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Abstract: Given multiple widespread stationary data sources such as ground-based sensors,
an unmanned aircraft can �y over the sensors and gather the data via a wireless link.
Performance criteria for such a network may incorporate costs such as trajectory length
for the aircraft or the energy required by the sensors for radio transmission. Planning is
hampered by the complex vehicle and communication dynamics and by uncertainty in the
locations of sensors, so we develop a technique based on model-free learning. We present
a stochastic optimisation method that allows the data-ferrying aircraft to optimise data
collection trajectories through an unknown environmentin situ, obviating the need for system
identi�cation. We compare two trajectory representations, one that learns near-optimal
trajectories at low data requirements but that fails at high requirements, and one that gives
up some performance in exchange for a data collection guarantee. With either encoding the
ferry is able to learn signi�cantly improved trajectories compared with alternative heuristics.
To demonstrate the versatility of the model-free learning approach, we also learn a policy
to minimise the radio transmission energy required by the sensor nodes, allowing prolonged
network lifetime.

Keywords: data ferries; sensor networks; delay-tolerant networks; trajectory optimisation;
reinforcement learning; stochastic approximation; sensor energy conservation
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1. Introduction

We consider the problem of collecting data from widespread stationary data sources such as
ground-based environmental sensors. Such ground-based sensors can gather data unavailable to those
on aircraft or satellites; for example, continuous proximal surveillance of �ora [1] or fauna [2], or
measurements that require physical interaction such as watershed runoff [3]. The sensors may be far
from cellular networks, have insuf�cient power or size to use long-range radio, and collect too much
data to upload via satellite. We use a �xed-wing unmanned aircraft (UA) to �y over the sensors and
collect the data via short-range radio [4]. Since the sensors may continuously generate data over long
periods, the UA may need to ferry the data to a collection site over repeated tours. The goal is to discover
tours that minimise costs such as delays, UA operating costs, or sensor energy. We break the problem
down into three layers:

Tour Design: If sensor locations are known, in what order should the UA visit them? Otherwise, what
search pattern should the UA follow in order to locate them?

Trajectory Optimisation: What sequence of waypoints should be given to the autopilot in order to
ensure that all waiting data are collected and performance goals are met?

Vehicle Control: How should the waypoints be translated into control surface and engine commands in
order to follow the waypoint plan? What commands should be sent to the communication system?

Before the aircraft gains experience with the quirks of the radio �eld, the high-level planner must
choose an initial trajectory. Even when node locations are precisely known, choosing an order to visit
them is NP-hard and surprisingly subtle [5]. We will focus on the case in which approximate node
location information is available as when, for example, the sensors have been deployed from an aircraft.

The trajectory �own by the aircraft depends on the set of waypoints passed to the autopilot, weather,
aircraft dynamics, and the control models within the autopilot. Some autopilots generate smooth
shortest-path trajectories for some of the time, but at other times unexpectedly add loops and detours.
Similarly, communication system performance is a complex function that depends on radio protocols,
antenna patterns, noise, and interference. We assume autopilot and communication systems to be black
boxes and make no assumptions about their speci�c functionality. Only aggregate performance of the
ferry system is reported to the learner.

The focus of this paper is the trajectory optimisation layer. The goal may be to minimise trajectory
length under some constraints such as collectingD bytes of data from each sensor node, or to transmit
the data at lower energy cost, extending the trajectory without exceeding the aircraft's range. Thus the
task is to solve a constrained optimisation through direct sampling of trajectories.

As an example, a simple trajectory that we will use as a reference has the UA circle the
assumed—possibly incorrect—location of each sensor node until it has collected all waiting data, and
then proceed to the next node in the tour. As we will show, we can do signi�cantly better than this.

If accurate models of the radio �eld and �ight dynamics are available, then the maximum data transfer
for any control policy may be computed, and standard techniques of optimal control may be used. But we
are concerned with the case in which an accurate radio model is not available. Data rate is an irregular
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nonlinear function with a high-dimensional domain—all six degrees of freedom of the aircraft—and
thus a suf�ciently accurate model is time-consuming to create and use. For this reason, prior work
has used various simpli�ed radio models, all of which assume that sensor locations are known. In
Visit models, the ferry automatically exchanges all data upon visiting a node [5–8]. Communication
radiusmodels assume a mechanism for complete data transfer below a threshold distance, possibly by
permitting the ferry to hover [9–14]. A learning variant on a communication radius model is described
by Sugihara and Gupta [15]: route planning assumes a communication radius, but data may also be
transmitted (at the same rate) opportunistically, allowing planned tours to be shortened if possible.
Variable ratemodels allow data rate to change with communication range: Henkel and Brown [16]
present theoretical results using a distance-dependent rate model, Carfanget al. [17] compare planning
results using the communication radius model with those that assume smooth and stepped variable rate
models, which approximate the behaviour of 802.11g hardware. Stachuraet al. [18] make a slightly
different assumption about the nature of signal degradation in their investigation of a mobile tracking
problem: the probability of packet transmission varies linearly with distance according to a model �t
from data. Jiang and Swindlehurst [19] use a more sophisticated communication model in addressing a
different but related problem: the UAV serves mobile nodes. Their ferry is equipped with a beamforming
antenna, and a detailed system model is used to plan trajectories that maximise the signal-to-noise ratio
(SNR) to each node.

The lifetime of a sensor network may depend on the energy reserves of the nodes, so minimising the
energy cost per bit (ECPB) for data transmission to the UA is valuable. The unpredictable SNR of real
systems makes computing ECPB dif�cult, but when some model of SNR is available the data-ferry
approach can be highly effective for reducing radio energy requirements. Junet al. [20] compare
ferry-assisted networks with hopping networks in simulation and �nd that a ferry can reduce node energy
consumption by up to 95% (further gains would be possible if their con�guration space were broader).
Tekdaset al. [13] reach a similar conclusion on a real toy network in which wheeled robots represent
ferries. Anastasiet al. [21] consider energy requirements per message sent including the overhead
associated with turning a node's radio on in order to search for a �xed-trajectory ferry. Similarly, Ma
and Yang [12] optimise the lifetime of nodes by choosing between multi-hop node-to-node routing and
changing the ferry's route and speed. Sugiharaet al. [22] examine optimal solutions under the trade-off
between energy use and latency given a �xed ferry trajectory, and Ciulloet al. [23] decrease a node's
transmit power as its data load rises, which allows high-data nodes to conserve energy and low-data
nodes to require less of a detour on the part of the ferry, which moves in straight lines and stops while
collecting data. B̈olöni and Turgut [24] allow nodes to learn whether or not to transmit to the ferry
at a power that varies with range—if the node expects the ferry to come closer later, then it should not
waste energy transmitting now. Tayloret al.[25] take a different approach in which the ferry's radio �eld
provides both data transmission and power for simple sensor nodes in a structural monitoring application.
Anastasiet al. [26] provide a recent review covering not just data ferries but many other techniques of
energy minimisation in sensor networks.

When modelling a system, simplifying assumptions are necessary, but any inaccuracies will hamper
planning. The dif�culty of generating and maintaining suf�ciently accurate models under possibly
changing conditions motivates our question: Can an autonomous aircraft learn to optimise its �ight



Remote Sens.2012, 4 2974

path, in a reasonable time, directly on a radio �eld? The goal is to provide a UA with approximate
information about the geometry of a sensor network, and to have it improve its performance rapidly and
autonomously. We focus on minimising sampling costs. Computational costs are comparatively minor
and will not be discussed.

The contributions are as follows:

• We demonstrate the feasibility of a general reinforcement learning approach for rapid discovery
of good trajectories in the absence of a system model, including incorrect information on sensor
node locations and radio antenna patterns.

• We compare two trajectory encodings that are well-suited to the task of interfacing between
reinforcement learning algorithms and off-the-shelf commercial autopilots. We show that one
can produce superior results for �xed low data requirements while the other can reliably service
high-data or variable-data nodes, and that both quickly learn to outperform a handcoded reference.

• As an additional example of the role of learning in unmodeled environments, we show how the
general approach can maximise network lifetime by learning a policy to minimise the energy used
by the nodes for radio transmission.

The reinforcement learning approach developed in this paper requires signi�cant adaptations of
existing techniques in order to make a general learning framework appropriate to the data ferry problem.
These are described and evaluated in detail. Through a series of scenarios we show that this learning
framework can provide signi�cantly shorter ferry trajectories (from 7% up to and beyond a factor of 3
shorter depending on the scenario). When sensor energy conservation is a goal, the learning framework
can produce trajectories within the limits of ferry endurance that conserve 25%–60% of the sensor
communication energy. More important than these particular results is the development of a general
framework for rapidin-situoptimisation of ferry-serviced sensor networks.

Section2 provides an overview intended to put our choice of subproblem in context. Section3
develops the radio model used for the simulations. Section4 describes how waypoints are interpreted
by our simulated autopilots. Section5 reviews the learning algorithm and explores two applications:
waypoint placement and minimisation of sensor radio transmission energy. Simulations that show
what improvements can be gained are shown in Section6. In Section7 we summarise what this work
contributes and discuss its relationship to other layers of the data ferrying problem. Section8 concludes
with the broader implications of the work.

