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Abstract: An approach based on the nearest neighbors techniques is presented for 

producing thematic maps of forest cover (forest/non-forest) and total stand volume for the 

Terai region in southern Nepal. To create the forest cover map, we used a combination of 

Landsat TM satellite data and visual interpretation data, i.e., a sample grid of visual 

interpretation plots for which we obtained the land use classification according to the FAO 

standard. These visual interpretation plots together with the field plots for volume mapping 

originate from an operative forest inventory project, i.e., the Forest Resource Assessment 

of Nepal (FRA Nepal) project. The field plots were also used in checking the classification 

accuracy. MODIS satellite data were used as a reference in a local correction approach 

conducted for the relative calibration of Landsat TM images. This study applied a  

non-parametric k-nearest neighbor technique (k-NN) to the forest cover and volume 

mapping. A tree height prediction approach based on a nonlinear, mixed-effects (NLME) 

modeling procedure is presented in the Appendix. The MODIS image data performed well 

as reference data for the calibration approach applied to make the Landsat image mosaic. 

The agreement between the forest cover map and the field observed values of forest cover 

was substantial in Western Terai (KHAT 0.745) and strong in Eastern Terai (KHAT 

0.825). The forest cover and volume maps that were estimated using the k-NN method and 

the inventory data from the FRA Nepal project are already appropriate and valuable data 
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for research purposes and for the planning of forthcoming forest inventories. Adaptation of 

the methods and techniques was carried out using Open Source software tools. 

Keywords: data imputation; GIS; k-nearest neighbors; mapping forest variables; nonlinear 

mixed-effects model; Open Source software; Landsat; MODIS  

 

1. Introduction 

A general aim of forest inventory projects is to form a basis for decision-making and sustainable use 

of forest resources in the form of objective statistics at the national and regional levels and for 

administrative units. Conventionally, the statistics are obtained for pre-defined areas for the  

species-specific measures of the total volume of living and dead trees and merchantable volume 

characteristics. Questions and issues raised by the United Nations Framework Convention on Climate 

Change (UNFCCC) through its “Reducing Emissions from Deforestation and Forest Degradation” 

(REDD) program have increased the need for forest resource inventories and widened the application 

of their results. Countries already having suitable national forest inventory (NFI) frameworks can 

harness their NFIs to support also the assessment of green house gas (GHG) emissions. When 

developing countries, such as Nepal, for instance, are addressing this kind of task, technical and 

methodological support provided for assessing the forest resources may become even more important 

than before [1]. Due to the repetition requirements and temporal and geographical consistency 

conditions, the possibilities for utilizing remote sensing technology together with field inventory data 

are increasingly gaining the interest of the organizations responsible for the forest inventory activities 

related to the REDD mechanism (e.g., [2,3]). The operative inventory project “Forest Resource 

Assessment of Nepal” (FRA Nepal) belongs to the Finnish Government’s development aid toolkit. The 

FRA Nepal project is an example of an action that aims to develop cost-efficient inventory techniques 

based on information obtained from both conventional field inventories and remote sensing materials. 

Biometrical modeling is also needed for inventory calculations that make use of remote sensing: for 

example, the calculation system for the FRA Nepal project consists of models for height or volume by 

tree species, which are necessary for imputing the values missing from the field data. Obtaining data 

from the tree level to the stand or plot level, or to the regional, level is a process by which inventory 

calculations and reporting modules are developed. To put all of this together, a forest inventory 

database is needed.  

To combine field sample plot observations, digital map data and satellite image data, for 

classification or prediction purposes, multi-source forest inventory (MSFI) techniques have been 

developed [4,5]. Even if the pure inventory results are directly derived from the characteristics 

measured by the field sample plots, a multi-source approach aiming at the wall-to-wall mapping of 

forest characteristics requires remote sensing data. The necessary input data, i.e., the ground-truth data, 

comes from the inventory calculation system and from the Forest Inventory Database. Tools for 

processing GIS and image data are further utilized, for example, when classifying satellite image 

pixels and performing overlaying analysis. 
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A representative and large enough field sample for MSFI is a prerequisite, so that the estimation 

results are of a satisfactory quality and accurate enough. However, if only a small or very sparse 

sample of field plots is available, it must be possible to not only utilize plots on the same image, but 

also on neighboring images. For the FRA Nepal project, at minimum, it would be necessary to have a 

relative calibration procedure that would make it possible to combine several satellite images with 

respect to the target inventory areas. In our study case in Terai region, the main factors affecting the 

availability and the usability of Landsat TM images are cloudiness and seasonal variations. If cloud-free 

images are available, one alternative for relative calibration is then to adjust the radiometric properties 

of a subject image to those of a reference image [6–11]. Seasonal variation effects between images can 

partly be decreased by aiming to use images from the same time of year [6]. For tackling the problems 

caused by cloudiness, gap-filling approaches have been presented, where several images are used to 

cover the gaps in a selected image [12].  

The aim of this study was to produce thematic maps of forest cover (forest/non-forest) and total 

stand volume for the Terai region in southern Nepal using a non-parametric, k-nearest neighbor 

technique. The pre-processing of Landsat TM images was conducted by using MODIS satellite data as 

a reference in a local correction approach. Mixed modeling was utilized for the generalization of 

sample tree characteristics that was conducted as a part of calculating the stand volumes by sample 

plots (see Appendix). The approach used to create the forest cover map was based on a combination of 

Landsat TM satellite data and visual interpretation data, i.e., a sample grid of visual interpretation plots 

by which we obtained the land use classification according to the FAO standard. For the volume 

mapping procedure, we utilized Landsat TM data, the forest cover map and the total stand volumes 

obtained by the field measured sample plots.  

2. Materials 

2.1. Study Area 

The target area of the study, i.e., the Terai region, is located approximately between  

26°15′–29°15′N and 80°00′–88°15′E. The Terai region is the southernmost of the five physiographic 

zones of Nepal and comprises 14% of the country’s land (Figure 1). In contrast to the other four 

physiographic zones, the terrain in this subtropical lowland plateau is topographically less complex, 

and its elevation varies from 60 to 330 m above sea level [13]. In this study, the western Terai 

comprises the two leftmost sub-regions of Terai, whereas the eastern Terai consists only of the 

rightmost sub-region of Terai (Figure 1).  

2.2. Image Materials  

Three Landsat TM satellite images from the western part of Terai and four images from the eastern 

part of Terai were included in two image mosaics, one covering western Terai in the UTM zone of 44 

and another covering eastern Terai in the UTM zone of 45 (Table 1). 

MODIS surface reflectance products provide an estimate of the surface spectral reflectance as it 

would be measured at ground level in the absence of atmospheric scattering or absorption. The 
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MODIS Surface Reflectance product “MYD09A1” is a combination of the best possible observations 

in an eight-day time period at a 500-m resolution at the sinusoidal projection [14].  

