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Abstract: In order to better constrain the utility of multispectral datasets in the 
characterization of surface materials, Landsat Thematic Mapper (TM) data were evaluated in 
the discrimination of geological classes in the Cape Smith Belt of Quebec, a greenstone belt 
that hosts Early Proterozoic units including those of the Purtuniq ophiolite. Ground-based 
measurements collected for the study area highlight the importance of chemical alteration 
in controlling the reflectance properties of key geological classes. The spatial distribution 
of exposed lithologies in the study area was determined through (1) image classification 
using a feedforward backpropagation neural network classifier; and (2) generation of 
fraction images for spectral end members using a linear unmixing algorithm and ground 
reflectance data. Despite some shortcomings, the database of surface cover generated by 
the neural network classifier is a useful representation of the spatial distribution of exposed 
geological materials in the study area, with an overall agreement with ground truth of 
87.7%. In contrast, the fraction images generated through unmixing are poor representations 
of ground truth for several key lithological classes. These results underscore both the 
considerable utility and marked limitations of Landsat TM data in the mapping of igneous 
and metamorphic lithologies. 
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1. Introduction 

Maps of bedrock geology provide information regarding the spatial distribution of lithological units 
at and near the Earth’s surface, but are typically not precise sources of information regarding the 
surface distribution of exposed geological materials. Remote sensing techniques increasingly offer a 
means for the successful discrimination and mapping of exposed rock classes and associated 
weathering products, providing information that is complementary to that of maps of bedrock geology. 
Opportunities for the application of remote sensing techniques in the mapping of surface geology are 
especially prevalent for arctic and arid regions where vegetation cover is sparse. Generated digital 
databases of surface lithology can be used to support activities including geological mapping, mineral 
exploration, and environmental characterization. 

The trend in remote sensing instrumentation is toward improvements in spectral and spatial 
resolutions, with hyperspectral systems and associated processing techniques offering some of the 
greatest potential for near-term enhancement of remote sensing capacities (e.g., [1,2]). However, the 
available geographic coverage of images generated by orbiting hyperspectral sensors or advanced 
multispectral sensors (e.g., Hyperion and ASTER) currently remains limited relative to that of 
multispectral systems designed to support the long-term monitoring of global surface cover. The 
Landsat Thematic Mapper (TM) series of instruments, though offering modest spectral coverage 
compared to hyperspectral systems, has retained a central role in the discrimination and mapping of 
surface cover [3,4]. TM image archives offer wide geographic and temporal coverage at no cost to 
users [5], ensuring that TM data will continue to play an important role in the study of the Earth’s 
surface in the near term. 

This study involved evaluation of the utility of Landsat TM multispectral data in the 
characterization of surface geology in the central part of the Cape Smith Belt of northern Quebec, an 
Early Proterozoic greenstone belt of considerable scientific and economic interest. The north-central 
part of the belt is composed of Watts Group mafics and ultramafics, which together comprise the 
remnants of two-billion-year-old (2 Ga) obducted oceanic crust (the Purtuniq ophiolite). This study 
sought to (1) characterize the reflectance properties of geological materials in the study area; and 
(2) determine the utility of Landsat TM data in the discrimination of lithological classes using a  
per-pixel feedforward backpropagation neural network classifier and a linear unmixing algorithm. 

2. Discrimination of Rock Types Using Multispectral Remote Sensing Data 

The reflectance characteristics of individual lithological classes (i.e., rock or soil types) are primarily a 
function of the presence and relative proportions of component minerals. The ease with which lithologies 
can be discriminated for a given study area is determined by the relative distinctiveness of the 
reflectance spectra of individual classes. For the reflectance spectra of individual minerals, absorption 
features that fall within the range of ~0.4 to 1.0 μm are mainly associated with electronic transitions 
caused by the presence of transition metals (e.g., Ti, Fe, Mn, Cu, Ni, Cr), whereas absorption features 
in the range of ~1 to 3 μm are predominantly associated with vibrational transitions caused by the 
presence of common anionic constituents such as carbonates, hydroxyls, and phosphates [6,7]. In 
practice, the greatest potential for the discrimination of lithological classes using reflected solar 
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radiation is within the range between ~0.7 and 3 μm, where variation between reflectance spectra is 
typically greatest (e.g., [8,9]).  