2. Data Ferrying: Problem Overview

The concept of data ferries is widely applicable, and consequently the variety of considerations is
large. This section is not meant to be exhaustive, but to give a sense of the breadth of the problem space
and to provide context for our choices within this space.

2.1. Sensors

Some ground-based sensors do not move once deployed. Some move without control; for example,
sensors deployed on ice �oes, �oating in bodies of water, in �ood plains, or attached to wildlife. Data
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ferries are sometimes used to provide connectivity for fully mobile nodes such as military ground forces.
In this paper we assume stationary sensors in environments that are unchanging on the timescale of a
few dozens of tours.

Sensor energy is generally supplied by battery, although some sensors harvest energy from the
environment. We do not model sensor energy levels explicitly, but assume that radio transmission may
consume a signi�cant portion of a node's energy reserves.

The kind of sensor data, expected sensor lifetime, and network latency all contribute to the required
data storage (buffer) capability of sensors. We assume that storage and buffers suf�ce for the application
and do not model buffer state.

2.2. Ferries

A ferry moves between sensors and possibly base stations, retrieving and transmitting data. Ferry
mobility hardware is diverse. The ferry may be attached to a vehicle such as a bus or commercial aircraft
and thus follow a regular route with few concessions to data collection. Ferries may have a prescribed
mobility pattern designed for a speci�c sensor deployment, or may change trajectories in response to
new information. Our ferries are special-purpose vehicles whose trajectories may be manipulated with
no consideration for non-ferrying tasks, and whose range and refuelling requirements are assumed to be
appropriate for the application. Wattset al. [27] review currently available platforms.

Our hardware, unmanned �xed-wing aircraft, is constrained by some range, maximum and minimum
speeds, and turning radii, but this is not the only possible choice, and other choices are amenable to
our approach given appropriate trajectory representations and cost functions. Helicopters and quadrotors
can hold a position at some cost in energy; ground vehicles can hold a position without an energy cost,
as can buoyant vehicles in calm weather. Some vehicles can be controlled precisely; others, such as
our �xed-wing aircraft with their off-the-shelf autopilots, cannot, which imposes further constraints on
trajectory shapes and the accuracy with which they can be realised.

2.3. Radios

The selection of radio hardware and standards constrains trajectory choice. For example, available
data transmission rates and association times affect the ability of the ferry to sense and respond to its
radio environment. Beam pattern controls range and signal isolation. A steerable antenna can offer a
greater advantage at the cost of complexity and weight.

If only one sensor transmits data at any given time, interference from other sensors is eliminated. But
this may not always be possible, for example when searching for sensors or comparing signal strengths,
using multiple ferries, or in the presence of sources that are not part of the sensor network. In the �rst
two cases, enhanced protocols can mitigate multi-source interference.

All of these variations could be accommodated, but here we have chosen to ignore protocol details
and ties to speci�c hardware, and instead focus on a simple model that creates a suf�ciently complex
radio environment to explore a versatile model-free learning approach.
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2.4. Problem “Size”

The notion of problem size can take many useful forms. There may be one sensor or thousands,
served by one ferry or by many. The ferry may need to retrieve bytes or gigabytes. The longevity of a
sensor network is another useful measure of size: in some cases a single collection run is anticipated,
and in others the network's lifetime and the number of collection runs may be inde�nite. Here we
assume a single ferry, up to a few dozens of sensor nodes, a single base station, a broad range of data
requirements, and a network that is designed to collect data continuously and be polled by the ferry at
least dozens of times.

2.5. Knowledge

Often the locations of the sensors will be approximately known—the location of a measurement is
usually important—but the accuracy requirement may be inadequate for optimal trajectory planning.
It is possible that each sensor knows its own location but this information is not available to the ferry
until contact, and in the case of mobile sensors or noisy GPS this information may not be static. Other
times sensors may not know their positions, and it is up to the ferry to provide approximate location
information. In other cases sensors may be known only to lie somewhere in an area, necessitating
a search.

When using radio or other propagating-wave communication system, knowledge of the shape of the
radio �eld is likely approximate, and may change over time due to sensor mobility or environmental
effects. The interaction of radio waves with terrain leads to re�ections, occlusions, and self-interference,
and the existence of other radio sources causes further dif�culties. Therefore, while accurate knowledge
of the radio �eld can allow effective trajectory planning, the ability to accommodate vague or incorrect
information is important.

We assume that the aircraft knows the identities of sensor nodes, and that it knows enough about their
positions to �y to within radio communication range of them. This information could be discovered by
a preliminary search pattern, inventory, and initial tour generation phase, but that phase of learning is
outside the scope of this paper.

2.6. Objectives

Trajectories can be optimised in terms of standard network performance measures and various other
measures relevant to data-ferry networking.

Bandwidth is the average rate of arrival of data at the hub. If this is not the same as the total of
data production rates of the sensors, then they must discard data, which may be appropriate for some
tasks. Latency, the delay between a sensor taking a measurement and the measurement arriving at a base
station, is sensitive to the ferry's trajectory. We consider only the latency minimisation that comes with
reducing tour length.

Other objectives are possible: sensor radio energy use (considered in Section5.4), spatial costs to
the ferry such as dif�cult terrain or hazardous �ight conditions, or value-of-information metrics used for
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event reconstruction. These objectives can be accommodated using this paper's approach, but we do not
investigate them here.

Two ways of classifying optimisation criteria will be especially useful:

Hard vs. Soft Constraints: A hard constraint is a property of the solution that either exists or does not
exist. In this paper, the notable hard constraint is that trajectories must collect the required quantity
of data. In contrast, for a soft constraint a more extreme value is always preferred. For example,
shorter trajectories are generally preferred.

Global vs. Local: The tour length is a global criterion, since each action affects others and thus impacts
the whole tour. Other objectives are spatially localised; for example, radio energy used at any
given sensor depends only on decisions made in the vicinity of that sensor.

The �rst distinction is important because of the dif�culty inherent in model-free learning algorithms:
ful�llment of hard constraints is not guaranteed, but must be learned quickly or ensured by a non-
learning component. The second distinction has a bearing on the scalability of the problem: the speed of
optimisation of global objectives depends on the number of nodes or trajectory parameters, whereas the
optimisation of local-�avoured objectives can be largely independent of the number of nodes.

3. Radio Environment Model

Our goal is to evaluate the ability and limitations of model-free optimisation in a complex, unknown
radio environment. To this end we introduce a radio model that incorporates several complicating factors
that are rarely considered: variable-rate transmission, point noise sources, and anisotropic antenna
patterns. This model extends that introduced in our previous work [28] only by adding dipole antennas
to the nodes.

The signal to noise ratio at nodea from nodebis given by

SNRab �
Pˆa; b•

N � P i Pˆa; ni •
(1)

wherePˆa; b• is the power received by nodea from nodeb, N is background noise from electronics
and environment, andni are other transmitters or noise sources. The power betweena andbis normally
computed as

Pˆa; b• �
P0;ad�

0

SX a � X bS�
(2)

for reference transmit powerP0;a, reference distanced0 � 1, distance between transmitter and receiver
SX a � X bS, and propagation decay� . However, antenna shape and radio interactions with nearby objects
make most antennas directional, so the orientations of the antennas affect power. We model the aircraft's
antenna as a short dipole with a factor of 1.5 gain (1.76 dBi) oriented on the dorsal-ventral axis of the
aircraft, and approximate the resulting radio pattern as a torus. We model the nodes' �elds similarly with
random �xed orientations, so we adjust the power computation in Equation (2) to:

Pœˆa; b• � sin2ˆ � ab• sin2ˆ � ba•Pˆa; b• (3)
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where� xy is the angle between antennax's pole and the direction toy, and depends on the relative
position of transmitter from aircraft (> R3), the aircraft's heading, roll, and pitch (> R3), and the
transmitter's orientation, although the latter is assumed not to change. Here we consider only
constant-altitude trajectories with zero pitch and yaw relative to the direction of travel.

In order to evaluate Equation (3) we require the UA's position and orientation. A full dynamical
simulation of the aircraft is unnecessarily complex for our purposes, so we assume that course and
heading� are the same (yaw� 0), pitch � 0, and roll  � �

2 tanh 2 _� , which varies between 0 for a
straight course and� 54X for our maximum turning rate of_� � 0:347rad/s (i.e., the UA �ies a complete
circle in 20s).

We use the Shannon–Hartley law to compute the data transmission rate between transmittera and
receiverb:

Rab � � log2ˆ1 � SNRab• (4)

This assumes that data rate varies continuously. The hardware may use discrete rates that are chosen
according to current SNR conditions, but Carfanget al. [17] indicate that the difference in trajectories
and performance outcomes between continuously variable and the 9 discrete rates of 802.11 g may be
small for this type of problem.

