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Abstract: Cities are complex systems composed of numerous interacting components that 
evolve over multiple spatio-temporal scales. Consequently, no single data source is 
sufficient to satisfy the information needs required to map, monitor, model, and ultimately 
understand and manage our interaction within such urban systems. Remote sensing 
technology provides a key data source for mapping such environments, but is not sufficient 
for fully understanding them. In this article we provide a condensed urban perspective of 
critical geospatial technologies and techniques: (i) Remote Sensing; (ii) Geographic 
Information Systems; (iii) object-based image analysis; and (iv) sensor webs, and 
recommend a holistic integration of these technologies within the language of open 
geospatial consortium (OGC) standards in-order to more fully understand urban systems. 
We then discuss the potential of this integration and conclude that this extends the 
monitoring and mapping options beyond “hard infrastructure” by addressing “humans as 
sensors”, mobility and human-environment interactions, and future improvements to 
quality of life and of social infrastructures. 
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1. Introduction  

Cities are complex systems, composed of myriad biological and non-biological components that 
function and interact within multiple coincident spatio-temporal scales: from the split-second delay of 
a changing traffic light, to the diurnal pulse of city night-life, to the seasonal hum of power stations 
meeting increased energy demands. Cities are alive. They breathe, they evolve and within this new 
geological epoch—the Anthropocene or “The Age of Man” [1], we are changing the face of our planet 
in order to meet their increasing appetites. In the 1800s, the urban fraction of the global population was 
3%. Today it is estimated that 50.6% of the world’s population currently live in urban areas that 
occupy only ≈1% of the planets total land area [2]. Additionally, annual urban growth rates continue to 
increase at a more rapid pace (1.91%), than rural populations (0.22%) [3] leading to a host of urban 
challenges from affordable housing, increased urban unemployment and traffic congestion, to rising 
energy demands, urban heat island effects and increased air and noise pollution to name just a 
few [4,5]. Understanding how these urban systems evolve (their past, present and future) is paramount 
to maximizing our human living experience within their changing boundaries; yet no single 
perspective is sufficient to achieve this task. In this article we provide a condensed perspective of 
critical geospatial technologies necessary to understand, model and monitor cities from above, below, 
within and from a distance-over multiple collection scales; with an emphasis on the importance of 
implementing open geospatial consortium (OGC) sensor standards (see Section 3.2). 

The term “city” comprises not only a geographical area characterized by a dense accumulation of 
people or buildings, but implicitly includes a multi-layered construct containing multiple dimensions 
of social, technological and physical interconnections and services. A variety of terms have emerged to 
describe this evolving urban environment, including virtual city, city of bits, event city, cyber city, 
global city, network city, and renewable city [6]. Naturally, these terms depend on the specific 
viewpoint(s) representing the complexity of the phenomena being observed and analyzed. Hall [7] 
characterized this multi-dimensional complexity covering culture, politics, trade, communications 
infrastructure, finance, technology and universities. Hall and Pfeiffer [8] further state that a liveable 
city has many facets, which revolve around quality of life functions such as living space, elementary 
infrastructure, traffic and land utilization. 

Castells [9] pursues another approach describing a city as “not a place, but a process”. In this 
context, processes are considered the connections between centers in a global network. Castells further 
imagines the city as a spatial system of advanced service activities, and claims that information and 
communication networks constitute the modern social morphology of our societies in the 
informational age—as opposed to the industrial age. A more economy-driven view is presented by 
Friedmann [10], who states that cities are the basing points of capital, and the resulting linkages create 
a complex spatial hierarchy. In his interpretation, this hierarchy is formed by taking a number of city 
characteristics into account: the importance of the city as a finance centre, corporate headquarters, 



R

 

in
S
s
th
o
w
d
is
o
a
d

c
o
il

Remote Sens

nternational
Similarly, a 
sees the com
hat a large 

occur in and
which is str
definite geo
ssues rathe

operation. T
aliases and a
domain on c

Despite th
changed. Th
of exploring
llustrated, o

Figure
(2005)
unpub
are no

s. 2011, 3 

l institution
very energy

mmon aspec
part of glob

d among cit
rongly moti
ographic pla
er than by 
The inhabita
agents”. Mo
cellular auto
heir diversi

here is no si
g the city t
one common

e 1. Inform
); (b) a dig

blished); (c)
t depicted in

ns, busines
y-centered 
ct of cities i
bal financia
ties. Mitche
vated by te

ace on the s
physical ac
ants are no
ore recently
omata and a
ity of appro
ingle univer
together wi
nly used me

mal settlem
gital classif
 a ground i
n the nadir 

ss services
description
in their foun
al transactio
ell [12] also
echnology. H
surface of t
ccessibility

ot humans,
y, several of
agent-based
aches, almo
rsal way of 
ith their inh
ethod is to p

ments in Fo
fication of s
inspection r
optical ima

(a) 

s, manufact
of urban en

ndation as “
ons, trade, c
o lays out a
He states th
the earth; (i

and land
but agents,

f these ideas
models [13

ost all studie
describing 
habitants. F
produce a m

ortaleza, Br
settlement 
reveals vari
ages (photo:

(c) 

turing, tran
nvironment
“creatures o
command an
multi-dime

hat the futu
ii) constrain
values; and
, which Mi
s have been
3]. 
es reveal ho
cities and u
Figure 1 de

map.  

razil: (a) pr
structures,
ous structur
 Blaschke, 2

 (b

nsportation,
s is present

of their ener
nd control, 
ensional def
ure city will
ned by conn
d (iii) wide
itchell desc
realized wi

ow the cities
urbanity, but
epicts some

rivately flo
settlement 
ral and soci
2006). 

b) 

 

, and popu
ted by Droe
rgy regimes
and cultura

finition of t
l be (i) unr
nectivity an
ely asynchr
ribes as “c
ithin a grow

s in which w
t rather, num
e of these m

own aerial 
in red (Bla
ial changes

 