The reflectance properties of rocks are largely constrained by the physical and chemical nature of 
the upper several hundred micrometers of rock or grain surfaces. Thus, where chemical weathering has 
been significant, the reflectance spectra of geological materials can be controlled by surface alteration 
rinds rather than by the fresh internal mineralogies that otherwise define material types (e.g., [10]). 
Spatial variation in the degree and nature of surface weathering, and differences in the nature of 
vegetative or other cover, can complicate the potential for discrimination of individual lithological 
classes (e.g., [11,12]).  

The spectral characteristics of Landsat TM images remain superior to those of most 
orbiting multispectral systems [3]. Landsat TM images have been used with mixed success to map 
igneous and metamorphic units (e.g., [11,13–17]), as well as clastic, carbonate, and 
evaporitic lithologies (e.g., [18–22]). TM data have been applied with some success in the mapping of 
prominent zones of mineral alteration such as those marked by the presence of abundant oxides and 
hydroxides (e.g., [23,24]). In general, because the potential for discrimination of lithologies is greatest 
in the near- and mid-infrared ranges of the spectrum, TM bands 3 (0.63–0.69 μm), 4 (0.76–0.90 μm), 5 
(1.55–1.75 μm), and 7 (2.080–2.35 μm) have proven to be especially useful in past geological work 
(e.g., [17,25,26]). 

TM-based lithological discrimination efforts have had mixed success for ophiolitic and associated 
units. Several groups [17,27,28] have used TM bands 4, 5, and 7 to successfully discriminate between 
major ultramafic (serpentinized harzburguite with dunite) and mafic classes (including deeper gabbroic 
intrusives, shallower diabase intrusives, and basaltic extrusives) at the Semail ophiolite in Oman, though 
important ambiguities were associated with some hydrothermally altered zones. TM data were 
successfully used to discriminate lithological classes of the Betsimisaraka suture of Madagascar, 
including granite, gabbro, and gneiss [29]. Serpentinites, granites, mafic and intermediate volcanics, and 
marbles were properly discriminated at the Atmur-Delgo suture of Sudan [30], and TM data were used to 
separate serpentinized units from metavolcanics in the adjacent Barramiya area of Egypt [31]. TM data 
were used to generate mineralogical information for the Troodos ophiolite in Cyprus, though the 
relatively low spectral resolution of TM data weakened the utility of fraction images generated through 
unmixing procedures, allowing for the definition of no more than five end members and inhibiting the 
generation of fraction images with consistently good correspondence with ground truth [32,33].  

3. Study Area  

3.1. Overview and Surface Classes  

The Cape Smith Belt of northern Quebec is an Early Proterozoic greenstone belt that forms part of the 
Quebec-Baffin segment of the Trans-Hudson Orogen [34–38] (Figure 1). The Cape Smith Belt mainly 
consists of east-west trending mafic-ultramafic thrust sheets and was produced by southward-directed 
thrusting of allochthonous crust onto the Superior Province [39]. There are five distinct Early Proterozoic 
suites associated with the belt [38,40,41]: (1) fluvio-deltaic sediments of the Povungnituk Group 
(preserved south of the belt on unstretched continental crust of the Superior Province); (2) rift-fill 
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sediments of the Povungnituk Group; (3) transitional crust basalts (pillowed and massive basalt flows) 
of the Chukotat Group; (4) deep-water sediments (pelites interbedded with minor sandstone) of the 
Spartan Group; and (5) basalts, sheeted dikes, and mafic-ultramafic plutons of the Purtuniq ophiolite 
(Watts Group). The northern half of the belt is sparsely intruded by granitoid plutons [39]. Rocks of 
the Cape Smith Belt have been metamorphosed to between greenschist and amphibolite facies [37,42]. 
Common metamorphic equivalents in the region include schists (produced from original pelite and 
semipelite), greenschists (produced from original basalt and gabbro), and partly serpentinized 
ultramafics (produced from original peridotite). Peridotite bodies in the region host nickel-copper 
sulfide deposits rich in platinum-group elements, and these deposits are the primary focus of ongoing 
mining operations in the region [43]. 

Figure 1. Simplified geological map of the Cape Smith Belt, northern Quebec, Canada 
(after [34,35]). The location of the study area is indicated. 