This model ignores many characteristics of a real radio environment such as occlusion, re�ection,
higher-order directionality, and multipath propagation. Moreover, the sensor nodes all transmit
simultaneously and interfere at the UA—we do not simulate obvious protocol modi�cations that would
allow other sensor nodes to cease transmission and thereby reduce interference with the active node.
However, in part due to the latter omission, the model produces �elds that have irregularities similar to
those that occur in real radio environments, and thus it meets our aim of having a complex simulation
environment within which we can test whether the aircraft can learnin situ.

4. Policy, Autopilot, Trajectory

The aircraft is directed to follow some trajectory by the autopilot. The design of the policy
representation is driven on one hand by the learning algorithms that we will see in Section5, which
require a representation for which it is easy to generate variations and that can be manipulated at low
computational cost. The other factor dictating the design of the policy representation is the autopilot,
which generally cannot accurately track arbitrary trajectories, but which can easily work with waypoints.
Thus the autopilot realises trajectories and the policy representation serves as the interface between the
learner and the autopilot, allowing the latter to remain ignorant of the former's internals.

4.1. Reference

The non-learningReference autopilotis taken from Carfanget al. [17]. It is provided with estimates
of the sensor nodes' locations (although these can be dif�cult to discover [29]), which it assumes to
be correct. For each node, the UA receives data only from that node while �ying at constant speedv
towards the tangent of a circle of minimum turning radius about the node's nominal location. It then
circles the target node at the maximum turning rate! until D bytes are received, and then proceeds to
the next node (this is an improvement on the Reference used in [28], in which the aircraft �ew toward
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a waypoint and then circled so that the waypoint was on the circle's perimeter rather than at its center).
This produces the Reference trajectory. Figure1 (left) shows an example of a trajectory generated by the
reference autopilot.

Figure 1. Sample trajectories plotted in space, superimposed over reference rate contours
that show what the aircraft would see in �at level �ight (not what it actually sees as it steers
and banks). Six noise transmitters, of the same signal strength as the sensors, sit at unknown
locations. The aircraft starts at† and passes each waypoint (*) as described in Section4
(node-locked waypoints are shown in the colour of their designated nodes). Actual node
locations are atÉ ; their assumed positions are atQ (drawn from a Gaussian about the true
positions,� � 3. Left: Reference. Middle: Waypoints planner with 3 waypoints per node.
Right: Data-loops planner with 1 waypoint locked to each node. Circle size is proportional
to data rate. “req” is the data requirement per node (blue, green, red), “dist” is the distance
travelled compared to the Reference trajectory, and “data %” shows the proportion of the
data requirement transferred.

Reference: trial 0, req [ 8 10 12 ]
dist 100%, data [ 118 113 109 ]%

Waypoints: trial 96, req [ 8 10 12 ]
dist 66%, data [ 118 112 108 ]%

Data−loops: trial 96, req [ 8 10 12 ]
dist 77%, data [ 101 102 101 ]%

4.2. Waypoints

The learningWaypoints autopilot�ies directly towards each waypoint in the sequence supplied by
the planner, adjusting its heading for the next waypoint at its maximal turning rate! as soon as it has
passed the current one. We de�ne “passing” a waypoint as being within the UA's turning circle of it:
� � v

! (see Figure1 (middle)). We initialise trajectories of “n waypoints per node” with a waypoint at the
nominal location of each node (not including the start and end points) andn � 1 waypoints evenly spaced
along each tour segment. The UA collects dataopportunistically: at each timestep, of the nodes that still
have data to be uploaded, communication is to the node with the highest observed SNR—a suboptimal
greedy algorithm, but one that performs well in practice. We have assumed that the protocol overhead of
monitoring the SNR and associating to each node is relatively small.

Under the conditions for which it was designed, the Waypoints autopilot can discover excellent
trajectories (see Section5), but it has three weaknesses due to the fact that it has no inbuilt mechanism
for lingering in the vicinity of a node in order to ful�ll larger data requirements.
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• While learning proceeds quickly, often producing trajectories that recover all the data in a few
dozen training circuits, the requirement for an initial training time during which not all data are
collected limits the domains in which the technique is applicable.

• As the data requirement grows or a node's SNR becomes too low due to interference or power
constraints, it becomes more and more dif�cult to learn waypoint placements that generate the
loops required to collect all the data.

• If the data requirement or radio background change much from �ight to �ight, the learned
Waypoints trajectory will no longer be appropriate.

4.3. Data-Loops

The learningData-loops autopilotis an attempt to combine the advantages of the Reference and
the Waypoints autopilots, obviating the need to learn the hard constraint on data requirement (Figure1
(right)). It assigns one waypoint to each node—we will assume that node identities and approximate
locations are known during tour initialisation, although the assignment could instead occur on the �y as
nodes are discovered. The aircraft collects data from any node opportunistically while �ying towards
the tangent of a minimum-turning-radius circle about the waypoint, and then if necessary circles the
waypoint exchanging data only with the assigned node until it has collected suf�cient data. Note that the
true node location and the waypoint location may differ, and as we will see, usually they will.

5. Trajectory Learning

The optimal waypoint placement solves:

argmin
�

dˆ� ˆ � •• subject toS
T

0
Rj ˆ t• dt CD j ; ¦ j > nodes (5)

whered is the total distance �own by the ferry aircraft on the time interval� 0; T� under waypoint policy
� ˆ � • (de�ned in Section5.1), Rj is the radio transmission rate to nodej , and D j is nodej 's data
requirement. The models for radio (Section3) and autopilot (Section4) underlie Equation (5), but it
is dif�cult to anticipateRj at a given aircraft position. Besides, due to the unpredictable nature of the
autopilot, it is dif�cult to anticipate the aircraft's position through time in response to a set of waypoints.
Thus knowing a set of waypoints does not allow us to anticipate how far the aircraft will �y or whether
a given trajectory will satisfy the constraints.

This paper compares two solutions to this dif�culty. For theWaypointsplanner we will rewrite the
constraints of Equation (5) as costs for the optimiser to minimise through experience. ForData-loops
we alter the behaviour of the underlying autopilot to guarantee that the data constraints are satis�ed.

Since Equation (5) cannot be solved directly given the available knowledge, we use a
parameter optimiser based on a Policy Gradient Reinforcement Learning (PGRL) algorithm. For
waypoint placement we use a simpli�ed version that reduces to Simultaneous Perturbation Stochastic
Approximation (SPSA) [30,31]. Because the policies do not react to state, it is not strictly correct to refer
to this simpli�ed version as “reinforcement learning”: the policies are open-loop, and a non-learning
trajectory-tracking controller (the autopilot) closes the control loop. This is not uncommon in the PGRL
literature [32–34] but Kohl and Stone [32] referred to it as “a degenerate form of standard policy gradient
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reinforcement learning”. The simpli�cation is desirable because it allows a reduced policy space and thus
faster learning. More importantly, the PGRL framework makes it easy to reintroduce state dependence at
the policy level, as we will do when minimising sensor transmission power requirements in Section5.4.

In [35] we showed that the Waypoints learner can quickly discover trajectories that outperform a
similar handcoded reference if the data requirement does not grow too large. We will apply the same
learning algorithm to the Data-loops representation. We review the learning technique in Sections5.1
and 5.2. In [28] we developed a local credit assignment (LCA) decomposition that improves the
optimiser's scalability during the local-�avoured phases of the optimisation; we review this and discuss
its relationship to the Data-loops policy representation in Section5.3. To show the versatility of the
learning approach, Section5.4has the ferry learn a communication policy that prolongs sensor lifetime
by minimising the radio transmission power used.

5.1. Baseline Gradient Estimation

In PGRL, a stochastic policy� ˆs; u; � • � PrˆuSs; � • de�nes the probability of choosing actionu in
states with the policy's parameter vector� >Rn . The expectation of discounted rewards averaged over
all statess and actionsu under a policy� ˆ � • is called the expected returnJ :

J ˆ � ˆs; u; � •• �
1

 �
E Œ

H

Q
k� 0

 kr k ‘ (6)

wherer is the reward received at each time step, B1 is a “temporal discount” that places higher value
on rewards received sooner than on those received in the more distant future (this will be discussed
further in Section5.3), and � normalises the temporal discount weights and satis�es1

 �
P H

k� 0  k � 1.
We will use the common abbreviationJ ˆ � • � J ˆ � ˆs; u; � •• . The key component of PGRL is estimating
the gradient of the expected reward:Âg� � Æ©� J ˆ � •.