174

ulation siz
ege [11], wh
s”. He asser
al productio
the term city
rooted to an
nd bandwidt
ronous in i
collections o
wing researc

we live, hav
merous way
methods. A

photos 
aschke, 
s which 

 
45

e. 
ho 
rts 
on 
y, 

ny 
th 
ts 
of 
ch 

ve 
ys 
As 



R

 

d
m
th
n
r
a
a
p

“
e
c
“
id
k
a
te
w

Remote Sens

Remote s
data source 
maps are in
hat what is 

near-real-tim
referenced 
advanced in
analyses but
provide obli

Figure 2 
“in situ” sen
example, w
characterize
“complete” p
deas, and to

key compon
analysis tec
echnology’

will discuss 

Figure
(2) are

s. 2011, 3 

sensing ima
to achieve a

ncreasingly 
needed is a

me digital m
information

n terms of te
t that it is 
ique data-wh
illustrates t

nsing. For 
which shoul

d with the 
picture of th
o provide s

nents of (i) R
chnologies; 
s strengths 
multi-sourc

e 2. The “p
e juxtaposed

agery (i.e., 
a birds-eye,
inefficient 

a seamless i
maps act a
n and asso
echnologies 
primarily l
hich represe
this hypoth
simplicity w
ld include 
processing 
he environm

solutions. In
Remote Sen
and (iv) th
to create a

ce sensing, 

plan-view” 
d in terms o

from satell
, or plan-vie
for represe

integration o
as geospati

ociated met
and method

limited to a
ents an inco

hesis and th
we employ 

feature ex
chain since

ment. Our o
n the procee
nsing; (ii) G
he sensor w
an integrate
“collective 

concepts of
of their resul

lite and or
ew of an ur

enting dynam
of multiscal
ial strange-
tadata. Our
ds including
a “roof-top/
omplete per
e different 
a “wall to

xtraction a
e most indi

objective is t
eding sectio

Geographic 
web, and w
ed understan
sensing” an

f remote sen
lts. 

airborne se
rban setting
mic urban
le geospatia
-attractors t
r hypothesi
g multi-sen
/treetop” vi
spective for
perspective

o wall” map
approaches. 
ividual syst
to contribut
ons we will
Information

we will disc
nding of dy
nd germane 

nsing (1) an

ensors) ofte
. However, 
environmen

al technolog
that dynam
s is that r
sor, multi-s
iew-althoug
r understand
es derived f
p metaphor 

The in s
tems are no
te to a better
l explore th
n Systems; 
cuss opport
ynamic urba
terms used

nd “persona

en provides
such tradit

nts. Instead
gies, where r
mically harb
remote sen
scale and mu
gh SAR pla
ding urban s
from both “

for the rem
itu sensing

ot developed
r understan

hese ideas b
(iii) object-
tunities to 
an systems.

d in Comput

al” in situ s

 

174

 the primar
ionally stati
, we sugge
real-time an
bor spatiall
sing is we
ulti-tempor

atforms ofte
systems.  
“remote” an
mote sensin
g process 
d to derive 
ding of thes

by describin
-based imag
exploit eac
. Finally, w
ter Science.

sensing 

 
46

ry 
ic 

est 
nd  
ly 
ell 
al 
en 

nd 
ng 
is 
a 

se 
ng 
ge 
ch 
we 



Remote Sens. 2011, 3 
 

 

1747

2 Remote Sensing and the Urban Environment 

2.1. Progress in Technology  

Current airborne and satellite remote sensing sensors have significantly advanced, since the first 
recorded nadir air photograph was acquired from a hot air balloon over the city of Paris in 1858 ([14], 
p. 67). For example, airborne hyperspectral sensors such as the CASI 1500 [15] provide a 650 nm 
spectral range between 365 and 1,050 nm, 288 programmable spectral samples (<3.5 nm FWHM), and 
a spatial resolution of 25 cm–1.5 m; while satellite sensors such as GeoEye and Worldview-2 are 
capable of providing (sub 0.5 m) high spatial, spectral and temporal resolution imagery. For example, 
WorldView-2 is able to collect imagery for nearly 1 million km2 every day with a revisit frequency of 
1.1 days at 1.1 m resolution.  

Based on such high spatial resolutions and in combination with advancements in object-based  
image-processing methodologies (see Section 2.2), substantial increases in urban remote sensing 
applications can be observed. These include, but are not limited to, the mapping of mega-cities  
(such as Mumbai, Tokyo, New York City and Mexico City, see also the “100 cities project” 
http://cesa.asu.edu/urban-systems/100-cities-project/); the mapping and monitoring of fast evolving, 
sometimes uncontrolled settlements in developing countries, or the monitoring of informal  
settlements-routinely done by public administrations or commercial companies. At more advanced 
levels, Thomas et al. [16], Weng and Quattrochi [17], Ehlers [18], Herold and Rogers [19], Rashed and 
Jürgens [20] deal with a wider range of urban remote sensing methodological issues including urban 
mapping with high-resolution imagery, data fusion, land-use metrics, urban image-texture and 
distinguishing between urban and sub-urban areas. Extensive reviews of the current state of the art for 
different aspects of satellite and airborne data analyses relevant to urban applications such as 
impervious surface mapping, urban change detection, improved urban classification and others are also 
presented in [14,17,21-23] and Weng [24,25] provides comprehensive overviews on the remote 
sensing of urban landscapes and their environments. 

From these studies, it is clear that, especially over the past two decades, the demand for timely 
urban mapping and monitoring has intensified due to increased access to high-resolution imagery, as 
well as to worldwide trends to better understand rapid urbanization and its accompanying concerns of 
environmental impacts and sustainable growth [26-28]. This increase in availability and demand also 
continues to drive urban studies research to exploit remote sensing capabilities to provide detailed data 
and information to better manage urban growth and its related challenges [29].  