  

The study area is 28 by 31 km and is located in the north-central part of the Cape Smith Belt 
(Figures 2 and 3). This study area was chosen for its excellent exposure of meta-igneous lithologies 
typical of the Watts and Chukotat groups. Bedrock exposures in the study area are dominated by: 
(1) basalt, gabbro, and peridotite of the Watts Group (Purtuniq ophiolite); (2) pelite (generally fine 
clastic sediments) of the Spartan Group (and locally of the Povungnituk Group in the south); and 
(3) basalt of the Chukotat Group (Figures 4 to 7; Table 1). Local exposures of tonalite and other 
gabbro and peridotite bodies are also distributed across the region. Exposure of bedrock and associated 
frost-shattered felsenmeer is generally very good in the region. Elevations in the study area range from 
~100 to 600 m above sea level, and prominent hills are generally associated with igneous units.  
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Figure 2. Bedrock geology of the study area (after [36]). Water bodies are depicted in 
white. The large water body in the northwestern part of the study area is Lac Watts. The 
locations of field sites depicted in Figures 4 to 7 are given. 

 

Vegetation in the study area is mainly characterized by barrens communities, including mosses and 
grasses. Biological cover is generally sparse on tonalite, peridotite, and Chukotat Group basalt units, 
and on these units is limited mainly to lichens and scattered heather (Cassiope tetragona) and moss 
(mainly Rhacomitrium lanuginosum). The extent of cover is variable on Watts Group basalt and 
gabbro units, with cover mainly consisting of heather, moss, and grass. Vegetation cover is nearly 
complete on pelite units of the Spartan Group, and consists mainly of moss and grass. The extent of 
lichen cover in the study area is variable and includes the varieties Orphniospora moriopsis, 
Stereocaulon arenarium, Allantoparmelia alpicola, Rhizocarpon geographicum, Lecidella sp., 
Aspicilia sp., and Pertusaria sp. [44]. 
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Past optical remote sensing work in the Cape Smith Belt has included evaluation of Landsat TM 
data for generation of fraction images of mafic and ultramafic lithologies in the southern part of the 
belt [45]. In that work, aerial radar data were found to be helpful in identifying blocky outcrops in the 
region, and fusion of TM and radar data was found to be useful in the discrimination of peridotite and 
mafic classes. Much recent work in the region has focused on the potential applicability of 
hyperspectral datasets toward geological mapping and mineral exploration. For example, unmixing of 
Probe-1 aerial hyperspectral data was performed in the Povungnituk Range in the southern part of the 
region, where some success in the identification of mafic rock types was attained despite complications 
related to factors such as lichen cover [46]. In a separate study, units associated with the Povungnituk 
Group and Chukotat Group were also investigated using Probe-1 aerial hyperspectral data, using x-ray 
diffraction measurements to help interpret image data [47].  

Figure 3. Landsat TM color composites of the study area depicted in Figure 2. (a) 321-RGB 
(true color). (b) 432-RGB (color infrared). (c) 543-RGB. (d) 754-RGB. 
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Figure 4. (a,b) Tonalite is well exposed only in the north-central part of the study area, 
where outcrops form a single topographic high. (c,d) Prominent exposures of pelite 
bedrock and associated felsenmeer are relatively rare in the study area. (e,f) Most pelitic 
materials are found at lower elevations in the study area and are typically extensively 
covered by grass where slopes are low. Site locations are given in Figure 2. 

 

3.2. Rock Classes and Reflectance Properties  

The key lithological classes in the study area are tonalite, pelite, peridotite, Watts Group mafics, and 
Chukotat Group mafics, all of which have been metamorphosed to greenschist and amphibolite facies. 
Of these classes, only pelitic materials are widely covered by green vegetation in the study area. 
Though the surfaces of most rock units in the region are partly covered by lichen (e.g., [44,46]), 
exposure of bedrock and associated felsenmeer is generally excellent in the study area.  
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Figure 5. Peridotite units generally form distinct topographic features in the study area. 
Though fresh peridotite surfaces are mainly green to dark gray in the study area, exposed 
surfaces generally weather to orange or brown. (a–e) Ground views of prominent exposures 
of peridotite. (f) Low-elevation aerial view of a 3-km-long peridotite mound exposed in the 
southeastern part of the study area. Site locations are given in Figure 2. 