We break the task down into distinct “trials”. Each consists of a complete execution of� ˆ � • over
a bounded time interval—the aircraft �ying a complete tour� —followed by receipt of rewardr at the
end. During a trial, the policy de�nes a probability distribution over the action chosen at any point.
Assume that the controller makes some �nite numberH of decisionsuk at timestk ; k > 1: : : H during
a trial; discretizing time in this manner makes it possible to compute the probability of a trajectory
under a policy as the product of the probabilities of each (independent) decision at each timetk . So
Prˆ � S� • � L H

k� 1 PrˆukSsk ; � •.
To optimise� , we estimate the gradient using stochastic optimisation's “likelihood-ratio trick” [36] or

reinforcement learning's “episodic REINFORCE” (eR) [37] with non-discounted reward. Each element
©� i of the gradient is estimated as:

Ãg� i � dŒ
H

Q
k� 1

©� i log PrˆukSsk ; � • � � P ©
‘ Œ

H

Q
k� 1

 tk r k � bi ‘i (7)

in which bi is a “reward baseline” for element� i , computed as the inter-trial weighted mean of rewards,
using the per-trial weight‰P H

k� 0 ©� i log PrˆukSsk ; � •Ž
2
, and`�e is the average over some numberN of

trajectories.� P ©
is the mean over trials of theP ©� i terms. This term does not appear in [33] but is

included here in order to reduce the variance of the “characteristic eligibility”, as we found it further
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improves the gradient estimation process. The gist of Equation (7) is that when actionu performed in
states produces a better-than-average reward, the policy parameters� should be adjusted to make future
production of the high-reward response more probable, andvice versa. The equation may be arrived at
in several ways; for derivations see the above references or [33]. We will revisit the temporal discount
factor in Section5.3; unless otherwise noted we use � 1.

Once we have computed a policy gradient estimateÂg� � Ä©� J for episodee, we take a step of some
length� in that direction,

� e� 1 � � e � �
Âg�

SÂg� S
(8)

thus altering the policy. The gradient estimation and update may be repeated until a design requirement
is met, until the policy converges to a local optimum, or forever—to adapt to an environment that changes
slowly over time. If� decreases over time and the environment is static, the algorithm is guaranteed to
�nd a locally optimal policy eventually. The theoretical guarantee of convergence to a locally optimal
policy is only available if� decreases over time. That guarantee is useful, but does not directly apply
to learners operating in a changing environment, although we will revisit it for energy conservation in
Section6.5.

5.2. Learning Waypoint Placement

We consider a sequence of nodes that need to be visited in some order˜ a; b1; : : : ; bn ; c• that was
determined by a higher-level planner [5,11]. We will assume that the aircraft must �y a trajectory that
starts ata and ends atc and allows exchange ofD j bytes of data with each of then sensor nodes
b1 to bn . Thus we seek the shortest patha � c subject to the constraint that for each sensor node
j , RRj ˆ t• dt C D j , in which the data rateRj ˆ t• is measured in �ight, or simulated as described in
Section3.

5.2.1. Policy

Both Waypoints and Data-loops policies are implemented as sequences of constant-altitude
waypoints that are fed to the autopilot. So form waypoints, the policy's parameter vector
� � � x1 y1 x2 y2 : : : xm ym � T . In order to be used by Equation (7) the controller adds noise such
that Prˆ � S� • can be computed. In a real system, actuator noise or autopilot errorE can be used for
this purpose if©� log Prˆu � E S� • can be computed, but in our simulations we simply add zero-mean
Gaussian noiseN ˆ0; � •, � � I , directly to the waypoint locations at the beginning of each tour:

u � N ˆ�; � • (9)

©� log PrˆuSs; � • �
1
2

‰� � 1 � � � 1T Žˆu � � • (10)

Recall that this policy's output does not depend on states, but see Section5.4.1 for an example of a
policy that does respond tos.
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5.2.2. Reward

When a system model is not available, constraints cannot be guaranteed. For the Waypoints planner
we seek to ful�ll them by trial and error through the gradient estimation process. Hence instead of
solving Equation (5), we maximise the expected return (Equation (6)) for a reward function chosen to
favour solutions that also solve Equation (5). Rewards (or their negatives, costs) are assigned so that
solutions that better satisfy the design objectives have higher reward (lower cost). The constraints in
Equation (5) differ from the corresponding summands of the reward in that the former merely state
requirements while the latter create a function at whose maximum the constraints are satis�ed.

For our waypoint-placement problem, we seek the shortest tour subject to the constraint of allowing
exchange ofD j bytes of data with each sensorbj , so we de�ne a reward function that aggressively
punishes data underrun while placing a more modest cost on trajectory length:

r � �
’

”
d � �

n

Q
j � 1

’

”
max

¢̈
¨
¦
¨̈
¤

Œ
D j � �

mj
‘

2

� 1; 0
£̈
¨
§
¨̈
¥

“

•

“

•
(11)

whered is the trajectory path length,� � 10;000is a weighting term chosen so that violation of a hard
constraint (data underrun) dominates the costs,mj is the data quantity collected from sensor nodej , D j

is the data requirement on sensorj , and� is an optional small safety margin that helps to ensure that
all data are collected even in the presence of policy noise. When the constraint is satis�ed—or for the
guaranteed collection of the Data-loops planner—the second term disappears and only trajectory length
affects reward.

5.3. Local Credit Assignment for Data Ferries

When reward is received at the end of an episode, we encounter a version of RL'scredit assignment
problem: noise was added to the policy's output at several points and that noise had some effect on the
reward, but we have little information as to which variations to the policy output were responsible for the
observed outcome. As the number of parameters increases, this dif�culty worsens, leading to increased
noise in the gradient estimate, and therefore to increased learning time.

The reward function (Equation (11)) is made up of1 � n summands—a cost for the optimisation
criterion d and a cost designed to create a suitable reward gradient for each of then constraints. The
policy is made up of some numbers of parameters that de�ne the locations of waypoints, so each policy
parameter can in�uence some subset of then � 1 reward summands. The members of the subset are no
more predictable than are the trajectory and radio interactions, but they are observable. Can the effect
of exploration noise on reward be credited to the relevant policy parameters? Can this be used to speed
learning as problem size increases?

Below we develop an approach based on such a reward decomposition. We introduce an estimate of
the relationship between policy parameters and nodes, which allows us to compute a policy gradient
for each data constraint term. This allows the policy updates to be directly based on individual
constraint-violation-based gradient estimates, rather than through the indirect mechanism by which
constraint violations dominate the monolithic reward gradient.
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5.3.1. Components of the Reward

The reward function is designed to drive the learner towards good solutions that satisfy the constraints.
In our current example, the UA must collect as much waiting data as possible from each of then nodes
while remaining as short as possible—leading to1 � n terms. Other terms could be included in the
optimisation function: for this explanation, let us consider those two types and introduce one more:

• The trajectory lengthsummand (d in Equation (11)) represents a single cost. For the Waypoints
planner it is strictly correct to regard it as a global cost: each waypoint directly controls a �nite
span of the trajectory length but can potentially in�uence the best position of any other waypoint.
However, we will see that a local approximation can be useful. When pushing the limits of an
aircraft's range or a weather window, the trajectory length constraint could be considered hard, but
otherwise it is generally soft.

• Each of then (one per sensor node)data-acquisitionsummands (the arguments to� in Equation
(11)) is, to a �rst approximation, local: each waypoint's movement affects the data requirement of
only one or two data summands and the trajectory length summand. We will consider data retrieval
to be a hard constraint: the trajectory must collect a given amount of data.

• A common need is to extend sensor lifetime by reducing the energy used for data transfer. Then
(one per node)radio transmission energysummands are similar to thedata-acquisitionsummands,
but we will treat them as soft constraints in Section5.4.

While slight gains can be achieved by treating local contributions to trajectory length, here we will
focus on the latter two types of constraint due to their local �avour.

5.3.2. Local Credit Assignment (LCA)

In reinforcement learning, when an actionu is taken at timetu and a rewardr is received at future time
t r , the action is assignedcredit for the reward based on an estimate of how important the action was in
producing the reward. In eR, this takes the form of optionally putting greater weight on rewards received
early in the episode than on those received later, modulated by the term tk ; 0 @ B 1 in Equation (7).
The Policy Gradient Theorem (PGT) [38] and G(PO)MD [39] take a more sophisticated approach by
using the separation in time betweentu andt r to assign credit in proportion to t r � tu ; tu @t r (the full
estimator will appear shortly as Equation (12)). There is generally no correct choice for because the
assumption that the effect of a decision decays exponentially with time is just an approximation, usually
based on the programmer's intuition and experience with the problem. But when we know the temporal
link between a policy decision that causes actionu and a rewardr , we can usurp this mechanism and use
it to assign credit correctly.

Reward (Equation (11)) is a sum of functions of total trajectory length and the data underrun for each
node. Since the data requirement constraint for each node can be satis�ed by disjoint regions in the
trajectory, the value of each reward summand is available only after completion of a trial. LCA aims
to redistribute the �nal reward such that credit for exploration-induced changes in each local-�avoured
summand is attributed only to the exploration noise added to the relevant policy parameters. To this end
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we de�ne a more general credit assignment function that credits actionutd for rewardr t r as ˆ t r � td• �r t r ,
where ˆ �• is a function that encodes causal knowledge about the timescale of the effect ofutd .