MYD09A1 material from the h25v06 and h24v06 sinusoidal tiles were utilized as image mosaic 

reference materials. The eight-day time interval of both MODIS products was from 10 February 2010 

to 17 February 2010. The MODIS’s data coverage could be found from a time interval close to the 

dates for the Landsat images, which provided a quite reasonable starting point for image mosaic 

building and image interpretation purposes. One Landsat TM image from the north-western side of 

Terai was taken in 2011, thus representing a difference of just one year from the time-point of the 

MODIS data. 

Figure 1. Map of Nepal with borders of the physiographic zones. The study area, i.e., 

Terai, is denoted by the grey-fill color. 

 

Table 1. Information about the Landsat TM satellite imagery used in this study. Path and 

row information is given in the WRS-2 system. 

Area Date Path Row 

Western Terai 

2011-03-07 144 40 

2010-02-25 143 41 

2010-02-18 142 41 

Eastern Terai 

2010-02-11 141 41 

2010-02-04 140 41 

2010-02-04 140 42 

2010-01-28 139 42 
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The MODIS Reprojection Tool [15] was used to transform the MODIS data into a UTM zone44 

and zone45 coordinate system with wgs84 datum and 500-m resolution. All other image processing 

operations were carried out using Open Source tools and the utilities of GDAL, Quantum GIS and 

GRASS GIS [16–18]. 

2.3. Two-Phase Sampling and Visual Interpretation Data  

The setup of the ongoing national forest inventory was designed for the FRA Nepal project and 

formed the basis for this study. In the FRA Nepal project, a stratified systematic cluster sampling 

design with a two-phase cluster sampling method was applied [19,20].  

In order to locate the sampling units, i.e., the sample plots within square clusters, throughout the 

whole country, a 4 km by 4 km grid was created. Each cluster consisted of six sample plots in two 

parallel lines in a North-South direction; the sample plots were 150 m apart and the distance between 

the North-South lines was 300 m (see Figure 2(a)). The sampling of clusters with the sample plots for 

the field measurements was conducted in two phases [20]. During the first phase, each cluster of six 

plots along the 4 km by 4 km grid covering the entire country was visually classified according to land 

use class (1 = Forest area (n = 1,603), 2 = Other wooded area (n = 131), 3 = Agricultural area with tree 

cover (n = 796), 4 = Agricultural area without tree cover (n = 4,168), 5 = Built-up area with tree cover 

(n = 202), 6 = Built-up area without tree cover (n = 119), 7 = Roads (n = 3), 8 = Other area (n = 229), 

9 = Water area (n = 282), where n is the number of observations in Terai) and accessibility. 

Technically, the interpretation was implemented using Google Earth, a virtual globe and satellite 

imagery viewer [21] consisting of freely available satellite images and additional data layers, including 

RapidEye imagery, topographical maps and the sampling grid for Nepal. In this study, the visual 

interpretation data for the Terai physiographic zone comprised altogether 7,533 plotwise observations 

within 1,281 clusters. During the second phase, the selection of clusters for field measurements was 

done by strata. The first stratum contained the clusters having at least one plot in the forest area and the 

second stratum contained the clusters with no forest area plots in the 1
st
 phase sample. During this 

sampling process, more weight was given to the clusters comprising plots on forest area. Only the 

four-corner plots of the cluster in a square with a side length of 300 m were used in these analyses (see 

Figure 2(a)). 

2.4. Field Data 

The field data for this study were collected from the plots sampled for field measurements between 

2010 and 2011 in the FRA Nepal project. The field-measured inventory data were finally obtained 

from 217 sample plots within 56 clusters on forest land (171 plots) and non-forest land (46 plots). 

The type of sample plot employed in the FRA Nepal project is a Concentric Circular Sample Plot 

(CCSP), which is recommended for inventories of natural forests that are large in size and 

characterized by many old trees and a wide variety of tree species (see [20,22]). In the FRA Nepal 

project, the CCSPs consist of four circular plots having radii of 20, 15, 8 and 4 m and diameter-at-

breast-height threshold ranges of ≥30.0, 20.0–29.9, 10.0–19.9 and 5.0–9.9 cm, respectively. Since all 
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the FRA Nepal sample plots have been established on a permanent basis, the positions of the trees 

were obtained via bearing and distance measurements (Figure 2(b)).  

Figure 2. Layout of the inventory cluster (a) and Concentric Circular Sample Plot (CCSP) 

(b) used in the FRA Nepal project. In the case of Terai, one cluster comprises four CCSPs 

(1, 3, 4 and 6) in a square with 300 m sides, i.e., plots number 2 and 5 of the basic cluster, 

which are used in the visual interpretation (first stage sample) and are excluded from the 

field inventory (second stage sample). In (b), the symbols r1,..., r4 are for the radii of the 

four circular plots (4, 8, 15 and 20 m, respectively) within the CCSP.  

(a) 

 

(b) 
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Both the diameter at breast height and the tree species were measured for every tallied tree, whereas 

every fifth tree was treated as a sample tree, for which the total tree height was also measured. General 

stand characteristics and plot-specific variables, such as the land use class, forest type, aspect, x and y 

coordinates obtained for the center point using a GPS device, soil depth, main site type, forest type, 

development status and origin of the forest were also collected. Descriptive statistics for the sample 

plot data collected from Terai are given in Table 2. 

Table 2. Descriptive statistics for the CCSP data, (n = 217): Dg is the basal area weighted 

mean diameter at breast height (cm), Hg is the basal area weighted mean height (m), N is 

the number of living trees (ha
−1

), G is the stand basal area of living trees (m
2
∙ha

−1
) and V is 

the stand volume of living trees (m
3
∙ha

−1
). 

Variable Minimum Median Mean Standard Deviation Maximum 

Dg 0.00 35.64 36.95 25.70 145.11 

Hg 0.00 17.44 16.13 9.23 40.00 

N 0 288.5 473.6 546.3 2735.5 

G 0.00 16.09 15.00 10.45 43.31 

V 0.00 130.94 137.53 112.66 499.59 

The existing tree-level volume models developed by Sharma and Pukkala [23] for Nepalese tree 

species are applicable when the species, diameter at breast height and total height, measured or 

predicted, are known. The logarithmically linearized allometric models developed by Sharma and 

Pukkala [23] were available for a total of 21 individual tree species and two additional tree species 

groups. Heights were needed for all tally trees in order to apply these existing stem volume models 

based on the height of the tree and its diameter at breast height (see Sharma and Pukkala [23]). 