High resolution images were formerly the domain of airborne remote sensors. However, the advent 
of high resolution civilian satellite remote sensing is typically associated with the 1999 launch of 
Ikonos. Ikonos, Quickbird (2001) and numerous proceeding satellites of the “1 m-generation” of 
satellite sensors—so called because of their 1.0 m panchromatic images—also initiated a dramatic 
increase in the volume of images, scientific literature and new methods being developed [30,31]. These 
finer spatial resolution (or larger mapping scale) image data contain higher levels of detailed features 
than the preceding coarser resolution sensors (e.g., Landsat Thematic Mapper and SPOT). However, 
this greater level of detail with its increased digital number variability often led to complicated urban 
features—when viewed in the spectral domain [19,32,33].  
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While the (current) spatial resolution of satellite hyperspectral imagery are not as fine as 
multispectral airborne imagery (which can be a limitation for some applications), it will continue to be 
an important and valuable data source for urban studies into the future [19,34-36]. In fact, for many 
applications they complement the high-resolution multispectral imagery, through the use of  
image-fusion techniques [18]. While the domain of high spatial resolution hyperspectral satellite 
sensors is yet to come, there are many hyperspectral sensors used in airborne platforms (such as 
AVIRIS, CASI, DAIS, HyMap, etc.) which dominate the literature [37]. These sensors provide 
sufficient spatial resolution for a range of urban applications from urban forestry to impervious  
surface mapping.  

Urban decision-making increasingly requires urban land-use and land-cover maps generated from 
very high spatial resolution data. For example, a remote sensing application to estimate population 
based on the number of dwellings of different housing types in an urban environment (single-family, 
multi-family), usually requires a pixel size ranging from about 0.25 to 5 m if individual structures are 
to be identified [38]. Optical imagery is not the only data resource available to planners. They also 
have access to LiDAR (Light Intensity Direction and Range) data derived from active sensors capable 
of providing detailed 3D point clouds from which detailed building structural information can be 
defined. Recent breakthroughs in LiDAR flight path planning which emphasizes building façade data 
capture, has greatly facilitated the potential for rapid auto-generation of 3D building models [39].  

Figure 3. LiDAR and optical data are routinely combined in many applications. 
(a) Illustrates a Quickbird image of Salzburg from 2005 overlaid with polygons representing 
tall trees located close to buildings which interfere with the extraction of building surface 
models from LiDAR data (not displayed herein); (b) a zoom to the problematic areas for 
visual inspection or subsequent image analysis steps; (c) an NDVI mask of tall trees 
derived from a Quickbird image; (d) the resulting building mask displayed in 2D. 
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While terrestrial LiDAR data campaigns are usually restricted to specific purposes in, e.g., 
archaeology, engineering disaster assessments or pseudo-realistic visualization effects, the majority of 
LiDAR sensing campaigns are from aerial platforms. The resulting large collections of point clouds 
and their unstructured nature makes them unsuitable for direct visualization and engineering purposes 
without further processing (see Figure 3). Effective visualization largely depends on the quality of the 
sampled points, on efficient scene representations and appropriate filtering and caching methods. 
Visualization is crucial to understanding and analyzing large datasets and is, therefore, a critical 
issue in large-scale urban planning. Goodwin et al. [40] provide convincing examples of the use of 
small-footprint, discrete LiDAR data in urban environments for extracting both primary attributes such 
as building outlines and a suite of secondary urban cover and structure attributes that are relevant for 
parameterising the surface in atmospheric modelling. 

2.2. Progress in Image Analysis 

Remote sensing technology has been applied widely in urban land use/land cover (LU/LC) 
classification and change detection [41]. However, it is rare that a classification accuracy of greater 
than 80% can be achieved (except in the case of homogenous water bodies) using per-pixel 
classification (so-called hard classification) algorithms [42] due to the h-res problem [43]. This is 
where the increased spatial resolution of high-resolution imagery, while visually meaningful, confuses 
traditional classifiers, resulting in reduced classification accuracy. Therefore, the soft/fuzzy approach 
to LU/LC classification has been applied, in which each pixel is assigned a class membership of each 
LU/LC type rather than a single label [44]. Nevertheless, as Mather [42] suggested, neither hard nor 
soft classification is an appropriate tool for the analysis of heterogeneous landscapes. Rather, he 
maintained that identification/description/quantification rather than classification should be applied to 
provide a better understanding of the composition and processes of heterogeneous landscapes such as  
urban areas.  

While per-pixel multispectral image analysis has provided satisfactory results for coarse to medium 
resolution (≈30+ m) imagery for over 30 yrs [45], it is seldom sufficient for extracting fine urban 
features from very high resolution (VHR) satellite data. Instead, a combined spectral and spatial 
approach may be more useful to map urban features, particularly those with low spectral separability. 
Despite many innovative approaches, and technical progress in sub-pixel analysis [41], unsolved issues 
involving spectral confusion and mixed pixels have led to a paradigm shift in classification methods 
from per-pixel to object-based methods [46,47]. The need for an approach that goes beyond the  
pixel-based paradigm via the classification of spectral reflectance characteristics, and moves towards 
an “object-based paradigm” which incorporates size, shape, texture, pattern, color, tone, and the 
context of spectrally homogeneous units derived from high-resolution imagery is both necessary and 
inevitable [48,49]. That these defined objects are digital-models of a geographic referent has led some 
to refer to this new domain of image processing as Geographic or Geospatial Object-Based Image 
Analysis (GEOBIA) [47,50,51]. In fact there is growing consensus [32,33,46,47,52] that a whole new 
paradigm for image analysis (particularly for VHR data) needs to be developed in order to achieve 
satisfactory results [47,50].  
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Unlike spectral methods employed in Maximum Likelihood type of classifications, object-based 
methods are premised on segmenting the image into homogeneous pixels (image-objects) and 
classifying these objects using spectral, spatial, textural, relational and contextual methods. Rather than 
treating the image as a collection of pixels to be classified on their individual spectral properties, the 
image pixels can be initially grouped into segments and the object segments can then be classified 
according to spectral and other criteria, such as shape, size and relationship to neighboring objects. 
Analyst-based contextual information and experience can also be incorporated with the use of digital 
rule-sets, similar to those developed for decision tree classifiers. 