Under the Policy Gradient Theorem, the following estimator is used to compute the gradient for policy
parameteri :

Ãg� i � d
H

Q
k� 1

 tk ©� i log� � ˆukSsk• Œ
H

Q
l � k

 t l � tk r l � bk ‘i (12)

where0 @ B 1 is a scalar temporal credit discount base that determines how much credit to give to
an action chosen attu for reward att r . Because our policies are open-loop, the momenttu at which
an action is “chosen” may be de�ned arbitrarily. We sacri�ce the conventional notion of causality in
exchange for symmetry, and de�ne the time of choicetu for a given waypoint to be the moment at which
the aircraft passes the “chosen” waypoint. Thus “actions” affect not just the future as in the PGT, but
also “the past”—points in the trajectory that occur leading up to the waypoint. We modify Equation (12)
as follows to produce the LCA estimator:

Ãg� i � d
H

Q
k� 1

‰ ik ©� i log� � ˆukSsk• � � P ©
ŽŒr j

H

Q
l � 1

 il � jl � bij ‘i (13)

We have changed from a scalar to an arbitrary function that assigns credit at time stepk for policy
parameter (or waypoint)i , and re-inserted the variance-reducing term� P ©

from Equation (7). Since
r j is computed at the end of a trial, we introduce� jk in order to distribute the reward received from
summandj at timetk . Finally, the indices of the reward summation can span the whole trajectory since
 ik will modulate reward through time.

Redistributing reward requires that we determine the effect of each waypoint on each reward
summand, which requires that we answer the following two questions:

(I)  ik : How does each waypointi affect each time stepk along the trajectory?
(II) � jk : How does each step along the trajectory affect each reward summand?

Question(I) may easily be answered—approximately. When the trajectory is well-approximated by
line segments, each point in the trajectory between waypointswi andwi � 1 is affected only by those two
waypoints. (With higher-order splines such as NURBS, the number of control points affecting each time
step would be greater, but still generally a small constant.)

xˆ tk• � xk is the aircraft's position at timetk . To compute the effect of exploration noise at waypoint
wi (or, equivalently,� i >R2) on the aircraft's location at timetk we must look at three cases: that in which
the aircraft has passed waypointwi � 1 and is now steering towards waypointwi , that in which the aircraft
is orbitingwi , and that in which it has passedwi and is en route towi � 1. We de�ne the parameter-point
credit relating the current point on the trajectory towi as:

 ik �

¢̈
¨̈̈
¨̈̈
¦
¨̈̈
¨̈̈
¤̈

dˆxk ;w i � 1•
dˆwi � 1 ;w i •

betweenwi � 1 andwi

1 orbitingwi
dˆ xk ;w i � 1•
dˆwi ;w i � 1• betweenwi andwi � 1

0 otherwise

(14)

wheredˆ�; �• is the distance between the (GPS) positions of its arguments. This gives the parameters
that de�ne wi 0% of the credit for the aircraft's position atwi � 1, increasing linearly to 100% as the
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aircraft approacheswi , and decreasing linearly as the aircraft recedes towards the next waypoint, and
¦ tk P i >waypoints  ik � 1. An example of the computation of is illustrated in Figure2.

Figure 2. An example showing the LCA decomposition of a linear trajectory with 7
waypoints for 3 nodes. shows which waypoints affect the aircraft's position at each point
in time. � shows the data transmission rate, and “effect” shows� T , the degree to which each
waypoint affects the underrun summand of each node, according to which the �nal underrun
reward summands are distributed.
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This is exact for trajectories made up of constant-velocity line segments, but our assumption
of unknown autopilot control policies and UA �ight dynamics make it impossible to compute
exactly. Therefore Equation (14) is an approximation. Future work will investigate learning a better
approximation to the true form of from data, but for now our objective is to show the value of this
problem decomposition, which we can do even when is approximate.

Question(II) addresses the following problem: each reward summand can only be computed at the
end of the trajectory, but in order to assign credit we must decide which points along the trajectory
contributed to the eventual reward. For our current example, the reward is of two types:

The underrun reward summandr j for each nodenj is affected by some number of steps along the
trajectory. Those pointsk on the trajectory that can most affectr j —those with the highest data transfer
rate—should be given the greatest weight in� jk , so we assign a contribution to pointxˆ tk• � xk for
reward summandr j proportional to the maximum observed transfer rate from the UA atxk to node
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nj . We L ª -normalise the contributions so that nodes with a relatively low maximum transfer rate are
not ignored:

� jk �
Rˆnj ; xk•

maxl>H Rˆnj ; x l •

An example of� vs. time is depicted in Figure2, along with the product� T —the effect of each waypoint
on each node's reward used in Equation (13). The gradient due to each underrun summand is computed
separately via Equation (13).

The reward function treats thetour length reward summandas a global property of the trajectory, but
it too can be decomposed by considering the portion of the trajectory length due to each waypoint. The
mechanism of LCA is overkill for this term:� t � v� t, and therefore Equation (13) reduces nearly to
Equation (12): the waypoints still de�ne the same ik described in Equation (14) rather than the decaying
exponential assumed by Equation (12). For this reason we will refer to this variant asLCA-length.

5.3.3. Combining the Gradient Estimates

In the example above, we have shown how to compute three different gradient estimates:

• Global eR estimate from Equation (7).
• Local underrun-based LCA estimatesÂgu using Equation (13).
• Local segment-length-based LCA estimateÂgl using Equation (13) or Equation (12).

The original reward function (Equation (11)) balances underrun and length penalties by ensuring
through� that whenever there is underrun, the policy gradient with respect to reward is steepest in
the direction that will most reduce the hard constraint. But with the LCA decomposition, length and
individual underrun penalties are each computed from their own reward terms, producing separate policy
gradient vectors. This allows us to balance optimisation of the hard constraints against the soft not
through the indirect mechanism of the monolithic reward function but rather by ensuring that hard-
constraint gradients dominate the policy update.

We create a new policy update for Equation (8) by combining the LCA-based gradient estimatesÂgu

and Âgl in a way that ensures that wherever a hard constraint is violated (a data underrun occurs andÂgu

is nonzero), that update vector dominates the total update, otherwise only the LCA-length update vector
Âgl is used. Due to sampling a rough reward space, the gradient estimates' magnitudes are somewhat
arbitrary, so before adding them it is �rst desirable to scale their values. We use:

Âg �
gl

SglSª
� � u Q

j >nodes;Sgu j SA0

gu j

Tgu j Tª
(15)

where � u controls the relative weight of each underrun gradientgu j relative to that computed from
trajectory length. Careful tuning is unnecessary as long as� u Q 1, which ensures that the gradient
update calculated from underrun dominates whenever it exists. We will use� u � 5 in our examples. The
global eR gradient estimate is redundant and does not need to be included.

For purposes of comparison, we perform one �nalL ª -normalisation step on this combined gradient
estimate in order to ensure that when comparing LCA to eR the gradient-ascent steps have the
same magnitude.
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5.4. Learning to Reduce Sensor Energy Expenditure

The data-ferrying approach allows sensors to communicate with distal base stations without the
need for high-powered radios, but the energy that nodes spend in communicating with the ferry is still
non-negligible [13,20]. Recall the data rate from Section3:

Rab � � log2ˆ1 � SNRab•

The derivative of rate
power

©P
�
P

log2 ‹ 1 �
P
N

• �
�

N P logˆ2• ‰1� P
N Ž

�
� log‰1� P

N Ž

P2 logˆ2•

is negative whenever
P

P � N
@log‹

P � N
N

•

which is true except atP � 0, so lower power always results in a lower energy cost per bit. However,
lower transmission rates require longer trajectories. So here we ask: given a prede�ned trade-off between
ferry trajectory length and node energy savings, when should a sensor transmit, and at what power?

This question is made dif�cult by our standard assumption that the SNR between transmitter and
aircraft is hard to predict. Again, a model-free learning approach seems appropriate. For this experiment,
we assume that at each time step a sensor can transmit with any powerP >�0; Pmax � , that it occasionally
sends short probe packets atP � Pmax , and that the aircraft's radio can use these packets to measure the
current maximum SNR and provide instructions to the node. We assume that these packets are too brief
to transmit sensor data or use signi�cant power, so we do not model them explicitly.

5.4.1. Policy

Thepower policyis a learned function that controls the power a node uses to transmit given a reported
SNR, given in dB. Our desired behaviour is to transmit at a target powerPtarget B Pmax whenever the
probed SNR is greater than some thresholdRT . In order to apply reinforcement learning, exploration
noise must be added toPtarget . Therefore the actual transmission powerPnow for each time step is drawn
from a Gaussian whose mean is taken from a sigmoid of heightPtarget :

Pnow � N ‹ Ptarget �
1

1 � e� ˆRT � s•
; � • , truncated on0 BPnow BPmax

wheres � SNRprobed . With this we de�ne our policy:

� ˆs; u; � • � PrˆuSs; � •

with

u �
Pnow

Pmax

� �
<@@@@>

Ptarget

RT

=AAAA?
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WhenSNRprobed � RT , the mean transmission power is 50% ofPtarget , going to 100% asSNRprobed

increases aboveRT and vice versa, thus implementing the desired behaviour with exploration. The
sigmoid's width is controlled by� , and Gaussian exploration is controlled by� . For example, when
Ptarget � Pmax andRT is small, if � is small then the policy mimics the full-power Data-loops policy.

