.B.; Knox, R.G.; Dubayah, R.O.; Clark, D.B.; Condit, R.; Blair, J.B.; Hofton, M.  
Above-ground biomass estimation in closed canopy neotropical forests using lidar remote sensing: 
Factors affecting the generality of relationships. Global Ecol. Biogeogr. 2003, 12, 147-159. 

22. Dubayah, R.; Prince, S.; Jaja, J.; Blair, J.B.; Bufton, J.L.; Knox, R.; Luthcke, S.B.; Clark, D.B.; 
Weishampel, J.F. The Vegetation Canopy Lidar Mission. In Proceedings of Land Satellite 
Information in the Next Decade II: Sources and Applications, Washington, DC, USA, 2–5 
December 1997; pp. 2-5.  

23. Hofton, M.A.; Rocchio, L.E.; Blair, J.B.; Dubayah, R. Validation of vegetation canopy lidar  
sub-canopy topography measurements for a dense tropical forest. J. Geodynam. 2002, 34, 491-502. 

24. Zhang, K.; Chen, S.-C.; Whitman, D.; Shyu, M.-L.; Yan, J.; Zhang, C. A progressive 
morphological filter for removing nonground measurements from airborne lidar data. IEEE Trans. 
Geosci. Remote Sens. 2003, 41, 872-882. 

25. Zhang, K.; Whitman, D. Comparison of three algorithms for filtering airborne lidar data. 
Photogramm. Eng. Remote Sensing 2005, 71, 313-324. 

26. Sithole, G.; Vosselman, G. Experimental comparison of filter algorithms for bare-earth extraction 
from airborne laser scanning point clouds. ISPRS J. Photogramm. 2004, 59, 85-101. 

27. Flood, M. Lidar activities and research priorities in the commercial sector. Int. Arch. 
Photogramm. Remote Sens. Spatial Inf. Sci. 2001, 34, 3-8. 

28. Drake, J.B.; Dubayah, R.O.; Knox, R.G.; Clark, D.B.; Blair, J.B. Sensitivity of large-footprint 
lidar to canopy structure and biomass in a neotropical rainforest. Remote Sens. Environ. 2002, 81, 
378-392. 

29. Drake, J.B.; Dubayah, R.O.; Clark, D.B.; Knox, R.G.; Blair, J.B.; Hofton, M.A.; Chazdon, R.L.; 
Weishampel, J.F.; Prince, S. Estimation of tropical forest structural characteristics using  
large-footprint lidar. Remote Sens. Environ. 2002, 79, 305-319. 

30. Weishampel, J.F.; Blair, J.B.; Knox, R.G.; Dubayah, R.; Clark, D.B. Volumetric lidar return 
patterns from an old-growth tropical rainforest canopy. Int. J. Remote Sens. 2000, 21, 409-415. 

31. Lim, K.; Treitz, P.; Wulder, M.; St-Onge, B.; Flood, M. Lidar remote sensing of forest structure. 
Progr. Phys. Geogr. 2003, 27, 88-106. 

32. Clark, D.B.; Clark, D.A. Landscape-scale variation in forest structure and biomass in a tropical 
rain forest. For. Ecol. Manage. 2000, 137, 185-198. 

33. Croat, T.B. Flora of Barro Colorado Island; Stanford University Press: Stanford, CA, USA, 
1978. 

34. Condit, R. Research in large, long-term tropical forest plots. Trends Ecol. Evol. 1995, 10, 18-22. 
35. Condit, R. Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, 

Panama and a Comparison with Other Plots; Springer: Berlin, Germany, 1998. 
36. Ahmed, R.; Siqueira, P.; Bergen, K.; Chapman, B.; Hensley, S. A Biomass Estimate over the 

Harvard Forest Using Field Measurements with Radar and Lidar Data. In Proceedings of 2010 
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 
25–30 July 2010; pp. 4768-4771. 

37. Hubbell, S.P.; Foster, R.B.; O’Brien, S.T.; Harms, K.E.; Condit, R.; Wechsler, B.; Wright, S.J.; 
de Lao, S.L. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical 
forest. Science 1999, 283, 554-557. 



Remote Sens. 2012, 4              
 

 

1518

38. Gale, N. The relationship between canopy gaps and topography in a western ecuadorian rain 
forest1. Biotropica 2000, 32, 653-661. 

39. Clark, M.L.; Roberts, D.A.; Ewel, J.J.; Clark, D.B. Estimation of tropical rain forest aboveground 
biomass with small-footprint lidar and hyperspectral sensors. Remote Sens. Environ. 2011, 115, 
2931-2942. 

40. Raupach, M.R. Simplified expressions for vegetation roughness length and zero-plane displacement 
as functions of canopy height and area index. Bound.-Lay. Meteorol. 1994, 71, 211-216. 

41. Montgomery, R.A.; Chazdon, R.L. Forest structure, canopy architecture, and light transmittance 
in tropical wet forests. Ecology 2001, 82, 2707-2718. 

42. Hinsley, S.A.; Hill, R.A.; Gaveau, D.L.A.; Bellamy, P.E. Quantifying woodland structure and 
habitat quality for birds using airborne laser scanning. Functional Ecology 2002, 16, 851-857. 

43. Birnbaum, P. Canopy surface topography in a French guiana forest and the folded forest theory. 
Plant Ecology 2001, 153, 293-300. 

44. Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree 
species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375-398. 

45. Hyde, P.; Dubayah, R.; Peterson, B.; Blair, J.B.; Hofton, M.; Hunsaker, C.; Knox, R.; Walker, W. 
Mapping forest structure for wildlife habitat analysis using waveform lidar: Validation of 
montane ecosystems. Remote Sens. Environ. 2005, 96, 427-437. 

46. Clark, D.B.; Read, J.M.; Clark, M.L.; Cruz, A.M.; Dotti, M.F.; Clark, D.A. Application of 1-m 
and 4-m resolution satellite data to studies of tree demography, stand structure and land-use 
classification in tropical rain forest landscapes. Ecol. Appl. 2004, 14, 61-74. 

47. West, G.B.; Enquist, B.J.; Brown, J.H. A general quantitative theory of forest structure and 
dynamics. Proc. Natl. Acad. Sci. 2009, 106, 7040-7045. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