 

The mineralogies of rock units in the study area were determined from field samples through 
petrologic characterization of associated thin sections. Rock compositions are consistent with those 
expected of parent igneous and sedimentary materials subjected to medium- to high-grade 
metamorphism. Tonalites in the study area are predominantly composed of quartz, plagioclass feldspar, 
and epidote, as well as minor sericite and chlorite. Pelites are mainly composed of quartz, plagioclase 
feldspar, and chlorite, with muscovite and calcite also being common constituents. Peridotites in the 
study area are largely composed of augite, serpentine, chlorite, epidote, and olivine. Watts Group 
mafics are predominantly composed of actinolite, epidote, and minor albite and calcite, whereas 
Chukotat Group mafics are composed of plagioclase feldspar, actinolite, epidote, and chlorite. 
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Figure 6. (a–f) Though covered in places by grasses, the basalts and gabbros of the Watts 
Group are generally well exposed in the study area. These units comprise the upper parts of 
the Purtuniq ophiolite, and variously include pillow basalts, sheeted dikes, and plutons. 
Site locations are given in Figure 2. 

 

The reflectance properties of lithological classes in the study area are summarized in Figures 8 and 9 
for both fresh and weathered surfaces. Spectra were collected for representative field samples using an 
Analytical Spectral Devices FieldSpec3 spectroradiometer equipped with a contact probe. The spectra 
of weathered surfaces are similar to those of corresponding fresh surfaces for tonalite, pelite, and Watts 
Group mafic units. In contrast, the weathered spectra of the peridotite and Chukotat Group mafic units 
are distinct from associated fresh spectra, and indicate the presence of oxides and hydroxides formed 
through aqueous alteration (e.g., absorption features suggest the presence of alteration minerals 
including hematite, goethite, and serpentine); these results are consistent with those previously 
reported for study areas in the southern part of the Cape Smith Belt [45,47]. The distinct weathering 
characteristics of the peridotite and Chukotat mafic units offer enhanced potential for their 
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discrimination from other lithological classes using remote sensing data, though similarities between 
some weathered surfaces of these particular two units also have the potential to complicate their 
spectral separation. The spectra typical of weathered tonalite surfaces and weathered pelite surfaces are 
also similar in nature, with both characterized by relatively low reflectance and an absence of 
prominent peaks or troughs. 

Figure 7. (a–c) Basalts of the Chukotat Group are well exposed in the study area. Exposed 
surfaces generally weather to orange or brown. (d) A sharp structural boundary exists 
between pelites of the Spartan Group (left) and pillowed basalts of the Chukotat Group 
(right). (e–f) Vegetative cover is especially widespread at pelitic and gabbroic units located 
immediately southeast of Lac Watts. Site locations are given in Figure 2. 

 

The reflectance properties typical of lichen surfaces in the study area are given in Figure 9 and are 
consistent with those previously reported for similar varieties (e.g., [48]). Separate lichen classes were 
not defined in this study, due to its focus on (1) per-pixel classification of multispectral data for a study 
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area that lacks lichen dominance at pixel scales of 30 × 30 m; and (2) unmixing procedures involving 
multispectral data lacking sufficient spectral resolution for definition and confident discrimination of 
secondary classes.  

Table 1. Lithological classes of the central Cape Smith Belt region (after [38]). All classes 
have been metamorphosed to between greenschist and amphibolite facies. 

Lithological Class Description and Interpretation 

Watts Group mafics 
Pillowed and massive basalt and gabbro; interpreted as mafic volcanics and 
sheeted dikes of the 2.0 Ga Purtuniq ophiolite. 

Watts Group peridotite 
Layered peridotite; interpreted as ultramafic cumulates of the 2.0 Ga 
Purtuniq ophiolite. 

Chukotat Group mafics 
Pillow basalts and minor gabbro; interpreted as transitional crust formed in 
a submarine environment between ~2.04 and 1.92 Ga. 

Spartan Group pelite 
Graphitic pelite, semipelite, and minor sandstone; interpreted as deep water 
pelagic deposits. 

Povungnituk semipelite 
Semipelite, pelite, sandstone, conglomerate, ironstone, dolomite, minor 
mafics and peridotite; interpreted as rift-fill deposits formed between ~2.04 
and 1.92 Ga. 

Tonalite Tonalite; interpreted as intrusions that developed between ~2.0–1.8 Ga. 
Other peridotite + gabbro Peridotite and gabbro; Interpreted as mafic and ultramafic cumulates. 