The policy's derivatives are:

©� log� ˆs; u; � • �

<@@@@@@@@@@>

u�
Ptarget

1� e� ‰R T � sŽ

� 2 Š1� e� ‰R T � sŽ•

�
Ptarget � e� ‰R T � sŽ ‹ u�

Ptarget

1� e� ‰R T � sŽ
•

� 2 Š1� e� ‰R T � sŽ•
2

=AAAAAAAAAA?

Unlike the waypoint-placement policy, this one is closed-loop: sensing packets detect SNR, which
informs the choice of action (transmission power) at each time step. Thus we use the full capabilities of
the episodic REINFORCE algorithm of Section5.1. This policy and the waypoint-placement one run in
parallel, using the same �ights to estimate their gradients.

5.4.2. Reward

Since lower power necessitates longer trajectories and we would like to be able to explore without
incurring data underruns, we investigate only Data-loops trajectories. The most energy-ef�cient transmit
power leads to in�nite-length trajectories, so we add a constraint: we seek the policy that requires the
least transmission power subject to an approximate maximum desired tour lengthdmax , representing
the endurance limit of the aircraft. We choose the following reward function, which describes
these constraints:

r � �
’

”
maxˆ0; d � dmax•%� Q

j >nodes
' j

H

Q
k� 1

Pjk � t
“

•
(16)

wherePjk is the transmission power of nodej at timestepk, %controls the sensitivity of the soft
maximum distance penalty, and' j is a weighting for the value of energy for nodej . There is no penalty
for trajectory lengthsd @dmax .

5.4.3. An “LCA” Decomposition?

LCA is effective for linking the satisfaction of local-�avoured constraints such as data underrun to
waypoints that are not explicitly tied to nodes—that the satisfaction of the constraints is a well-de�ned
local property of portions of the trajectory makes local credit assignment meaningful. But for the
power policy under the Data-loops planner, parameters and rewards both correspond to nodes rather
than to waypoints, so the mechanism by which LCA assigns per-node reward to in�uential waypoints is
unnecessary.

Our simpler approach uses a pseudo-local breakdown of Equation (16), estimating the reward gradient
for each node's policy separately, computing the reward for nodej as:

r j � � Œ
maxˆ0; d � dmax•%

n
� ' j

H

Q
k� 1

Pjk � t ‘ (17)
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The �rst term, the total nonlinear length penalty divided evenly between then nodes, makes this
decomposition simplistic. It nonetheless yields a small but consistent performance and scalability gain,
and will be used to produce per-node gradient estimates throughout Section6.5.

6. Experiments

The �rst four subsections investigate factors that affect trajectory length with the transmitters at full
power. Our previous work showed that under certain conditions the Waypoints trajectory planner can
quickly outperform Reference. Here we con�rm those results and compare them to results for the
Data-loops planner.

We de�ne acceptabletrajectories to be those that collect the requiredD bytes of data, regardless
of trajectory length. The reference and Data-loops autopilots always produce acceptable trajectories,
while the Waypoints autopilot may take some number of trials before discovering one. The learning
autopilots are judged by three criteria: the fraction of the trajectories that are acceptable when testing on
randomly-generated problems, the length of the trajectory as a fraction of the reference trajectory, and
how many trials (samples) the agent required in order to learn the presented solution. Computational
cost is not considered since these algorithms take negligible time compared to �ying the aircraft.

Section6.5 explores the simultaneous optimisation of trajectory length and node energy using the
Data-loops planner. Energy use and trajectory length balance each other as speci�ed by Equation (16),
so the main performance criterion is the composite measure de�ned by reward.

Parameters:The aircraft �ies at a constant speedv � 1 at altitudez � 3, with a maximum turning rate
of ! � 20X~s, which yields a turning radiusr � v

! � 2:9. We use bandwidth� � 1, and background noise
N � 2. For the Waypoints trajectory, we use safety factor� � 1 (Equation (11)). Unless otherwise noted,
gradient estimates are computed after 4 trials, which as we found generally produces fast learning for
this problem [28]. These generic parameters do not qualitatively affect the results, and can be replaced
by appropriate values for any given hardware.

6.1. Waypoints vs. Data-loops

When the SNR is high enough and the data requirement low enough that the ferry does not need to
repeatedly loop around a sensor, Waypoints quickly learns trajectories that are signi�cantly shorter than
Reference. Pearre and Brown [35] explored the performance that the Waypoints learner could achieve,
and those results will be con�rmed here (the Reference planner used here is improved compared to [35],
but the difference turns out to be small). How does Data-loops compare?

Figure3 shows how solution quality varies for different data requirements. In this test case (details
given in the caption) Waypoints reliably learns to outperform Reference when the data requirement is
below about 10, but as the requirement overwhelms the available transmission time, the learning time
grows and the probability of success diminishes. Beyond a certain point, Waypoints cannot discover a
trajectory to solve the problem. In contrast, Data-loops always does so, with the caveat that we measure
retrieval of a certain quantity of data rather than data generated at a certain rate (bandwidth isdata collected

tour period

including time taken to deliver the data to the base and recharge or refuel, which we do not consider
here). Trajectories ranged approximately from2� 0:2 � 90%to 2� 0:5 � 70%of the length of Reference



Remote Sens.2012, 4 2991

depending on the data requirement and the autopilot, and the best trajectories found by Waypoints were
usually about 4% shorter than the best found by Data-loops. As the data requirement rises towards
in�nity in this moderately sparse scenario, Waypoints fails, and Data-loops tends to �nd trajectories
about 7% shorter than Reference, although as sensor density increases the learner's advantage increases
(not shown).

Figure 3. Asymptotic trajectory quality as data load increases. Each autopilot was trained for
1,000 trials. The Waypoints autopilot was initialised with 2 waypoints/node. For each run, 6
nodes were randomly placed on a20� 20�eld. Top left: the best Waypoints trajectory found
on a sample �eld (the trajectory shown is not acceptable: four of the six nodes transmit less
than 100% of their data). Top right: as the data requirement increases, the probability of the
Waypoints learner discovering an acceptable trajectory decreases. Bottom left: Data-loops
always achieves 100% collection; Waypoints requires some number of trials before doing
so, and that number grows as the data requirement increases. Bottom right: length of best
acceptable trajectory, averaged over cases in which one was found. The scale is thelog2 ratio
of trajectory length compared to Reference. When Waypoints �nds an acceptable trajectory,
it is usually shorter than the best found by Data-loops by amounts in the order of� 20:06 � 4%.
Note that the error bars show standard deviation of length with respect to Reference.
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Waypoints: trial 744, req [ 21 ( × 6 )]
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Figure 4 shows the same experiment for a linear deployment. Once again, when data quantities
are small the Waypoints learner eventually beats Data-loops by a few percent. More interesting is the
distinctive shape of the graph of best acceptable distance: the greatest gains for both trajectory planners
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were to be found at a data requirement of around 12. At this requirement the Reference planner is
beginning to incorporate full loops to collect enough data from a sensor, but the learners are often able to
re�ne the waypoint positions and eliminate those loops. With the 2-dimensional deployment of Figure3,
the more highly variable radio �eld can require the Reference autopilot to require loops at any point,
eliminating the distinctive shape. Here, as the data requirement goes to in�nity, the gain of Data-loops
over Reference approaches� 4%. Greater �eld complexity can increase the separation between locations
of waypoint and node for prolonged orbiting, so this number depends on radio source density.

Figure 4. Data-loopsvs. Waypoints as the data load increases, on a linear 6-node trajectory
with nodes placed every 10. Otherwise as described in Figure3.
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We anticipate that in most cases the immediate guarantee of complete collection combined with the
ability to collect larger and variable quantities of data will be reason to prefer Data-loops. However,
examined in this context of static problems, when some initial learning time is feasible and data quantities
are small, a Waypoints-style encoding may be superior.

6.2. eR vs. LCA

LCA was developed in order to reduce the number of samples required before discovery of an
acceptable (zero-underrun) trajectory. Pearre and Brown [28] explore that bene�t, and here we review
the result. Data-loop trajectories are guaranteed to have no underrun, but as explained in Section5.3 a
simpli�ed LCA can also be used to improve the gradient estimate for trajectory length. Here we explore
how learning speed scales with the number of nodes for both Waypoints and Data-loops trajectories.
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Figure5 shows an example of learning histories for Waypoints trajectories for a 12-node problem
in which the sensors lie at unknown locations near a line, imitating deployment by parachute from an
aircraft (Section6.3will explore position error more fully). The trace of the data requirement ful�llment
for each node (on the right) shows that under eR the trajectory's performance near any given node
can stay the same or get worse as long as the average improves, while under LCA this effect mostly
disappears. More concretely, LCA allows more rapid convergence to a better trajectory.