2.3. Integrating Remote Sensing and GIS for Urban Analysis 

Urban analysis requires that remote sensing imagery be converted into tangible information for use 
in conjunction with other data sets, often within widely used Geographic Information Systems (GIS). 
As long as pixel sizes remained typically coarser than, or at the best, similar in size to the objects of 
interest, emphasis was placed on per-pixel analysis, or even sub-pixel analysis for this conversion, but 
with increasing image resolutions, alternative paths have been developed, aimed at deriving objects 
composed of several pixels or pixel clusters/groups [47]. For example, Herold et al. [37] used  
object-based methods to map urban land use in California using Ikonos imagery; they argue that spatial 
resolutions better than 5 m are required for such mapping. Thomas et al. [16] compared traditional 
pixel-based classification methods in an urban environment with two methods that incorporated shape, 
texture, and context. There are also convincing examples of combining remote sensing and GIS data to 
derive particular land use—rather than land cover—classes or environmental indicators, see for 
instance [53-57]. Zhou et al. [55] investigate how remotely sensed lawn characteristics, such as parcel 
lawn area and parcel lawn greenness, combined with household characteristics, can be used to predict 
household lawn fertilization practices on private residential lands. 

The integration of remote sensing and GIS technologies has been widely applied and recognized as 
an effective tool in urban analysis and modelling [58-61]. Remotely sensed derived variables, GIS 
thematic layers, and census data are three essential data sources for urban analyses, and their 
integration is thus a central theme in urban analysis. Since census data collected within spatial units 
can be stored as GIS attributes, the combination of census and remote sensing data combined with a 
GIS can be envisaged in three main ways [62] that relate to urban analyses: (i) remote sensing imagery 
have been used in extracting and updating transportation networks [63-66] and buildings [67-70], 
providing land use/cover data and biophysical attributes [17,58,59,71-73], and detecting urban 
expansion [61,74,75]; (ii) Census data have been used to improve image classification in urban  
areas [60,76,77]; (iii) The integration of remote sensing and census data has been applied to estimate 
population and residential density [78-88], to assess socioeconomic conditions [89,90], and to evaluate 
the quality of life [91-94]. We note that census data are available at a number of different scales, as 
determined by independent (not remote sensing-based) spatial areas, typically down to census block 
levels. Through various downscaling techniques [78-93], this information is re-aggregated to the 
household or household-group levels. 

Figure 4 illustrates one example from Möller and Blaschke [95], who developed an indicator for the 
estimation of surrounding vegetation for each building as a measurement of urban life quality.  
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The categorization of “feeling comfortable and/or natural” in urban areas introduces a qualitative,  
human-centered perspective to remote sensing. In a case study in the Phoenix Metropolitan area 
(Arizona, USA) digital orthophotos are classified into major urban land use/land cover classes 
following an object-based approach. Building footprints and vegetation are then classified with a high 
accuracy. For all buildings in the study area ten surrounding circles (buffers) are created and the 
fraction of vegetation for each circle is calculated. The percentage of vegetated area inside every buffer 
represents the fraction of surrounding vegetation (FSV) as depicted in Table 1. This FSV index allows 
a direct measurement of “life quality” centered on each building, but mapped in aggregate, so that 
areas across parts of a city are comparable to facilitate planning. 

Figure 4. Example of the integration of Geographic Information System (GIS)-based 
analysis results within a remote sensing classification process: constructing a “green index” 
based on average vegetation within concentric circles around buildings [95]. After deriving 
the buildings (in red), concentric circles are calculated for every single building as 
displayed for one example. Then the percentages of vegetation for each ring are calculated.  

 

Table 1: The number of buildings analyzed according to the fractions of surrounding 
vegetation. Subsequent calculations allow for a more “human-centric” expression of 
greenness in the vicinity of residences [95]. 

Area of surrounding 
vegetation 

Distance rings from the building under consideration (m) 
<10 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100 

<25% 1,232 646 621 589 607 527 528 517 554 551 
<50% 485 596 742 772 858 947 948 962 983 979 
<75% 136 482 441 465 374 377 379 375 321 329 
>75% 10 139 59 37 24 12 8 9 5 4 
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More demanding for urban remote sensing systems is the analysis and monitoring of traffic flow, 
which requires high-spatial and -temporal resolutions in-order to identify or quantify moving objects. 
Though traffic monitoring is already undertaken by sensor webs (see Section 3), there are still useful 
opportunities for remote sensing to contribute to this critical urban function. Hinz et al. [96] present a 
generic scheme to extract traffic information from both optical satellite imagery and optical airborne 
image sequences. Their method is based on an explicit semantic model of traffic, from which, 
depending on the characteristics of the input data, different strategies for vehicle detection, vehicle 
queue extraction and motion estimation are derived. Their model comprises different spatio-temporal 
scales to exploit the scale-dependent properties of traffic acquired by optical sensors. It is furthermore 
extended by context information to include knowledge about background objects as well as metadata 
from a road database in a consistent way. These authors attest to the strong potential of airborne and 
spaceborne traffic monitoring, but also call for methodological improvements.  