Therefore, it was necessary to develop a height generalization model with species-specific parameters 

designed for the inventory data from Terai. 

The height prediction approach based on a nonlinear, mixed-effects (NLME) modeling procedure 

(see, e.g., Pinheiro and Bates [24]) is presented in the Appendix. The heights of the tally trees (see 

Appendix) were predicted first. Stem volumes were thereafter predicted for all the tallied trees using 

species-specific volume functions of Sharma and Pukkala [23]. Finally, total stand volumes by sample 

plots were calculated (Table 2). 

3. Methods 

3.1. Building a Satellite Image Mosaic  

The FAO NAFORMA project has produced a technique for creating image mosaics for the purposes 

of forest inventory planning [8]. A MODIS (MYD09A1) image, i.e., an atmospherically corrected image 

with a 500-m pixel size, was used as a reference for atmospherically correcting the Landsat images. The 

basic principle was to match the mean and the variance of the data in both images by taking into account 

the difference in the pixel sizes [8]. In the technique developed by Tomppo et al. [8], simple linear 

mapping was calculated for each band and the correction was calculated separately for each Landsat 
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image when making the mosaics. The averaging was used for the Landsat data to account for the larger 

resolution in the MODIS data. 

The approach developed by Tomppo et al. [8], which they initially used in Tanzania, is close to that 

of the one developed by Tuominen and Pekkarinen [7] for local radiometric correction to assist with 

the multi-source forest inventory. In their study, the idea was to adjust the BRDF-affected intensities in 

digitized aerial photography to match the local intensities of the reference imagery, i.e., the Landsat 5 

TM satellite data. Thus, the reference imagery needs to be independent of the BRDF. The local 

calibration was based on adjusting the mean values in a correction unit, for example, a moving circle 

with a radius of 40 m. Using a moving window, an adaptive correction based on the reference image 

digital numbers became possible; likewise, the parameters for the method were defined empirically.  

In the case of Terai, approaches developed by both Tomppo et al. [8] and Tuominen and 

Pekkarinen [7] were combined to create a local correction model. The separate Landsat TM images 

were corrected by applying the correction function below (see Equation (1)) and by using MODIS 

image data as the underlying reference image. The objectives of the procedure presented here are as 

follows: (1) to match the mean and the variance of the data in both images by taking into account the 

differences in pixel sizes [8] and (2) to apply the correction locally [7] by using raster map algebra and 

a moving window approach to calculate the parameter values for the model. 

The correction function (see Tomppo et al. [8]) applied for a pixel (x, y) was as follows: 

),(),(),(),(ˆ yxbyxfyxayxf iiii   (1) 

where ),(ˆ yxf i  is the corrected data for the pixel (x, y) in band i, fi (x, y) is the uncorrected data in band 

i, and ai (x, y) and bi (x, y) are the parameters computed for the given pixel (x, y) in band i. 

To calculate the parameters for the correction function (Equation (1)), averaging was first used to 

transform the Landsat image data to match the resolution of the MODIS reference image. The common 

pixel size of the images after averaging is later denoted by c. This study used the c-value of 500 m. 

The raster maps “ Liavg ”, “ Lisd ”, “ Mjavg ” and “ Mjsd ”—which represent the mean and standard 

deviation values of the Landsat TM data and the MODIS data in the compatible spectral wavelength 

bands i and j, respectively—were thereafter calculated using a moving window approach with a 

window size of w × w pixels. Here, a 21 × 21 window neighborhood was utilized (w = 21), 

representing approximately a 10 km neighborhood for each pixel with the size of c. The raster maps 

with a pixel size of c were computed for both image datasets: target images (Landsat TM) and 

reference images (MODIS).  

Parameters ai and bi in the correction function (Equation (1)) were calculated for each pixel (x, y) as 

follows: 

),(),(),( yx/sdyxsdyxa LiMji   

and 

),(),(),(),( yxayxavgyxavgyxb iLiMji   

(2) 

where i denotes a Landsat TM band and j denotes a MODIS band that is compatible with i.  This study 

used the MODIS bands 3, 4, 1, 2, 6 and 7 as compatible bands for the Landsat TM bands 1, 2, 3, 4, 5 

and 7.  
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Finally, the correction model (Equation (1)) was applied in the original Landsat TM image data to 

produce locally corrected Landsat data in a MODIS reflectance value scale and at the original 30-m 

resolution. The coefficients ai and bi (see Equation (2)) of the correction function (Equation (1)) were 

local, being based on statistics from the neighborhood of each pixel (x, y). As a result, the Landsat TM 

pixel values were rescaled according to the local distribution parameters (mean and standard deviation) 

of the pixel values in the reference image bands. 

In the correction approach of this study, each Landsat TM image had to first be processed 

separately, after which a mosaic of the corrected Landsat TM images was created. This mosaic was 

used as input for the forest/non-forest classification and the wall-to-wall map generation of a forest 

variable (stand volume, m
3
∙ha

−1
). 

The resolution (c) of the raster maps representing the mean and standard deviation and the size of 

the moving window (w) are user-defined parameters. Here, we used a resolution corresponding to that 

of the reference MODIS image, i.e., averaging was used only for Landsat images, as mentioned above. 

The size of the moving window (w) determines the flexibility of local correction. However, the 

window size (w) should be large enough to enable valid computations of the mean and standard 

deviation. In this case, it was not possible to conduct an exhaustive search for the resolution and 

neighborhood size (w), and therefore, we evaluated the result by checking the visual appearance of the 

resulting image mosaic. A good-quality reference image without any extreme pixel values is needed 

for a successful result.  

3.2. Nearest Neighbors Techniques  

A non-parametric, multi-source forest inventory method based on the k-nearest neighbor (k-NN) 

estimation (see Tomppo [4], Tomppo et al. [5]), an approach recently reviewed by McRoberts [25], 

was applied in the production of forest cover and volume maps in the Terai region. In this study, the 

population units (the target set of pixels) were the pixels in the satellite image. The satellite image 

bands were used as the ancillary variables (feature variables) with observations for all units of the 

population. The forest variables with observations only available for a sample (the reference set of 

pixels) were denoted as response variables. In practice, the reference set is built by querying the 

satellite image in the locations of sample plots, whereas the aim of the nearest neighbors approach is to 

impute the response variable values to the target set elements.  

The classification was based on a pixel-by-pixel analysis, where the nearest neighbors for a target 

pixel among all the reference pixels (the pixels covering the center point of a sample plot) were 

determined using weighted Euclidean distance in spectral feature space (see Tokola [26]; for this in 

matrix form, see, e.g., McRoberts [25]):  





b

1

2)]([
n

h

jhihhij bbpd , (3) 

where nb is the number of bands, i is the target set element for which a prediction is sought and j is a 

reference set element, bih and bjh are spectral band values for the pixels i and j on band h, respectively, 

and ph is the empirical parameter for band h.  
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For the target pixel i, the k-nearest neighbors (i.e., a set of k reference pixels to which the Euclidean 

distance in spectral feature space from the target pixel i is smallest, K(i)={ j1(i),…, jk(i)}) were sought. 