Figure 5. LCA vs. eR: sample trajectories for 12 sensors. Left column, from top to bottom:
the initial trajectory is assumed to follow that of a deployment aircraft's recorded path and is
ignorant of actual sensor positions (deployed every 30 units, displaced uniformly randomly
on a circle of radius 12 around the expected location); the �rst acceptable trajectory learned
by eR; and the trajectory produced by LCA after the same number of steps. “Length” for the
learned trajectories is the average length over the 100 trials after the �rst acceptable trajectory
is discovered. Right column: fraction of the data requirement ful�lled (here req = 25 for each
node); each line shows the trace of data collected vs. trial number for a single node, for eR
and LCA. Here we use 38 waypoints (76 parameters) for 12 sensors.
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Figure 6 shows that LCA improves scalability of the learning system for Waypoints trajectories.
eR requires a number of trials roughly linear in the number of nodes, whereas with LCA the learning
time grows much more slowly. Perhaps more surprising is the difference in �rst good trajectory length
between eR and LCA. When some nodes but not others have underrun, the locality of the LCA update
allows optimisation for length on whichever waypoints bear no responsibility for underrun. This effect
is most signi�cant at higher data requirements when the learner is required to spend signi�cant time
optimising the trajectory in the vicinity of each node, and almost disappears at low requirements (not
shown). When using LCA for both underrun and distance, the �rst good trajectory tends to be slightly
shorter than for LCA-underrun only, but the difference is only signi�cant under a narrow range of
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conditions. We weight the LCA updates for underrun more heavily than those for length (as described
in the caption), which ensures that wherever there is an underrun, its gradient will dominate the policy
update. What happens after the �rst acceptable trajectory is found? The behaviour remains similar to
that when using the zero-underrun trajectories generated by Data-loops, as discussed below.

Figure 6. Waypoints trajectories with policy updates from the plain episodic REINFORCE
(eR) gradient estimate only, from eR (weight 1) and underrun-only LCA estimate with
weight� u � 5, and LCA estimates for both underrun (� u � 5) and length (weight 1), without
the eR gradient. The UA is informed that the sensors are deployed along an east-west line
with a spacing of 25 units, but each sensor's actual position is displaced� 10 units in a
random direction. Three waypoints per node are initialised uniformly along the east-west
line. Learning terminated upon discovery of an acceptable trajectory, so “best distance” is
�rst acceptable distance.
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Figure7 shows how learning rate scales for Data-loops trajectories. We have shown a quasi-linear
sensor layout: the assumed sensor positions lie near a line, and the actual positions are displaced by 8 in
a uniformly random direction from where the UA believes it to lie. Because time to �rst good is 0 for
Data-loops, we show the quality of the trajectory after 40 trials (initial quality is nearly identical to that
of Reference, so initiallylog2

length ˆ Data � loops•
length ˆReference• � 0). While the quality of the trajectory achieved by eR

after 40 trials improves over Reference less as the number of nodes increases, LCA-length achieves
consistently good performance even for large problems, in this case generally �nding trajectories
2� 1:5 � 0:35 times the length of Reference within 40 trials. This improvement sounds vastly greater
than reported above, but as we will discuss in the next section, when the Reference planner is given
incorrect information, the advantage of the learners can be arbitrarily large.
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Figure 7. Data-loops trajectories with and without “LCA-length” after 40 trials as the
number of nodes increases. The sensor position knowledge error here is 8 and� � 1, to
show learning speed. As expected, for small numbers of nodes LCA does not help much, but
as the number of nodes grows eR's learning speed (re�ected by the solution quality after 40
trials) deteriorates whereas with LCA it does not.

Reference: trial 0, req [ 15 15 15 ]
dist 100%, data [ 100 100 100 ]%

eR: trial 40, req [ 15 15 15 ]
dist 34%, data [ 107 103 102 ]%

LCA: trial 40, req [ 15 15 15 ]
dist 31%, data [ 102 108 101 ]%
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6.3. Position Error

When sensor locations are not known precisely, learning allows recovery from error in the position
information. Figure8 shows results of learning with incorrect sensor location information. As the
position error increases, Reference must �y ever-increasing numbers of loops in order to collect the
required data, but the learners compensate for the misinformation by modifying the trajectory.

Here the Waypoints planner is at an additional disadvantage: since the initial waypoint positions
lead to an inferior trajectory, more learning iterations may be required before the aircraft eliminates
underrun. In contrast, the Data-loops planner, with its collection guarantee, avoids that issue at the cost
of potentially very long trajectories: initially it performs identically to Reference, and through learning
quickly it discovers similar solutions to the no-position-error case.
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Figure 8. Trajectory quality through time as the error in node position information increases.
Here we used 6 nodes, each with a requirement of 5. Each randomly generated �eld is
20� 20, nodes are placed uniformly randomly, and the orientations of their dipole antennas
are randomly distributed. Position error is the radius of a circle on which nodes are placed
uniformly randomly from the true node position.
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Interestingly, even when the Reference planner is given perfect knowledge of node positions, it
is reliably and quickly outperformed by the Data-loops planner despite the similarity between them
(Figure8, bottom right). This is due to three reasons:

Radio �eld irregularity: The radio �elds are messy (and assumed to be dif�cult to model). The circular
orbit with the highest average data rate is not generally centered on the node's actual location.
At high (i.e., loop-dominated) data requirements, the best trajectories were those in which the
waypoint positions differed from true node positions by roughly 1.5.

Wasted partial orbits: The circular orbit with the highest average data rate is suboptimal when the
data transfer completes before the loop completes. This effect is most pronounced at lower data
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requirements, in which achieving the highest possible data rate is less important than shortening
the trajectory. In this case, the waypoint may be moved, resulting in a lower transmission rate that
is still suf�cient for complete data transfer.

Opportunistic communication: During execution of a Reference trajectory, the aircraft communicates
with the node towards which it is �ying. In contrast, the Data-loops planner allows communication
with nodes that offer higher SNR.

6.4. Antenna Patterns

The learner �nds trajectories that place the aircraft in a position and orientation that allow high SNR
with each of the target nodes. High-gain antennas, when oriented appropriately, allow transmission at a
higher rate or at longer range. Perhaps more importantly, if an antenna's null can be aimed appropriately,
then it can reduce interference from other antennas or from multipath. A steerable antenna would provide
great bene�t at the cost of hardware and controller complexity (even the smallest commercially-available
units can easily exceed the payload of a lightweight UA).

How do antenna patterns affect the quality of the trajectories found? We have assumed that both
the aircraft and the nodes use short dipole antennas as represented by Equation (3) (directivity = 1.5,
gain = 1.76 dBi). Here we compare the dipoles to equally ef�cient isotropic antennas operating at the
same power, in both aircraft and nodes. We place some number of nodes randomly on a 20� 20 �eld, and
each node has a data requirement of 20. We show Data-loops trajectories here, although with Waypoints
the results are similar whenever the latter can �nd an acceptable trajectory.

Results are shown in Figure9. The dipole is not an especially high-gain antenna, yet equipping
the aircraft with a dipole offers a large improvement over an isotropic antenna, especially in a noisier
environment. We observed this effect both for learned and for reference trajectories, and whether the
nodes use dipoles or isotropic antennas. However, equipping the nodes with dipoles had the opposite
effect: regardless of the UA's equipment and the trajectories �own (reference or learned), it was able to
discover shorter trajectories when the nodes had isotropic antennas. The best combination was a dipole
on the aircraft combined with isotropics on the nodes, especially as the sensor density increased. It
should be noted, however, that while we observed this trend over a range of conditions, we did not test
across every possible con�guration. For example, it is possible that a more manoeuvrable UA could
better take advantage of directional node antennas.

More important than the preceding observation is the con�rmation that the learner adapts to the
antenna characteristics it experiences. It would take full advantage of any real-world antenna pattern
such as would be expected in the presence of fuselage, landing gear, and other mechanical elements of
the aircraft, or systematic noise sources on the aircraft (e.g., due to the onboard computer).

We use the dipole antenna model for both aircraft and nodes throughout the paper: our objective is
to compare a learning approach to handcoded heuristics in complex environments, and the dipole radio
pattern of our nodes serves as a proxy for the complex structure of real radio �elds.

We leave for future work investigation of more directional antennas, laterally asymmetric patterns,
steerable antennas, patterns based on real-world measurements, and aircraft movement models designed
to take advantage of directional node antennas.
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Figure 9. Effect of equipping the aircraft with a short dipole vs. isotropic antenna. The
�eld plots show learned trajectories for a random �eld of 8 nodes (contours, as always,
show what the aircraft would see in level �ight, not what it actually sees as it turns and
banks). Top Left: sample �eld for isotropic antennas on UA and nodes. Top Middle: dipole
antenna on aircraft, isotropic antennas on nodes. Bottom Left: isotropic on aircraft, dipoles
on nodes. Bottom Middle: dipoles all around. Top right: comparison of lengths of Reference
trajectories for all conditions (named for antenna patterns on aircraft/nodes respectively)
relative to the isotropic/isotropic case (shown as the zero), on a logarithmic scale. Bottom
right: comparison of best learned trajectory lengths for the four combinations, compared to
the same isotropic/isotropic reference used above.
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6.5. Node Energy Conservation

Our primary baseline for comparison is the Reference planner. The learner can �nd signi�cantly
shorter trajectories, but here we allow the learner to instead increase the trajectory length up to a certain
point if that allows the sensors to use less energy in transmitting data to the aircraft (Section5.4). In our
test cases, we allow trajectories twice the length of each problem's Reference trajectory (dmax � 2dref in
Equation (17)), after which the distance penalty grows with exponent%� 3.