2.4. In depth Example of GIS-RS Integration: Thermal Urban Analysis 

Land surface temperature (LST) and emissivity data derived from satellite thermal infrared (TIR) 
imagery have been used in urban climate studies primarily for analyzing LST patterns and its 
relationship with surface characteristics, assessing the urban heat island (UHI), and relating LSTs to 
surface energy fluxes for characterizing landscape properties, patterns, and processes [24,97,98]. 
Recent advancement in Landscape Ecology also facilitates the characterization of urban surface 
components and their quantitative links to UHI process [99,100]. Biophysical attributes from remotely 
sensed optical data also provide great potential to parameterize urban construction materials and the 
composition and structure of urban canopies, and for linking with pixel-based LST measurements to 
better understand and model the surface energy budget and the UHI phenomenon. Hay et al. [101,102] 
report on the HEAT (Home Energy Assessment Technologies) project, which uses high-resolution 
Thermal Airborne Broadband Imager data (TABI 320: 1.0 m spatial resolution, 0.1 °C temperature 
resolution) and geospatial analysis for individual home (community and city) wasteheat monitoring. 
They also provide related energy models, and greenhouse gas estimates delivered in a free-to-use 
Geoweb service, as easily as clicking on your house in Google Maps (see Figure 5).  

From a spaceborne perspective Lu and Weng [103] applied linear spectral mixture analysis to 
derive hot-object and cold-object fractions from ASTER TIR bands, and biophysical variables from 
optical data in Indianapolis (USA). Statistical analyses were then conducted to examine the 
relationship between LST and five derived fraction variables at resolutions from 15 m to 90 m.  

TIR data can also be useful for producing land cover and impervious surface maps with improved 
accuracy vs. using optical data alone. Lu and Weng [104] employed Landsat TIR data to remove 
pervious cover from impervious cover based on their distinct thermal response. They found this 
method was effective for reducing the underestimation in well-developed areas and the overestimation 
in the less-developed areas, with an overall RMSE of 9.22% for the entire Marion County, Indiana, 
United States. Weng et al. [105] also applied LSMA to estimate impervious surfaces in Indianapolis 
from ASTER images of different seasons, and found that using LST maps of water and vegetation as 
image masks can significantly improve estimation accuracy. The greatest improvement was observed 
in the April image (9%), followed by the October image (7%) and June image (3%). Increasingly, 
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combinations of MODIS remote sensing observations together with the AErosol RObotic NETwork 
(AERONET) ground observations are taking place. Jin et al. [53] use MODIS and AERONET data to 
identify the spatial and temporal features of aerosol load, cloud fraction, water vapor, surface albedo, 
skin temperature, and land cover in Shanghai and nearby rural regions. By comparing the differences 
between the Shanghai city and the nearby rural areas, they provided quantitative measures of 
environmental changes in a dense urban system. These examples illustrate that ground-based observing 
networks are increasingly being used in conjunction with remote sensing. 

Figure 5. This screen-capture from the HEAT (Home Energy Assessment Technologies) 
GeoWeb interface [102] shows (a) the community waste heat map which represents the 
average rooftop temperature of individual homes (colored polygons) classified into  
10 temperature classes; (b) Illustrates a colorized heat signature for an individual home, 
and shows three hot-spots (i.e., hottest locations) within the roof envelope (inset colored 
circles); (c) Shows the Fuel Table which provides the cost of heating the home per day, 
along with estimated equivalent CO2 emissions (CO2e) produced for different fuel types; 
(d) Displays a Google Street view image linked to the defined house, which can be used to 
associate hotspot roof locations. (HEAT: www.wasteheat.ca login: beta, pwd: beta). 

 

(a) 

(b) (c) (d) 
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3. In situ Measurement Systems, Sensor Webs and Mobile Sensing  

Over the last decade, sensor webs which serve to gather measured data and combine them to 
generate an overall combined result, have become a rapidly emerging and increasingly ubiquitous 
technology. Generally speaking, sensor webs are a network of intra-communicating sensors, (which 
might be of different types), used to monitor the environment [106]. Monitored parameters are 
manifold, including temperature, precipitation, atmospheric constituents, processes within the human 
body, industrial control functions, and many more. 

In contrast to typical sensor networks, sensor webs are characterized by three critical characteristics: 
(i) The characteristics of interoperability, thus different types of sensors should be able to 
communicate with each other and produce a common output; (ii) The requirement of scalability 
implies that new sensors can be easily added to an existing topology without necessitating aggravating 
changes in the present hardware and software infrastructure; (iii) Intelligence means that the sensors 
are able to “think” autonomously to a certain degree, which for example, could result in a data 
processing ability, sending only a filtered sub-set of the total data as required by the user. These 
properties of geo-sensor webs are the technological basis for the creation of an Earth-spanning sensor 
network for continuous monitoring. 

3.1. Towards a Digital Skin for Planet Earth 

“In the next century, planet earth will don an electronic skin. It will use the Internet as a 
scaffold to support and transmit its sensations. This skin is already being stitched together. It 
consists of millions of embedded electronic measuring devices: thermostats, pressure gauges, 
pollution detectors, cameras, microphones, glucose sensors, EKGs, electroencephalographs. 
These will probe and monitor cities and endangered species, the atmosphere, our ships, 
highways and fleets of trucks, our conversations, our bodies–even our dreams” [107].  

Following this comprehensive vision, it can be assumed that sensor network deployments will 
increase dramatically within the coming years, as pervasive sensing has recently become more feasible 
and affordable. This enriches environmental knowledge with previously uncharted real-time 
information layers. One overarching reality of this vision is that sensor networks are currently 
undergoing great performance enhancements combined with drastic price reductions [108], resulting in 
the deployment of a number of urban geo-sensor networks [109]. On the positive side, the growth of 
such networks will further decrease prices and improve component performance; particularly if the 
environmental regulatory organizations move from a mathematical modelling base to a more pervasive 
monitoring structure. 

Generally speaking, geo-sensor networks are a recent and promising technology for current and 
future urban monitoring and modelling due to: (i) the recent emergence of small and inexpensive 
sensors based upon microelectronic/mechanical systems; (ii) the set of advantages they offer ahead of 
other monitoring technologies; and (iii) the wide range of real-world applications that have already 
been identified for this technology [110,111]. Essentially, these networks fall into the category of 
complex, distributed, interconnected, and rapidly changing systems [112]. This poses a variety of 
research challenges leading to new active areas of interest in hardware and software development. We 
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note that an in-depth discussion on issues such as organizational structuring, coordination, 
collaboration, and distributed, real-time resource allocation are critical for their success but are beyond 
the scope of this paper. 