In the case of categorical variables, the mode value of a response variable from among the k-nearest 

neighbors was the predicted class for a target pixel. In the case of continuous response variables, on the 

contrary, the weight wij of each neighbor )(iKj  was determined to be inversely proportional to its 

distance to target pixel i: 





)(

/
iKj

t

ij

t

ijij ddw , (4) 

where t is a user-defined parameter (t ≥ 0). 

In this study, a small positive number was given for zero distances and a value t = 2 was used in 

Equation (4). It follows that for target pixel i, 1
)(


 iKj

ijw . A k-nearest neighbor prediction ( iŷ ) for 

target pixel i was calculated as follows: 





)(

ˆ
iKj

jiji ywy , 
(5) 

where yj is the observed value of the response variable in reference pixel )(iKj . 

In forest cover mapping, the set of spectral features contained values of the image mosaic bands 

from 1 to 6, corresponding to the Landsat TM image bands from 1 to 5 and 7, and we used the 

Euclidean distance as the measure of distance (the band weight (ph) was set to 1 for all bands). The 

mode value of a response variable, i.e., the FAO land use class, among the k-nearest neighbors was the 

predicted class for the given target pixel. We selected pixels from the Landsat TM mosaic from Terai 

as the set of target pixels using the physiographic zone raster map as a mask in the GRASS GIS 

package.  The reference set consisted of the pixels covered by the center points of the 1st phase plots, 

where the observed value (FAO land use class) was known based on the visual interpretation. In order 

to clarify forest classification, the plots belonging to the land use categories “Agricultural area with 

tree cover” or “Built-up area with tree cover” were dropped out from the reference set, whereas the 

category “Roads”, having a very small number of observations, was combined with the category  

“Built-up land without tree cover”. 

The post-processing phase of the classification included three steps. First, we applied a spatial 3 × 3 

mode filter to reduce the salt-and-pepper effect in the pixel-by-pixel classification. Second, we 

constructed a forest/non-forest raster map (denoted as a forest cover raster map later) by reclassifying 

non-forest categories into a single class. Third, we converted the resulting forest cover raster map into 

a vector format and excluded forest segments with an area of less than 0.5 ha.  

3.3. Validation of Results 

For the category variable, i.e., forest cover, the value for k was selected by examining the 

classification accuracy of the forest cover predictions obtained using different values of k. For 

classification accuracy, indicators based on the confusion matrices were used [27] and included: (1) 

producer’s accuracy (FPA, forest), (2) user’s accuracy (FUA, forest), (3) overall accuracy (OA) and 

(4) the Kappa statistic (KHAT); the KHAT was computed because the OA results are too optimistic if 

the proportion of a single class is high (see Hyvönen and Anttila [28]).  
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The Monte Carlo technique, including the random sampling of test samples, was applied when 

selecting k, i.e., the number of neighbors. For each }15...,,5,3,1{k , 5,000 test samples were randomly 

selected from the entire reference element set. Each sample contained 1,000 elements (1st phase 

sample plots of visual inspection), which were classified as test material, whereas all the remaining 

elements not included in the sample comprised the reference. The aforementioned classification 

accuracy indicators were calculated for each test sample. As a result, an empirical distribution of each 

test indicator with a varying value of k was produced. This approach was applied in the two parts of 

Terai separately. At the end, the forest cover delineations derived from the visual interpretation and the 

forest cover map were also checked by their classification accuracy using the field observed values for 

the field sample plots.  

A leave-one-out analysis was conducted, and common cross-validation criteria, i.e., RMSE and bias, 

were calculated for the continuous variable, i.e., the total stand volume, in the reference set (e.g., 

Tokola [26]; Katila and Tomppo [29]). In this study, the RMSEs and biases were determined as follows: 

  nyy
n

i

ii



1

2)ˆ(RMSE  
(6) 

nyy

n

i

ii




1

)ˆ(bias , (7) 

where iy  is the observed value, iŷ  the predicted value of the given characteristic, and n is the number 

of observations. The relative, i.e., percent, RMSEs (RMSE%) and biases (bias%) were calculated by 

dividing the absolute RMSEs and biases by the means of the respective values from the observations 

)(y  and multiplying the resulting quotients by 100. 

Cross-validation and feature selection were carried out using a genetic algorithm-based approach 

(e.g., Haapanen and Tuominen [30]) that has been compiled in with the “genalg” package of R 

software [31]. The value for k was simultaneously determined in the feature selection and weight 

search. Several runs were made in order to find the best combination of features and parameter value 

for k for the volume estimation. The parameter values of population size, number of iterations, elitism 

and mutation chance that we used for the algorithm were 500, 1,000, 40% and 0.05, respectively, and 

the goal was to minimize the sum of RMSE and bias obtained for the stand volume. The features that 

we tested for the model included band values (b1,…,b6) in the Landsat TM mosaic (referring to TM 

wavelength bands 1,..,5 and 7) together with the ratios of the band values and the value of the 

Normalized Difference Vegetation Index (NDVI).  

When creating thematic wall-to-wall maps for growing stock volume, we selected a set of target 

pixels using the forest cover map as a mask in the GRASS GIS package.  The reference set consisted 

of the pixels covered by the center points of the field plots (Table 2). For composing the thematic map 

of volume, we classified the volume predictions for the pixels into classes of 50 m
3
∙ha

−1
.  
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4. Results 

4.1. Forest Cover Mapping  

An example of an original Landsat TM image subset and the resulting image mosaic is shown in 

Figure 3(a–c). After inspecting the overall appearance of the image mosaic, it proved usable as input 

for the forest cover and volume mapping based on k-nearest neighbor techniques. 

Figure 3. (a) Subsets of two original Landsat TM images from a region in Eastern Terai 

(Feb-4- 2010 for the image on the left and Jan-28- 2010 for the image on the right), a 

composite of TM bands 3, 2 and 1 (rgb). (b) A subset of the corrected Landsat TM image 

mosaic, a composite of TM bands 3, 2 and 1 (rgb). (c) A subset of the corrected Landsat 

TM image mosaic, a composite of TM bands 5, 3 and 2 (rgb). (Coordinate reference 

system: WGS 84/ UTM zone 45N). 

 

(a) 

 

(b) 
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Figure 3. Cont. 