The same trials are used to compute gradients for both waypoint position and node energy policies.
For this scenario we found it helpful to increase the number of trials per policy update to 10—this need
may be greatly alleviated by parameter tuning or by the importance-sampling re-weighting procedure
described by Tang and Abbeel [40], which we leave as future work. Also, in order to mitigate abrupt
changes in the trajectory due to waypoints moving, we reinstated the common learning practice of
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decreasing the waypoint exploration and learning rates (we used a factor of0:99trial) and the power
policy learning rate (0:995trial).

In addition to our standard Reference, we provide two baselines that learn waypoint placement but do
not modify radio power. The �rst transmits at full power (Pnow � Pmax ), mimicking the behaviour
of Data-loops but learning waypoint placement in response to the energy-sensitive reward function
(Equation (17)) rather than Equation (11). The second,Half-power,differs only in that it follows the
simple heuristic of transmitting at half power (Pnow � 0:5 � Pmax ) independent of SNR.

Figure10 shows performance of concurrent learning of both waypoint placement and energy policy
on a single node with no position error. Within 50 trials the learner requires about 65% of the radio
transmission energy required by Reference at 30% greater �ight distance, and achieves about a 10%
energy savings over Half-power. We stop learning after 200 trials, by which time the energy requirement
has decreased to 57% of Reference at 50% greater distance, saving about 20% energy over Half-power
at similar trajectory length. Performance for different data requirements was analogous.

Figure 10. Node energy use with power policy initialised with� � � 1 0 � T on a single
node with no position error, data requirement of 10, and the soft maximum trajectory length
set to twice the reference trajectory's length for each problem. Three cases are shown:
learning only for waypoint positions and transmitting at full power (P � 1); learning only
for waypoint positions but transmitting at (P � 0:5, “Half-power”); and learning for both
waypoint positions and power policy (Learn� e). (Left ) Energy use through time. (Middle)
Trajectory length through time—the dotted line at 1 is the soft trajectory length limit. (Right)
Composite trajectory cost through time (de�ned by Equation (16)). We use cost� � reward
here to make the graph's trend more intuitive. Note that all y-axes are log ratios.
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The best reward may occur when the trajectory is slightly longer than the soft “limit”, since the
learner balances the length cost against the energy cost. However, the learned policies yield trajectories
signi�cantly shorter thandmax , especially with few nodes. This is an artifact resulting from the way we
de�ne dmax in Equation (17). Changes to the power policy may cause the Data-loops autopilot to add
whole loops, and overshootingdmax carries a larger penalty than undershooting it by the same distance.
With more nodes, each loop is a smaller fraction ofdmax so policies can more closely approachdmax

without overshooting, realising greater average energy savings for these comparisons.
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Figure11 shows the same experiment for problems of �ve nodes deployed uniformly randomly in
a 15� 15 �eld (an example con�guration is shown on the left of the �gure). By 200 trials the nodes
require, on average, 50% of the energy of Reference and 75% of the energy required by Half-power,
while not exceeding the soft trajectory limit.

Figure 11. Node energy use on 5 nodes, square deployment. Other con�gurations and
descriptions are the same as in Figure10.
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Finally, we misinform the aircraft about the nodes' locations: sensor placement is distance 3
(approximately the aircraft's turning circle) from where the aircraft believes the sensors to be. Results are
shown in Figure12. Here the advantage of learning both waypoint-placement and power policies over
non-learning or waypoint-placement-only policies increases, with the full learner requiring the nodes to
use only 40% of the energy demanded by Reference, about half the energy of our Data-loops with full
power, and again about 75% of the energy required by Half-power. As position error increases further
and the number of nodes increases, the advantage of this combined learning approach over our reference
grows arbitrarily.

Figure 12. Energy optimisation with a square deployment in which the UA is misinformed
about sensor location by 3 units in a random direction. Other con�gurations and descriptions
are the same as in Figure11.
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7. Discussion

We have applied a model-free policy learning approach to two simple trajectory representations,
comparing results to a handcoded reference. The representations were chosen for the ease with which
they interface with a black-box autopilot. The Data-loops representation is guaranteed to collect all data
from each sensor on every pass, while the Waypoints representation can lead to shorter �ights and hence
lower network latency when data requirements are low. Given an initial trajectory based on reasonable
guesses as to the nodes' locations, the convergence to a good solution is rapid. Trajectories signi�cantly
superior to those of the Reference are found after only dozens of passes.

With a nä�ve approach, the time required to learn policies scales roughly with the number of policy
parameters. Some of these problems lend themselves to local decompositions, leading to faster solutions.
In particular, the Local Credit Assignment (LCA) decomposition disassembles a global reward and
assigns credit based on an approximation of the policy parameters' responsibilities for their portions
of the reward, leading to an asymptotic improvement in learning time and making solution of large
ferrying problems feasible.

The learning approach was adopted in order to allow for irregular radio �elds that can be hard
to model, and the bene�t of learners is especially pronounced when the sensor nodes' locations are
not known precisely. Learning trajectory planners never need to know the nodes' precise locations,
since rather than making assumptions about how location is likely to affect performance, they optimise
directly on observed performance. Even with perfect location information, the learner can generally
surpass a handcoded reference, but as information about sensor locations becomes increasingly
degraded, the bene�t of the learning approach increases arbitrarily over methods that assume perfect
location information.

We have also shown that in the presence of even a few radio noise sources, the aircraft can bene�t
greatly from the use of a directional antenna, whereas the nodes should use a less directional pattern.
At moderately high sensor densities, the simple selection of a dipole antenna in the UA and isotropics
on the ground led to trajectories 15% shorter than those possible with the converse choice at the same
power, and further improvements are anticipated with higher-gain antennas or more noise sources. We
leave as future work an investigation of further synergies between aircraft and ground antenna patterns.

Finally, we showed that the methods used above readily adapt to the task of minimising the energy that
sensors must consume in order to transmit data to the aircraft. If we allow the ferry's trajectory length
to double, we can see nearly a factor-of-two reduction in transmission power. If radio transmission is a
signi�cant portion of sensors' energy use, this could greatly extend network lifetime.

Our emphasis has been on showing feasibility of the learning approach for this problem, so much
leeway remains for improving learning speed and reducing the number of �ights required, for example by
careful tuning of learning rates and exploration noise, or by allowing the gradient estimator to re-weight
and re-use past exploratory trajectories, which may allow a high-quality gradient estimate to be obtained
with fewer trials. However, while learning may be fast enough for deployment in the �eld for long-term
sensor monitoring tasks such as hydrological, seismic, or wildlife monitoring, little would be gained in
short-term time-critical monitoring tasks such as wild�re tracking.
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The autopilot and radio models used here are simplistic. For instance, it is likely that the sensors would
interfere with each other and not transmit continuously (unless the network were extended to use multiple
ferries) nor would the data volume be constant across tours, and the directionality of node antennas may
be far more pronounced than this model's �eld irregularities reproduce. However, since this approach
assumes nothing about these variations, we are con�dent that for any reasonable UA system, trajectories
can be signi�cantly optimised using the techniques in this paper.

We know of no other studies investigating UA ferry trajectory planning through unknown radio �elds.
Each of the papers reviewed in Section1 assumes a radio transmission model appropriate to the problem
investigated therein, whereas this work is based on the premise that such a model is not readily available
to the planner, and shows that fast trajectory optimisation is possible despite that lack.

8. Conclusions

We have shown that when an accurate radio environment model is not available, reinforcement
learning is feasible for planning trajectories for unmanned aircraft (UA) serving as data ferries. Good
trajectories are quickly learned by a policy gradient learning algorithm that treats the aircraft dynamics
and radio �eld idiosyncrasies as black boxes, obviating a complex system identi�cation problem. The
UA can learnin situ while it is doing useful work, and can exploit actual environmental quirks. Under
our assumptions, reference trajectory lengths can be improved by 10%–30% even with perfect sensor
location information, and by 65% or more as the information available to the planner is degraded. With
a different objective function, the same technique can be used to extend sensor lifetime by minimising
the energy used for communication: if the aircraft can double its �ight time, nodes can reduce their radio
energy requirements by 50% or more.

Signi�cant challenges remain to be addressed. For example, we have treated the learning task as
episodic, only allowing policy updates between �ights, whereas adaptation could occur during �ight,
such as while an aircraft orbits a waypoint, allowing faster learning. Another factor to be considered
in future work is planning in the presence of wind: how should the waypoint-placement and energy
policies change in response to a changing wind vector? The policy learning techniques explored here
may be applicable to learning optimal data retrieval policies for event reconstruction, gathering a fraction
of the available data from each of many sensors in order to optimise the trade-off between completeness
of information and event reporting latency. Finally, while none of the methods presented herein precludes
the use of multiple aircraft, explicit extensions to multi-aircraft sensor networks, including UA-enabled
multi-hop relay networks, may provide valuable capabilities.
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