4. Landsat TM Data 

The Thematic Mapper (TM) image used in this study was acquired by Landsat-5 on 3 September 
1997 (Figure 3). Original image values from four image bands (TM bands 3, 4, 5, and 7) were scaled 
to the range 0.0–1.0 for use as input to neural-network classifications conducted in this study. The data 
of all six short-wave TM bands were also converted to measures of reflectance using the ENVI-
FLAASH implementation of the MODTRAN-4 radiative transfer algorithm [49], permitting the use of 
independent ground-based reflectance spectra in the unmixing of these data. 

5. Classification and Unmixing Methods  

In this study, TM data were classified using a custom implementation of a standard per-pixel 
neural-network algorithm, and unmixing procedures were conducted using the ENVI implementation 
of a standard linear deconvolution algorithm. Classification of the TM image was performed in order 
to determine the utility of these data and a neural network algorithm for per-pixel separation of major 
lithological classes associated with the Purtuniq ophiolite. Spectral unmixing was performed to 
determine the capacity of TM data and a linear algorithm for the meaningful generation of fraction 
images for key geological end members in the study area. The successful characterization of surface 
materials using fraction images can allow for the separation at sub-pixel scales of otherwise mixed 
spectral contributions of geological classes and cover materials such as vegetation.  
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Figure 8. Reflectance spectra typical of fresh (left) and exposed (right) surfaces in the 
study area for (a) tonalite, (b) pelite, and (c) peridotite. 

 

5.1. Neural Network Classification  

Feedforward backpropagation neural networks are well established as effective algorithms for use 
in image classification (e.g., [50–52]). Neural networks are especially useful for the mapping of 
geological materials, since individual geological classes are commonly characterized by substantial 
variation in reflectance properties as a result of spatial inhomogeneities in mineralogy, degree of 
chemical alteration, and surface exposure [44,53]. Unlike classifiers such as the maximum likelihood 
algorithm, neural networks do not require parameterization of training data using simple distribution 
models, allowing irregular (e.g., multimodal) distributions in training databases to be more properly 
considered during classification. 
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Figure 9. Reflectance spectra typical of fresh (left) and exposed (right) surfaces in the 
study area for (a) mafics of the Chukotat Group and (b) mafics of the Watts Group. (c) 
Reflectance properties typical of lichen surfaces. 

  

The neural network software used in this study was programmed in C on the basis of established 
neural network principles (e.g., [54]). The algorithm is a standard feedforward network that utilizes a 
backpropagation routine to calculate derivatives of training error and to adjust network weights to 
minimize error. Error is calculated on the basis of the “total sum of squares” (tss) error over all output 
nodes; the target tss error used in training corresponded to an average error per output node of 0.10. The 
sigma nonlinearity in [0.0,1.0] is used as the activation function for all hidden and output nodes [55]. 
For this study, settings for the learning rate and momentum [55] were 0.1 and 0.9, respectively. Initial 
weights were individually set at random within a possible range of −0.5 to +0.5. Each node of the 
output layer was assigned to a unique class, and class labels were assigned on the basis of activation 
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values (for a given pixel classification, the class associated with the highest node value is that which is 
assigned as a label). During initial training, target activations for “correct” and “incorrect” nodes were 
set to 0.9 and 0.1, respectively. Two intermediate layers were used in all executions in order to allow 
complex relations between image values and surface classes to be determined. On the basis of 
established neural network principles (e.g., [54,55]), intermediate layers were defined using as many 
nodes as the maximum of the number of nodes within the input and output layers. 

Scaled versions of TM bands 3, 4, 5, and 7 were used as input to the neural network. The seven 
major surface classes that dominate the surface cover of the study region were used as classification 
categories: green vegetation, water, peridotite, Chukotat Group mafics, Watts Group mafics, tonalite, 
and pelite. Ground-truth information gained during field inspection of the study area was used to guide 
the selection of 300 pixels to represent each class. These pixels were randomly separated into 66% 
training and 34% testing pixels, stratified by class so that each class was defined by 198 training pixels 
and 102 test pixels. In order to test variability previously seen in the outcomes of preliminary 
classifications based on much smaller training and test databases [56], 10 separate classifications were 
performed; neural network classification outcomes can, in certain cases, vary substantially from 
execution to execution since initial network weights are typically randomly set at the beginning of each 
classification procedure. 