3.2. Technology Integration—Sensor Web Enablement 

Sensor Networks in the Geospatial domain have become popular due to the Sensor Web 
Enablement Initiative (SWE) by the OGC (Open Geospatial Consortium) which seeks to provide open 
standards and protocols for enhanced operability within and between multiple platforms and vendors. 
The components in urban monitoring workflows are separated by several interfaces, which are defined 
using open standards. The first central group of standards is subsumed under the term Sensor Web 
Enablement (SWE), an initiative by the OGC that aims to make sensors discoverable, query-able, and 
controllable over the Internet [113]. Currently, the SWE family consists of seven standards: 

 Sensor Model Language (SensorML)—This standard provides an XML schema for defining the 
geometric, dynamic and observational characteristics of a sensor. Thus, SensorML assists in the 
discovery of different types of sensors, and supports the processing and analysis of the retrieved 
data, as well as the geo-location and tasking of sensors. 

 Observations & Measurements (O&M)—O&M provides a description of sensor observations in the 
form of general models and XML encodings. This framework labels several terms for the 
measurements themselves as well as for the relationship between them. Measurement results are 
expressed as quantities, categories, temporal or geometrical values as well as arrays or composites 
of these. 

 Transducer Model Language (TML)—Generally speaking, TML can be understood as O&M’s 
pendant or streaming data by providing a method and message format describing how to interpret 
raw transducer data. 

 Sensor Observation Service (SOS)—SOS provides a standardized web service interface allowing 
access to sensor observations and platform descriptions. 

 Sensor Planning Service (SPS)—SPS offers an interface for planning an observation query. In 
effect, the service performs a feasibility check during the set-up of a request for data from  
several sensors. 

 Sensor Alert Service (SAS)—SAS can be seen as an event-processing engine whose purpose is to 
identify pre-defined events such as the particularities of sensor measurements, and then generate 
and send alerts in a standardized protocol format. 

 Web Notification Service (WNS)—The Web Notification Service is responsible for delivering 
generated alerts to end-users by E-mail, over HTTP, or via SMS. Moreover, the standard provides 
an open interface for services, through which a client may exchange asynchronous messages with 
one or more other services. 

 Sensor Web Registry—The registry serves to maintain metadata about sensors and their 
observations. In short, it contains information including sensor location, which phenomena they 
measure, and whether they are static or mobile. Currently, the OGC is pursuing a harmonization 
approach to integrate the existing CS-W (Web Catalogue Service) into SWE by building profiles in 
ebRIM/ebXML (e-business Registry Information Model). 
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The functional connections between the SWE standards are illustrated in Figure 6. 

Figure 6. Functional connections between the SWE standards. 

 

We also note that the OGC is currently establishing the so-called SWE Common namespace 
specification, which aims at grouping elements that are used in more than one standard of the SWE 
family. In effect, this will minimize redundancy, and optimize re-usability and efficiency of the 
standards. SWE Common will primarily comprise very general elements such as counts, quantities, 
time elements or simple generic data representations. More information on the Sensor Web 
Enablement initiative, the incorporated standards and the efforts to embed it into the OGC standard 
service development can be found on the OGC web site (http://www.opengeospatial.org). 

3.3. Fine-Grained Urban Sensing Reveals Unseen Information Layers 

Through the open standards described in the previous section, and many more new ways of widely 
connecting information between many different kinds of sensors is possible. Thus, the described 
Sensor Web becomes the backbone of an “intelligent communication infrastructure” and facilitates the 
vision that the “the network is the Computer” (slogan of Sun Microsystems in the late 1990s) and 
ultimately the communication metaphor [114]. While the previous sub-section may be regarded as 
“technical” the open standards developed by organizations like OGC and ISO are important in our 
discussion toward a “collective sensing approach”: geospatial applications can now be built across 
different hardware systems, different monitoring systems and it is now feasible for purchasers of 
geospatial software to select products whose interfaces and encodings match those of products used by 
data sharing partners—if the products are compliant with the same standards. Only through the 
existence—acceptance and implementation—of standards, can interoperable systems become feasible, 
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such as sensor webs for public health applications or early warning systems. While standards are 
improving, there is still much to be done within the standards development process and in developing 
best practices for the communication of geospatial information in different communities. 

This broad interoperability between sensors and measurements—as well as on service and data 
levels—is a vital pre-requisite to reach the vision of “Digital Earth” as formulated by Al Gore (former 
US Vice-President). He envisioned it as a multi-resolution, three-dimensional representation of the 
planet that would make it possible to find, visualize, and make sense of vast amounts of geo-referenced 
information on the physical and social environment. Such a system would allow users to navigate 
through space and time, to access historical data as well as future predictions based for example 
on environmental models, and to support access and use by scientists, policy-makers, and children 
alike [115]—for a comprehensive discussion see [116]. 

Google Earth, NASA World Wind and other geo-browsers have brought high resolution imagery to 
hundreds of millions of internet users, and a major industry has developed ways to explore data 
geographically, and to visualize information provided by both public and private sectors, as well as 
citizens who volunteer new data [117]. Similarly, we will soon face mass market applications based on 
sensing applications for non-expert users. As components of Al Gore’s Digital Earth become not only 
available but also used daily by hundreds of millions of people worldwide, we envision rapid 
advancements in sensor and application development, see example [102]. 