 

(c) 

Kappa statistics (Figure 4) show that in forest cover mapping, using values of k greater than 5 does 

not improve the quality of the estimation result. For this reason, we set the value of k at 5 in forest 

cover mapping for both parts of Terai. 

Figure 4. Distributions of KHAT statistic values at different k values in the western (upper 

figure) and eastern (lower figure) parts of Terai. In the boxplot, the grey region is the area 

between the 1st and 3rd quartiles (including 50% of the observations), the thick line is the 

median and the outer lines extend to the data point, which is no more than 1.5 times the 

area between the 1st and 3rd quartiles away from the box. The most extreme individual 

observations are also plotted [31]. 
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Other accuracy measures (Table 3) also support the decision made regarding the value of k and 

indicate that the accuracy is quite good in both parts of Terai; both the FUA and FPA are more than 

85%, even in the case of k = 1.  

Table 3. Statistics (mean and standard deviation (sd)) by the four indicators of 

classification accuracy (ICA): (1) the user’s accuracy of forest class (FUA), (2) the 

producer’s accuracy of forest class (FPA), (3) overall accuracy (OA) and (4) Kappa 

statistic (KHAT) based on the test samples for each value of k. 

Area ICA 
 Value of k 

 1 3 5 7 9 11 13 15 

Western Terai 

FUA mean 0.866 0.886 0.889 0.891 0.891 0.891 0.889 0.888 

 sd 0.017 0.016 0.015 0.015 0.016 0.016 0.016 0.016 

FPA mean 0.870 0.901 0.908 0.910 0.911 0.912 0.912 0.911 

 sd 0.017 0.015 0.014 0.013 0.013 0.013 0.013 0.013 

OA mean 0.905 0.923 0.926 0.928 0.928 0.928 0.927 0.927 

 sd 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 

KHAT mean 0.793 0.832 0.840 0.843 0.845 0.845 0.843 0.841 

 sd 0.016 0.015 0.014 0.014 0.014 0.015 0.015 0.015 

Eastern Terai 

FUA mean 0.857 0.897 0.905 0.908 0.908 0.908 0.907 0.906 

 sd 0.026 0.024 0.023 0.023 0.023 0.023 0.023 0.024 

FPA mean 0.852 0.871 0.876 0.877 0.878 0.877 0.877 0.877 

 sd 0.026 0.024 0.024 0.024 0.024 0.024 0.024 0.024 

OA mean 0.953 0.963 0.966 0.966 0.966 0.966 0.966 0.966 

 sd 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

KHAT mean 0.826 0.862 0.870 0.872 0.872 0.872 0.871 0.870 

 sd 0.020 0.019 0.019 0.019 0.019 0.019 0.019 0.019 

Table 4 shows the confusion matrices of the forest cover delineations based on visual interpretation 

and the forest cover map against the one based on the observed values for the field sample plots  

(n = 217). The accuracy of the delineation of forest cover by visual interpretation is very good in both 

parts of Terai. In eastern Terai, the forest cover mapping based on the k-NN techniques appears to have 

the same accuracy level as the visual interpretation, but in western Terai, the user’s accuracy in the 

class “Non-forest” is slightly lower compared to other categories. 

The confusion matrices between the forest cover map classification and the visual interpretation 

were also created (Table 5). In this examination, based on the set of field plot points only, the Kappa 

statistic shows a better agreement between the forest cover map and visual interpretation in eastern 

Terai compared to the western Terai, where the agreement can still be characterized as substantial [32]. 

A forest cover map for the entire Terai physiographic zone made by combining the results from the 

western and eastern parts of Terai is shown in Figure 5. 
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Table 4. Confusion matrices between the forest cover delineations derived from the visual 

interpretation (Visual), the forest cover map and the field observations (Obs.). (UA = User’s 

accuracy, PA = producer’s accuracy, OA = overall accuracy, KHAT = Kappa statistic). 

  Visual Interpretation  Forest Cover Map 

Area Obs. Forest Non-Forest Total PA, %  Forest Non-Forest Total PA, % 

Western Terai 

Forest 103 5 108 95.4  100 8 108 92.6 

Non-Forest 4 28 32 87.5  5 27 32 84.4 

Total 107 33 140   105 35 140  

UA, % 96.3 84.8    95.2 77.1   

OA, % 93.6    90.7   

KHAT 0.820    0.745   

Eastern Terai 

Forest 61 2 63 96.8  61 2 63 96.8 

Non-Forest 2 12 14 85.7  2 12 14 85.7 

Total 63 14 77   63 14 77  

UA, % 96.8 85.7    96.8 85.7   

OA, % 94.8    94.8   

KHAT 0.825    0.825   

Table 5. Confusion matrices between the forest cover map and the forest cover delineation 

derived from the visual interpretation (Visual). (UA = User’s accuracy, PA = producer’s 

accuracy, OA = overall accuracy, KHAT = Kappa statistic). 

Area 
 Forest Cover Map   

Visual Forest Non-Forest Total PA, % 

Western Terai 

Forest 97 10 107 90.7 

Non-Forest 8 25 33 75.8 

Total 105 35 140  

UA, % 92.4 71.4   

OA, % 87.1   

KHAT 0.650   

Eastern Terai 

Forest 61 2 63 96.8 

Non-Forest 2 12 14 85.7 

Total 63 14 77  

UA, % 96.8 85.7   

OA, % 94.8   

KHAT 0.825   

4.2. Thematic Map of a Forest Variable: Volume  

The following features (spectral band values or ratios) were included in the model for the estimation 

of total stand volume: b1, b2, b4/b3 and b5/b3. The band weights (i.e., the parameters ph in Equation (3)) 

for the four variables in the weighted spectral Euclidean distance were as follows: 0.8537294, 

0.9748646, 0.5139022 and 0.3661812, respectively. It was noted that several runs produced quite 

similar results. We used the values of 4 and 2 for parameters k and t, respectively, of which the former 

was obtained from the genetic algorithm. The RMSE and bias values obtained for the stand volume 



Remote Sens. 2012, 4 3935 

 

were 85.4 m
3
∙ha

−1
 (62.0%) and −0.541 m

3
∙ha

−1
 (slight overestimation effect), respectively. The 

boxplot [31] of residuals for the volume prediction categories of 50 m
3
∙ha

−1
 show the presence of some 

extreme observations, whereas the median of residuals is close to zero in all categories (Figure 6). 

Figure 5. A forest cover map (forest: bright green color) for the Terai physiograhic zone 

produced by the k-NN technique and overlaid on a composite of MODIS image bands 1, 4 

and 3 (rgb). 

 

Figure 6. Volume residuals in volume prediction categories of 50 m
3
∙ha

−1
. 
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Plotting the means for the ordered groups of observations against the means for the predictions for 

the same ordered groups (see McRoberts [33]) reveals that volume predictions suffer from averaging: 

the large volumes were underestimated and the small volumes were overestimated (Figure 7). 