5.2. Spectral Unmixing  

Linear unmixing of TM-derived reflectance data was conducted in this study using the ENVI [49] 
implementation of the “Singular Value Decomposition” method [57]. Reflectance spectra representative 
of major lithological classes and the green vegetation class are given in Figure 10, accompanied by 
equivalent spectra sampled at the resolution of TM data. The utilized unmixing method allows for the 
definition of no more than Z-1 end members if Z input images are available, and therefore the use of all 
six non-thermal TM bands allowed for the definition of only five end members. The water and tonalite 
classes were thus dropped for unmixing procedures, since these classes together account for less than 
2% of the region’s surface area. The five utilized end members therefore consisted of green vegetation, 
peridotite, Chukotat Group mafics, Watts Group mafics, and pelite. For ease of comparison, output 
fraction images generated in the unmixing procedure were set to zero for all pixel locations associated 
with water in the neural network classification result.  

6. Neural Network and Unmixing Results 

6.1. Summary of Neural Network Results  

The database of surface cover generated in the initial neural network classification is given in 
Figure 11, and a confusion matrix generated through comparison between predicted and known surface 
cover for 714 test pixels is given in Table 2. Correspondence between the classified database and 
ground truth is high: the overall agreement measure of the classified database is 0.877 (87.7%) and the 
associated Kappa statistic is 0.8562. Sites dominated by vegetation and by open water were well 
discriminated by the classifier, with 100% correspondence between predicted and ground truth cover 
for associated test pixels. Though not represented in the confusion matrix, shadowing associated with 
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topographic relief was responsible for an isolated example of confusion between water and lithological 
classes in the northwestern part of the study area (compare Figures 2 and 11). 

Figure 10. Six spectral end members were available for use in the unmixing of TM data 
for land pixels. Full-resolution end members are given at left and TM spectral equivalents 
are given at right. 

 

The pelite class was relatively well discriminated in the classified database, with an overall 
correspondence between predicted and actual ground cover of 92.2% for test pixels. Confusion 
between the pelite class and other lithologies was nevertheless prominent in some areas, such as the 
notable confusion with the Watts Group mafics in the northwestern part of the study area where partial 
vegetative cover is widespread. The Chukotat Group mafics class was generally well discriminated, 
with an overall agreement of 86.3% for test pixels, and with the greatest level of confusion associated 
with the peridotite and Watts Group mafics classes. The Watts Group mafics class was discriminated 
with an overall success of 78.4%, with the highest levels of confusion associated with the Chukotat 
Group mafics class. The tonalite class was discriminated with an overall success of 79.4%, with the 
greatest confusion existing between this class and the peridotite class. The tonalite class was associated 
by the classifier with infrastructure-related deposits including those associated with dirt roads and 
mining activities in the eastern part of the region. The peridotite class was discriminated with an 
overall success of 77.5%, with the greatest level of confusion associated with both the Chukotat Group 
mafics and tonalite classes. All prominent peridotite exposures in the study area were properly 
discriminated by the neural network. Anomalous mapped exposures of peridotite along roads in the 
eastern part of the study area are related to local mining and transportation activities, which are 
primarily focused on ultramafic units. 
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Figure 11. Map of exposed geological classes for the study area, generated by the neural 
network classification of scaled versions of TM bands 3, 4, 5, and 7. 

 

Nine additional neural network classifications were generated using the same training and test 
datasets (but with different randomly-set initial weight magnitudes), in order to test the consistency of 
neural network results. The average overall correspondence between predicted classes and ground truth 
information was 87.26% for the ten classifications, with a standard deviation of only ~1%. The success 
of neural network classifications was therefore consistent across all 10 executions, indicating that the 
high variation typical of the results of preliminary classifications generated for this region using a 
much smaller training and test database [56] was not reproduced in this study.  
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Table 2. Confusion matrix for the neural network classification of Landsat TM data. The 
overall agreement measure is 0.877 (87.7%), and the corresponding Kappa value is 0.8562. 
Labels for mafic classes are abbreviated: “C-mafic” refers to Chukotat Group mafics and 
“W-mafic” refers to Watts Group mafics. 