4. Collective Sensing: Beyond Monitoring of Physical Infrastructure 

4.1. Demand for Recent and Holistic Urban Information 

Remote sensing is an important factor in environmental monitoring and in a variety of urban 
applications. In fact, there are several international (UN, COOPUS, GEO, ICOS), supranational (e.g., 
European Union) and national legislative frameworks which explicitly legislate remote sensing 
methodologies and methods. Particularly the Group of Earth Observation (GEO) with its “System of 
Systems” (GEOSS) increasingly integrates satelliteborne and airborne remote sensing with in situ 
measurement systems. Weng [24,25] has recently provided several comprehensive overviews on 
remote sensing of urban landscapes and environments. Rather than repeating this material, we briefly 
juxtapose the technical realms of urban remote sensing to recent technological advancements in in situ 
sensing emphasizing interoperable, standardized data fusion options leading to a “collective sensing”.  

Viewed from above, most cities appear as a sprawling mass of structures of varying size, shape, and 
construction, interwoven with particular street patterns which display regularities or irregularities. In 
most parts of the world these patterns are relatively well known and do not change rapidly. In typical 
North American cities, for instance, these patterns can lead to an impression of stereotyped monotony. 
In fact, they can be so characteristic that planners and social scientists make predictions about the 
social conditions of the inhabitants and neighborhoods based on particular arrangements of houses, 
building blocks structure and their sizes, shapes and spatial arrangements [75,77,118]. We may 
characterize prototypical urban areas as a typical complex combination of buildings, roads, parking 
lots, sidewalks, gardens, cemeteries, soil, water, and so on. It is obvious that remote sensing can detect 
these patterns if spatial data resolutions are fine enough. Remote Sensing will also define changes 
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when buildings are removed, altered, replaced or if any constituents of the spatial arrangements change 
in a way which leads to visual changes in the appearance when seen from above. However, this 
restriction to a “bird’s eye view” may be limiting when changes in the social environment happen 
gradually or incrementally without changing the outside hull of buildings, street patterns or surface 
material. Urban planners and decision makers understandably want a “complete” picture and  
up-to-date information. These demands from planners require timely acquisition and analysis of spatial 
and temporal information for making informed decisions. Consequently, remote sensing can only be 
considered part of an information system which delivers a more complete picture of urban areas, their 
inhabitants and the resulting spatio-temporal human-environment interactions. 

4.2. GIS as a Processing Platform 

Advances in computer technology have increased dramatically since Faust et al. [119] identified 
five major “impediments” to the integration of remote sensing and GIS. What we do know is that these 
“impediments”, such as real time processing, database updating, and handling of a single image scene 
are essentially no longer considered as major challenges. For example, real time integration of 
remotely sensed imagery and GIS data has been carried out with expert knowledge in hazard mapping, 
wildfire monitoring, and crop disease surveillance [120]. It is a routine, with the current technologies 
in computing (CPU), graphic user interface, visualization, and computer networking to perform 
sophisticated GIS and/or remote sensing image analysis with desktop or laptop computers [77]. With 
the advent of Internet technology in the mid-1990s (i.e., Web 1.0, and now Web 2.0), GIS can display, 
analyze, and manage data over the web, making WebGIS a true reality [121].  

In conjunction with GPS and wireless communicating technologies, mobile mapping is quickly 
becoming a ubiquitous activity. In particular, two mobile mapping techniques are gaining momentum 
in both the commercial domain, as well as in the daily life of the general public. (i) One relates to the 
development of location-aware personal digital assistants (PDA), which consists of a GPS-equipped 
handheld computer or a palmtop GIS and may use such datasets as geographic features and attributes, 
aerial and ground photos, satellite images, and digital pictures [122]; (ii) Another prospect for mobile 
mapping technology is distributed mobile GIS (DM-GIS) [122]. By principle, a DM-GIS is very 
similar to a PDA, and is typically composed of palmtop computers with GPS and camera [123]. They 
communicate via wireless networks with a cluster of backend servers where GIS and and/or remote 
sensing image data are stored. Digital pictures taken in the field can be relayed to the servers to update 
GIS database as frequently as needed [122]. Xue et al. [124] suggested that WebGIS, mobile mapping 
(they termed it “Mobile Geoprocessing”), and TeleGIS (an integration of GIS and other 
communication techniques) are shaping a new field of study, namely, “telegeoprocessing”. This 
is based on real-time spatial databases updated regularly by means of telecommunications to 
support problem solving and decision making at any time and any place. Telegeoprocessing requires a 
seamless integration of four components, i.e., (i) remote sensing, GIS, GPS; (ii) telecommunications; 
(iii) real-time remote sensing imaging and processing; and (iv) real-time GIS [124].  

Real-time remote sensing imaging processing refers to the generation of images or other 
information to be made available for inspection simultaneously, or very nearly simultaneously, with 
their acquisitions [125]. To make a real-time GIS, several key issues must be considered, such as  
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real-time spatial data structures, real-time GIS indexing, interoperability, geographic data interchange 
standards, parallel and distributed computing, networking, the human-machine interface, client-server 
architect, multimedia and wireless communications, and real-time integration of remote sensing image 
and GIS data [124]. With the advent of widely applied OGC standards, there is now opportunity for a 
tighter integration of imagery and in situ measurements. Torrens [126] introduces the term  
“WiFi-Geography” for urban areas and describes the potential of mapping and visualizing Wi-Fi 
presence in urban settings. He argues that charting the geography of Wi-Fi coverage encapsulates 
urban space for various activities. This would enable a “spectrum geography”: for any one point in 
space and time, fields of signals can be sampled according to the radio spectrum.  

These developments—and others—let us conclude that GIS is becoming a processing platform. 
Though not a core focus of this article, we note that networked geospatial technologies allow for, and 
facilitate the integration of “crowdsourcing” or “Volunteered Geographic Information” (VGI) [127].  
In these situations, individuals act independently, but their collective geospatial information is 
combined to serve the needs of local communities, ranging from cyclists to disaster victims. According 
to Goodchild [127] a geo-server with appropriate tools and standards plays a central part in this 
process, with the various patchwork pieces seamlessly fitting together, and distributed over the Web. 
In these integrated environments where “citizens as sensors” or “people as sensors” [128] are the 
norm, a number of considerations regarding data integrity, source validation and verification need to 
be incorporated into the “collective sensing” design. 