Figure 7. Mean observation versus mean prediction for volume (m
3
∙ha

−1
). The 

observations have been sorted and grouped into groups of 20 observations at the minimum 

based on the observed volume (m
3
∙ha

−1
). 

 

5. Discussion 

In the case of the Terai region, it was not possible to apply the nearest neighbor’s techniques for 

each Landsat image separately, because the number of plots was inadequate. This meant that we 

needed to apply relative calibration for the Landsat images, despite the fact that there could be quite a 

long amount of time between the dates for the available good-quality images. For this purpose, we 

applied a pre-processing approach based on using a reference image covering the whole region. For 

aiming at a seamless result, the potential overlapping area of the neighboring target images (Landsat 

TM images in our case) needs to be utilized when the raster maps representing means and standard 

deviations are computed. By detecting pixels having extreme values (outlier pixels) in the images and 

excluding them from this stage, one can improve the result of this local approach. Depending on image 

materials, this method also allows one to apply a pixel size c different than the original pixel size in the 

reference image.  

A robust regression approach would offer another empirically oriented approach for a relative 

calibration of image materials. Regressing the images for the selected reference image would make it 

possible to concurrently use neighboring images. In the case of the geographically wide Terai region, 
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the robust regression approach was less applicable. However, in a multi-temporal case, a regression 

approach for relative radiometric calibration could possibly be applied when detecting changes in 

landscape, such as cuttings (e.g., [11,34,35]). 

The agreement between the k-NN forest cover classification and the visual interpretation in Terai 

was strong, since the resulting value of KHAT was greater than 0.80 (see, e.g., Congalton [27] and 

Green [32]). The OA values were also high, which can at least be partly explained by the high 

proportion of the non-forest category. It is worth noting that we did not examine the effect of the  

post-processing phase (steps 1 to 3) when calculating the accuracy measures in the test samples for the 

selected value of k. Also, the classification accuracy of the forest cover map evaluated against field 

observed values showed that the agreement between these forest cover delineations is substantial 

(western Terai) or strong (eastern Terai). 

The visual land use class interpretation process was conducted using Google Earth satellite imagery 

viewer [21], where the background imagery originated from the period between 2003 and 2010, 

together with additional RapidEye imagery from the year 2010. Due to shaded areas, haze and 

cloudiness, the visual interpretation work proved difficult in the case of some RapidEye images, and 

then, the interpretation was supported using satellite imagery available in Google Earth. Therefore, the 

time difference between these image materials could make a source of uncertainty to the interpretation 

process itself. In this study, an unwanted mixing of the forest class and the land use classes with some 

tree cover was tackled by dropping out the plots in classes “Agricultural area with tree cover” and 

“Built-up area with tree cover” from the reference set. For classification accuracy checking, a correct 

matching of the locations between field plots and the visual interpretation plots on the image is also 

crucial. Unfortunately, information to check this location accuracy was not available.  

Besides RMSE and bias, robust measures for the quality of the k-NN-based estimation in terms of 

feature selection and cross-validation could be useful, especially in cases where the number of plots is 

small, which corresponds to this study (n = 217). For instance, in the k-nearest neighbor analysis for 

stand volume, the most extreme observations may also have affected the model parameter search, 

because the number of field plots was quite small. Therefore, the diagnostic approach suggested by 

McRoberts [33] for detecting outliers and influential observations could be very important for our 

work in the future.  

The k-nearest neighbor technique, applied to the mapping of forest cover and stand volume in the 

Terai region of Nepal, is a straightforward procedure that has been efficiently utilized in Finland (see, 

e.g., Tomppo et al. [5] and Tomppo [4]). Moreover, this technique was also applied earlier by 

Tokola et al. [36] for classifying land use and for estimating timber volume and biomass in Nepal. 

This was, however, one of the first forest mapping studies completely conducted using Open Source 

software tools and free packages. In this respect, it was natural that substantial efforts were needed to 

incorporate appropriate data processing techniques and suitable procedures and, especially, that the 

techniques and procedures were compatible for processing the remote sensing and inventory data. 

The forest cover map now available for Terai (Figure 5) is one source of information that can be 

utilized when estimating above-ground forest volumes and biomasses based on the LiDAR data as part 

of the ongoing survey conducted by the FRA Nepal project in the central parts of Terai. In the future, 

similar forest cover maps will also be needed for other physiographic zones beyond Terai, where the 

LiDAR-oriented estimations of forest attributes will be conducted. Later, experience will show if the 
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forest cover maps prove useful in other fields of forestry. Potential applications in Nepalese conditions 

include inventory planning and monitoring practices. The forest cover and volume maps (Figure 8) 

estimated using the k-NN method and inventory data from the FRA Nepal project are already 

appropriate and valuable data for research purposes and for planning forthcoming forest inventories 

when testing optimal inventory designs (see [37]). 

Figure 8. At left: forest cover map (vector boundaries) and a field sample plot cluster, 

(plotnr = sample plot number; zone = UTM zone number; ba_ha = basal area, m
2
∙ha

−1
; 

vol_ha = volume, m
3
∙ha

−1
; tmcl1–tmcl6 = pixel values in the Landsat TM mosaic  

bands 1–6). At right: A thematic map of the volume. An example from eastern Terai 

(background: a composite of Landsat TM mosaic bands 5, 3 and 2 (rgb)). (Coordinate 

reference system: WGS 84/UTM zone 45N). 

 

Spatially explicit biomass maps could also form a basis for the forthcoming greenhouse gas 

inventory, i.e., the REDD-related estimation of gross primary production and soil carbon change. The 

k-NN-based forest biomass mapping technique, which corresponds to that of stand volume mapping, 

has already been demonstrated by Tuominen et al. [38] in Finnish conditions. One shared feature 

between the approach by Tuominen et al. [38] and the one in this study has to do with the data-

efficient, mixed-effects modeling-based generalization of sample tree characteristics. This study, 

however, used an NLME model for generalizing the sample tree heights (see Appendix), whereas the 

model utilized by Tuominen et al. [38] made use of an LME model provided by Eerikäinen [39].  

Adapting the methods and techniques and applying the Open Source software tools presented here 

requires capacity building in Nepal: development work and education measures have already been 

launched by the ICI project, which is an inter-institutional development cooperation project between 

Nepalese, Vietnamese and Finnish governmental institutes and that was initiated with the support of 

the Ministry for Foreign Affairs (MFA) of Finland. The development activities of the project have 
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been designed and implemented with a special focus on human capacity development within the 

governmental forest research organizations participating in the project. Special emphasis has therefore 

been given to hands-on training periods and workshops and to disseminating information on forest 

inventory-related techniques and procedures. Of these objectives, the latter covers the goal of the 

present study: to increase and share knowledge about the existing techniques and procedures and to 

make it easier to adapt them to the conditions in, for instance, Nepal. 