  1 2 3 4 5 6 7    
  veg water peridotite C-mafic W-mafic tonalite pelite  Total Commission 

1 veg 100.0%              100.0% 0.0% 
2 water   100.0%            100.0% 0.0% 
3 peridotite     77.5% 6.9% 1.0% 19.6% 3.9%  108.8% 28.8% 
4 C-mafic     6.9% 86.3% 18.6% 1.0% 1.0%  113.7% 24.1% 
5 W-mafic       6.9% 78.4%   2.9%  88.2% 11.1% 
6 tonalite     9.8%     79.4%    89.2% 11.0% 
7 pelite     5.9%   2.0%   92.2%  100.0% 7.8% 
            

Total   100% 100% 100% 100% 100% 100% 100%      
Omission   0.0% 0.0% 22.5% 13.7% 21.6% 20.6% 7.8%    12.3% 

6.2. Summary of Unmixing Results 

Fraction images generated through the linear unmixing of reflectance data derived from six TM 
bands are given in Figure 12 for the green vegetation class and for four lithological classes (peridotite, 
pelite, Watts Group mafics, and Chukotat Group mafics). The validity of unmixing results is not 
consistent across all classes.  

The green vegetation class is well represented in its corresponding fraction image, with the greatest 
continuous cover of vegetation properly associated with pelitic and Watts Group mafic bedrock. The 
fraction image for the green vegetation class also appropriately associates a near absence of vegetative 
cover with bedrock units composed of Chukotat Group mafics, peridotite, and tonalite. Though some 
useful geological information can be gained from the unmixing results, none of the four lithological 
classes is properly represented in the fraction images. Several of the largest and most continuous 
outcrops of peridotite are properly associated with high (>70%) predicted surface exposure, but not all 
outcrops are identified with sufficient prominence (compare the neural network result for peridotite in 
Figure 11 with the unmixing result in Figure 12), and surface exposure of several percent to several 
tens of percent is incorrectly predicted for this class over much of the study area. The Chukotat Group 
mafics class is wrongly predicted to have surface exposure of up to tens of percent over most of the 
study area, and the broad region of known exposure of Chukotat Group mafics (as appropriately 
depicted in both Figures 2 and 11) is erroneously not highlighted with elevated estimates of surface 
exposure (Figure 12). Exposure of the Chukotat Group mafics class is appropriately mapped as low or 
non-existent at prominent exposures of peridotite, a class with which the Chukotat Group mafics class 
has some spectral overlap and thus with which it might otherwise be expected to be confused. 
Exposure of the Watts Group mafics class is properly associated in unmixing results with the less 
vegetated parts of prominent mafic mounds in the northern part of the study area, but exposure is 
erroneously predicted for this class at some peridotite mounds and across the main southern region of 
exposure of the Chukotat Group mafics. Though appropriately delimited in some areas, the pelite class 
is incorrectly predicted to have its highest surface cover at the large peridotite outcrop in the north-
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central part of the study area, and is also wrongly predicted to have exposure of several percent to 
several tens of percent across some mafic mounds in the north. 

Figure 12. Fraction images generated by the unmixing of TM reflectance data on the basis 
of five end members. White and black correspond to 70% and 0% exposure, respectively. 
The mapped area is identical to that depicted in Figures 2, 3, and 11.  

 

7. Discussion  

The database of surface cover generated for the study area through neural network classification of 
TM data (Figure 11) provides surface-cover information that is generally consistent with ground-truth 
information and complements the information presented in bedrock maps. Class pairs successfully 
discriminated in the classified database include (1) ultramafics (peridotite) from Chukotat Group mafics; 
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and, to a lesser extent, (2) Chukotat Group mafics from Watts Group mafics. Similarly, tonalite and 
pelite are relatively well discriminated in the database. Unmixing results (Figure 12) generally do not 
compare favorably with neural network classification results (Figure 11). Though exposure of the 
green vegetation class was properly delineated in unmixing results, predicted exposure of four key 
lithological classes was not fully consistent with ground truth. The fraction image for the peridotite 
class appropriately highlights the general surface distribution of this class, but does not properly depict 
smaller outcrops of peridotite and incorrectly predicts low to moderate exposure of this class over 
much of the study area. The fraction images for the Chukotat Group mafics, Watts Group mafics, and 
pelite suffer from widespread confusion with each other and with the peridotite class.  

The results generated in this study underscore both the considerable utility and the marked 
limitations of Landsat TM data in the mapping of lithological classes in the study area. In particular, 
per-pixel classification techniques will be of much greater utility than unmixing techniques in the TM-
based discrimination of lithological classes with characteristics similar to those of the Purtuniq 
ophiolite and associated units. Confusion in the classified database between the Chukotat Group 
mafics and the Watts Group mafics is not a serious issue, as both of these classes are composed of 
geologically similar materials (basaltic extrusives and gabbroic intrusives). Confusion between the 
pelite class and the Watts Group mafics is more problematic, but is mainly limited to areas of 
substantial vegetative cover in the northwestern part of the study area.  