Local expertise is always required for the most pivotal part of the forest inventory, that is to say, the 

work conducted in the field and, at the moment, by the FRA Nepal project in Nepal. Through scientific 

work and collaboration, however, it is possible to achieve more diverse and detailed results in terms of 

conventional statistics and advanced electronic maps of the forest attributes of interest. This study is 

also one example of how to improve the use of field inventory data and exploit them together with 

additional remote sensing data in order to satisfy the new reporting requirements set for large-scale 

forest inventories.  

6. Conclusions 

In this study, we introduced an approach for a MODIS-based relative calibration of Landsat TM 

images to enable the use of a mosaic of several Landsat TM images in a k-nearest neighbor (k-NN) 

estimation. The presented approach for relative calibration combined aspects presented earlier by 

Tuominen and Pekkarinen [7] and Tomppo et al. [8]. The method relies only on image data (see [7]) 

and is easy to implement. Optionally, the reference image could have been converted to a reflectance 

scale, but for the k-NN estimation method that was not necessary. A prerequisite for the success of the 

local correction approach for the relative calibration of images is that the target images and the  

good-quality reference image material need to be temporally and seasonally close to each other. 

However, more studies are needed on selecting the parameters for the approach when using image 

resolution scales other than the ones used in the Terai case, which utilized Landsat TM and MODIS.  

The k-nearest neighbor technique was very applicable to the forest cover mapping in Terai using 

visual interpretation plots as a reference material. There was a strong agreement (KHAT > 0.80) 

between the forest cover delineations based on visual interpretation and field observations. The 

agreement between the forest cover delineation in the forest cover map and the one derived from the 

field observed values was substantial in Western Terai (KHAT 0.745) and strong in Eastern Terai 

(KHAT 0.825). 

One feature related to the development of the multi-source technique and, especially, to its 

application to different geographical conditions in Nepal in the future has to do with using digital 

elevation models (DEMs). In the case of Terai, i.e., within the lowlands of Nepal, no radiometric 

corrections were conducted using DEMs (e.g., Tomppo et al. [5]; Tokola et al. [36]), neither was the 

DEM-based moving geographical vertical reference area used in the k-NN method (see Katila and 

Tomppo [29]). It is therefore recommended that the significance of DEM be tested in other 

physiographic vegetation zones north of Terai, where the topography is very mountainous compared to 

the southernmost region of Nepal. 
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Appendix: Height Prediction Model 

A1.1. Modeling Data 

The sample tree data available for modeling the relationship between height and diameter 

comprised 1,048 trees measured on 182 field sample plots within 56 clusters. The total number of 

species was 93, including an “unknown” group. Descriptive statistics for the tree-level and sample 

plot-level characteristics used in the modeling are given in Table A1. 
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Table A1. Descriptive statistics for the tree-level and plot-level characteristics of the 

height modeling data: h is the total tree height (m); zdominated and zdominant are dummy 

variables for the dominated and dominant tree, respectively; G is the stand basal area at the 

plot-level (m
2
∙ha

−1
); zKS/SK, zSB and zTMH are plot-level dummy variables for the forest types 

of Khair Sissoo Forest, Shrub, and Terai Mixed Hardwood Forest, respectively; zSG1–zSG4 

are tree-level dummy variables for species groups 1–4, respectively; and d is the tree 

diameter at breast height (cm). 

Variable Minimum Median Mean Standard Deviation Maximum 

h 2.00 15.95 16.88 7.671 41.10 

zdominated 0 0 0.05 0.225 1 

zdominant 0 1 0.82 0.385 1 

G 0.51 19.93 20.58 7.908 43.31 

zKS/SK 0 0 0.02 0.126 1 

zSB 0 0 0.00 0.053 1 

zTMH 0 1 0.60 0.491 1 

zSG1 0 0 0.43 0.495 1 

zSG2 0 0 0.13 0.333 1 

zSG3 0 0 0.25 0.432 1 

zSG4 0 0 0.20 0.400 1 

d 5.0 27.4 32.30 21.516 187.9 

A1.2. Model Specification 

The sample tree heights were generalised to cover the tally trees using a mixed modeling technique 

proposed, for instance, by Lappi [A1] and Eerikäinen [39]. Instead of linear model forms, which were 

used by Lappi [A1] and Eerikäinen [39], this study utilized a nonlinear, mixed-effects modeling 

(NLME) procedure (see, e.g., Pinheiro & Bates [24]). Eerikäinen [39] estimated species-specific 

effects using dummy variables, which were treated not only as fixed but also as random variables, and 

determined the species effects for Scots pine, Norway spruce and a group of broadleaved trees. In 

Terai case, however, an automated pooling procedure for grouping species into crown layer classes 

was constructed. In the pooling procedure, a candidate model localised by clusters and sample plots, 

respectively, was used to determine whether the majority of the species-wise observations belonged to 

the group of heights that were equal to or greater than the model prediction or to the group of 

observations that were less than the model prediction. After separating the height data by species into 

two crown layers, the same modeling and sorting procedure was conducted for both sets of data, 

resulting in the fact that the observations were finally aggregated into four groups of consecutive 

crown layers by species. 

The random components of the models were related to the intercept term and the coefficient of the 

tree size variable, i.e., the diameter at breast height, respectively, of which the latter term was also 

associated with the components for random species effects (see also Eerikäinen [39]). An NLME 

model for a tree height (hijk, m) having a random intercept and slope terms with respect to the cluster 
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(A1) 

where 1, 2,..., 8.4, 9 and d are fixed model parameters; i, j and k refer to the cluster, plot and tree, 

respectively; 
ijk

z
dominated

and 
ijk

z
dominant

are dummy variables for the dominated and dominant tree, 

respectively; 
i j

G  is the stand basal area at the plot j of cluster i (m
2
∙ha

−1
); 

ij
z

KS/SK
, 

ij
z

SB
  and 

ij
z

TMH

 
are 

dummy variables for three forest types, a Khair Sissoo Forest, a Shrub Forest and a Terai Mixed 

Hardwood Forest, respectively; dijk is the diameter at breast height (cm); 
ijk

z
SG1

, 
ijk

z
SG3

 and 
ijk

z
SG4

 are 

dummy variables for the species groups 1, 3 and 4, respectively (note: when 
ijk

z
SG1

, 
ijk

z
SG3

 and 
ijk

z
SG4

 

are set to zero, the predictions are obtained for species group 2 (SG2)); and eijk is the random error 

term of the model. 