Unlike per-pixel classification algorithms, unmixing techniques offer the potential for 
discrimination of classes at sub-pixel scales. Unmixing procedures can thereby be used to separate the 
spectral influence of classes that cover surfaces to varying degrees (e.g., vegetation), which has the 
potential to allow classifiers to better discriminate rock and soil end members. The limited utility of 
unmixing results in this study suggests a need for improved spectral resolution of input imagery, which 
can increase the number of allowable end members and can further assist in the spectral separation of 
lithological classes of interest [32,33].  

Beyond consideration of the spectral limitations of TM images, the neural network classification 
and linear unmixing procedures used in this study may have been undermined by the partial lichen 
cover of materials exposed in the study region. The complicating effects of lichen are well known for 
multispectral and hyperspectral work involving northern study regions (e.g., [58–60]), and in unmixing 
exercises might ideally be best mitigated through the definition of separate lichen end members 
(e.g., [61]). As noted above, unmixing procedures are also likely to have been further complicated by 
the spectral diversity of lithological classes in the study area. Whereas the feedforward 
backpropagation neural network can effectively parameterize variation in the spectral character of 
training data (e.g., [44]), the unmixing technique essentially assumes spectral homogeneity within 
individual classes of interest. 

8. Conclusions 

Chemical alteration is a factor that strongly influences the reflectance properties of several 
lithological classes exposed in the north-central part of the Cape Smith Belt, Quebec, a region partly 
underlain by materials of the Purtuniq ophiolite. In particular, the reflectance spectra of peridotite and 
Chukotat Group basalt are largely determined by the materials that comprise associated weathering 
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rinds, including oxides and hydroxides. The spectral characterization of individual lithological classes 
in the study area is complicated by spatial variation in the nature and degree of alteration of mafic and 
ultramafic materials. 

A database of surface cover generated for the study area by a per-pixel neural network classifier is a 
useful spatial representation of exposed geological materials associated with the Purtuniq ophiolite, 
and complements the information content of maps of bedrock geology. The overall agreement with 
ground truth for the neural network classification is 87.7% (Kappa = 0.8562), with corresponding class 
agreements ranging between ~77% (peridotite) and 100% (green vegetation and water classes). Errors 
of omission and commission in the database are as high as 22.5% and 28.8%, respectively. Despite the 
good general agreement between predicted and known surface cover, notable confusion exists in the 
classified database between mafics of the Watts Group and Chukotat Group, and between the pelite 
class and mafics of the Watts Group. Confusion also exists between the peridotite class and several 
igneous and sedimentary classes in the study area. The most prominent exposures of ultramafic 
materials, of special significance in the region because of an association with nickel-copper sulfide 
deposits, were nevertheless well discriminated by the neural network classifier. In contrast, fraction 
images generated for the study area through linear unmixing of TM-derived reflectance data are of 
uneven quality. Whereas the fraction image for the vegetation class is an excellent representation of 
ground truth, the geological fraction images are generally characterized by widespread confusion 
between classes.  

Shortcomings in the validity of generated fraction images suggest a need for improved spectral 
resolution of input imagery, which would increase the number of allowable end members and could 
improve the spectral separation of lithological classes of interest. Differences in the reflectance 
properties of geological classes can be subtle, and hyperspectral images (acquired over dozens to 
hundreds of individual wavelength ranges) have the potential to provide the constraints necessary for 
the successful separation of such classes in unmixing exercises (e.g., [53]). Past studies involving 
ophiolitic units have suggested that multispectral data can be useful in the general discrimination of 
igneous and metamorphic lithologies (particularly when working with data acquired in the near- and 
shortwave-infrared), but have also highlighted the need for improved spectral resolution to support the 
deconvolution of image or reflectance data. The results of the present study support these findings, and 
suggest that per-pixel classification techniques will be of greater utility than unmixing techniques in 
the TM-based discrimination of geological classes with reflectance properties similar to those of 
classes exposed in the study area. The cloud cover and long winters typical of the north-central Cape 
Smith Belt have hindered the successful acquisition of advanced multispectral and hyperspectral 
datasets from orbit (e.g., Hyperion images). Future research will investigate the relative utility of 
datasets such as these as they become available.  
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