The parameter d in Equation (A1) was added to the independent variable “dijk” in order to decrease 

the residual variation among small-sized trees. The selection of fixed values for d and for the form 

parameter 9 was based on the analysis of residuals as well as the Akaike Information Criterion (AIC) 

values (see [24]) and Root Mean Square Errors (RMSEs, see Equation (6)) obtained using different 

values for the two parameters (see also Eerikäinen et al. [A2]). A combination of values of 10 and 0.65 

for the respective parameters d and 9 was found to provide the best model fit in the PSP data 

from Terai. 

The variance functions are useful for accounting for the within-group heterogeneous variances 

when, for instance, the error variance increases as the tree size increases (see [24,A3]). Thus, they are 

also useful for improving the convergence properties of the algorithms used for the estimation of 
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parameters of LME and NLME models. The variance functions include the variance model’s power 

type (see [24,A4,A5]): 

)2(2 ||)var( m

ijkeijk ve
 


 (A2) 

which corresponds to the variance function 
m

ijkmijk vvg
 ||) ,( 

, (A3) 

where vijk is a weighting variable, e.g., the diameter at breast height or its transformation, and m is an 

unrestricted, group-dependent parameter that needs to be estimated and which assumes values 

according to the stratification variable m respective to the four species effect groups (i.e., SG1–SG4). 

The appropriate weighting variable (vijk) of the variance function was found to be (dijk+5). 

A1.3. Parameter Estimation and Model Validation 

The parameters of the NLME model for tree height in Terai were estimated using the R package, a 

free software environment for statistical computing and graphics [31]. Modeling was technically 

implemented using the “nlme()” function from the library entitled “nlme”, which provides Maximum 

Likelihood (ML) estimates for parameters. 

 In the case of modeling data, localised height/diameter curves are directly obtained by extracting 

the estimates of the random effects for the model using a generic function “ranef()” of the library 

“nlme()”. However, when the NLME models, such as Equation (A1), are applied outside their 

modeling data, the localisation can be based on the predictor proposed by Vonesh and Chinchilli [A6], 

a procedure also applied and demonstrated by Crecente-Campo et al. [A7] in the derivation of 

predicted values of the random effects. 

The criteria for selecting the independent variables for the height generalization model were the 

significance and logical signs of the estimated coefficients. The significance test for fixed model 

parameters (t-test) was used to test whether or not the true value of a parameter was zero: all the fixed 

parameters were treated as significant at the conservative preset level of 0.05. In addition, scatter plots 

in which the residuals were shown as functions of the height estimates and values of the independent 

variables were inspected. The candidate nonlinear mixed-effects (NLME) models were validated using 

the modeling data with the ML parameter estimates, employing as criteria the AIC values. 

Additionally, estimates of the RMSE and bias (see Equations (6) and (7)) were determined for the 

candidate models when quantifying the residual variation and assessing the impacts of transformations 

and alternative parameterisations on the prediction accuracy of the models. 

The automated pooling procedure for grouping species into four crown layer classes resulted in the 

numbers of species being 19, 16, 24 and 34 with respect to the crown layer classes 1, 2, 3 and 4. The 

total number of individual height sample trees (n = 1048) for the crown layer classes 1–4 were 446, 

133, 259 and 210, respectively. The estimates obtained for the fixed parameters of the NLME height 

model (Equation (A1)) are given in Table A2. The estimates for the fixed parameters of the NLME 

model clearly show that the parameters are significant and that their signs are logical (see Table A2).  

When inspecting the estimates given in Table A3 for random parameters for the cluster and plot 

effects and the associated species effects, respectively, it is possible to conclude that they were 

substantially correlated, which is in line with earlier findings by Eerikäinen [39].  
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Table A2. Parameter estimates for the fixed independent variables of the NLME model for 

tree height (Equation (A1)). 

Parameter Estimate Standard Error t-value p-value 

1 20.10056 3.47697 5.78 <0.001 

2 −10.93493 1.83761 −5.95 <0.001 

3 5.39272 1.07708 5.01 <0.001 

4 8.31991 0.95719 8.69 <0.001 

5 −8.46984 2.99058 −2.83 0.005 

6 14.15576 5.56316 2.54 0.011 

7 −3.13794 0.99325 −3.16 0.002 

8 11.79772 0.37590 31.39 <0.001 

8.1 −1.02356 0.21786 −4.70 <0.001 

8.3 1.29069 0.24134 5.35 <0.001 

8.4 2.28025 0.25112 9.08 <0.001 

Table A3. Estimated Variances (diagonal), covariances (lower triangle) and correlations 

(upper triangle) for the random parameters of Equation (A1) at the cluster, plot and tree 

levels, respectively, and estimates for the power parameters of the variance function 

respective to the four species groups, i.e., SG1–SG4 (Equation (A3)). 

 Cluster Level 

 (1)
1u  (1)

8u  (1)
8.1u  (1)

8.3u  (1)
8.4u  

(1)
1u  50.249045 0.836 0.604 −0.175 0.529 
(1)
8u  7.790949 1.728385 0.076 −0.663 0.548 
(1)
8.1u  0.856461 0.019987 0.040014 0.589 0.056 
(1)
8.3u  −0.770911 −0.541671 0.073219 0.386193 −0.037 
(1)
8.4u  2.014978 0.387125 0.006019 −0.012355 0.288736 

 Plot Level 

 (2)
1u  (2)

8u  (2)
8.1u  (2)

8.3u  (2)
8.4u  

(2)
1u  27.894114 0.406 0.953 0.638 0.762 
(2)
8u  0.434241 0.041011 0.659 0.946 −0.268 
(2)
8.1u  4.870331 0.129135 0.936308 0.839 0.536 
(2)
8.3u  0.980705 0.055757 0.236283 0.084708 0.012 
(2)
8.4u  1.141066 −0.015388 0.147053 0.000990 0.080389 

 Tree Level 

 e      

e  0.194484 
    

 
 Estimates for the Power Parameters 

  
SG1  SG2  SG3  SG4  

 
 0.545992 0.492496 0.499664 0.503056 
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The bias and RMSE values obtained for the localised model in the modeling data (n = 1,048) were 

0.05 m (0.3%) and 2.74 m (16.3%), respectively. When calculated by the crown layer classes, the 

RMSE values were 3.20 m (15.5%), 2.24 m (14.0%), 2.47 m (16.3%) and 2.26 m (19.8%), 

respectively, whereas the bias values were 0.26 m (1.2%), −0.05 m (−0.3%), −0.08 m (−0.5%) and 

−0.16 m (−1.4%), respectively. It is possible to conclude that the magnitude of variation in the RMSE 

and bias values obtained from the crown layer classes for height predictions remains quite consistent. 
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