4.3. Thoughts on Urban Morphology and Function 

Today we possess Geospatial technologies which have the potential to provide for more holistic 
views of urban systems. By integrating urban remote sensing systems, image processing software and 
GIS (for an overview see [24]) we are able to generate new spatio-temporal and thematic information. 
A logical step in this integration is the inclusion of the third dimension for city modelling. 3D city 
models are becoming increasingly popular with Internet based software like Google Earth, which has 
promoted the importance and public awareness of spatial visualization to unexpected levels. In 
addition, the thematic components of urban systems are increasing in utility and importance in areas 
such as monitoring urban developments, land cover change detection and mapping of natural hazards. 
Technologies such as very high resolution remote sensing and airborne laser scanning (ALS) offer a 
wide range of new possibilities for modelling urban systems and require applied research to develop 
and implement new methodologies [54]. While LiDAR was introduced earlier, we note, that for ALS 
point clouds and derived products we may even more urgently need integrations methods. With high 
spatial resolution imagery, single pixels no longer capture the characteristics of classification targets. 
Instead, adjacent pixels tend to belong to the same class or some compatible classes with an ecological 
or functional association [129,130]. 

A logical step in urban system modelling is the integration of earth observation data with ancillary 
spatial and space-related information. This enables the transition of land cover to specific land  
uses [118,54]. For urban studies and especially for hazard and risk analyses the inclusion of population 
in these models is essential. For example, Chen [131] describes correlations between census dwelling 
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data and remotely sensed data, and Banzhaf et al. [132] detect negative growth in the city of Leipzig 
by integrating remote sensing data. 

4.4. Collective Sensing in the “Digital City” and “Smart City” Contexts 

As discussed in the introduction section, the term “city” comprises not only a geographical area 
characterized by a dense accumulation of people or buildings, but it also encapsulates aspects of 
culture, politics, trade, communications infrastructure, finance, technology and universities [6-10]. In 
this section we propose that developments in remote sensing, sensing technologies in general and the 
Sensor Web in particular facilitates Castells’ [9] view of a city to be “not a place but a process”.  
When considering a city as a spatial system of advanced service activities [9], information and 
communication networks constitute the modern social morphology of today’s societies. “Collective 
sensing” may be regarding as the means to expedite the proceedings towards a “digital city” and 
facilitating the concept of a “smart city”. Hollands [133] states that we know little about so-called 
smart cities, “particularly in terms of what the label ideologically reveals as well as hides”. Also, both 
terms “digital city” and “smart city” lack definitional precision, recent attempts are being made. From 
a recent literature review, Giffinger et al. [134] conclude that the term is not used in a holistic way 
describing a city with certain attributes. Rather, it is used for various aspects which range from Smart 
City as an “IT-district” to the education (or “smartness”) of its inhabitants. The authors summarize that 
a Smart City is a city performing well in a forward-looking way in six characteristics, built on the 
“smart” combination of endowments and activities of self-decisive, independent and aware citizens. 
These six characteristics are presented in Table 2 and summarized within the role of current RS and 
sensor webs. We note that “smart city” concepts are not just a vision but are currently being deployed 
in cities like Brisbane, Glasgow, Amsterdam and Helsinki. For instance, in the “Living in Brisbane 
2010” program, the Brisbane City Council describes its vision for Brisbane as a “smart city that 
actively embraces new technologies [135]. Accordingly, Brisbane should “seek to be a more open 
society where technology makes it easier for people to have their say, gain access to services and to 
stay in touch with what is happening around them, simply and cheaply. All residents will have access 
to the Internet, and the ability to use it.” (Brisbane City Council, 2001 cited in [135]). 

Table 2.: Six characteristics of a smart city based on Giffinger et al. [134], and an 
evaluation of remote sensing and Sensor Webs in terms of their recent and potential roles 
within the next five to ten years. Five stars is the maximum, which means a full 
exploitation of the respective technology and a vital role for the respective characteristic. 

Characteristics of a smart city Role of remote sensing Role of sensor webs 
Today Potential Today Potential 

Smart economy *  * *  *  * *  
Smart people ( * )  *  -  * * *  
Smart governance ( * )  *  -  * *  
Smart mobility *  * *  *  * * * * *  
Smart Environment * * * *  * * * * *  ( * )  * * * * *  
Smart Living *  * *  ( * )  * * * * *  
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Though not the core of our discussion, these characteristics may become integrated in future 
collective sensing approaches; thus allowing Friedmann’s [10], Droege’s [11] and Mitchell’s [12] 
views of cities (as described in the introduction) to become real. For instance, Mitchell’s claim that the 
future city will be unrooted to any definite geographic place on the surface of the earth and will be 
constrained by connectivity and bandwidth issues rather than by physical accessibility and land values, 
may soon come to fruition. The combination of technologies described in this article—and in many 
others—will allow us to verify many of the theoretical constructs and ultimately the underlying 
hypothesis stated in the introduction section. For instance, it is relatively easy to claim that over the 
last two decades, ways of exploring the city have changed–and so have their inhabitants. Additionally, 
from an investigative viewpoint, there is growing interest in the environmental and ecological issues 
within cities, especially sustainability and bio-diversity. This is primarily because of a more profound 
“faith” in the efficacy of the tools and methods of urban design and monitoring, which in-turn, can 
foster improved understanding and re-design of the urban environment [6]. 

Location-based services on mobile smart phones are penetrating our daily communication behavior 
more and more. In various ways anonymized location information from cell phones can be used to map 
activities of masses [136,137]. Figure 7 illustrates that—when in the hand of a city administration—
such information may be aggregated further and used by decision makers or security managers. Real 
time (or near-real time like for 15 min aggregated cell-phone information as used in Figure 7) 
complements statistical information. In many countries no information exists about distribution of 
people over time.  

Figure 7. This screenshot from “CurrentCity 2010” illustrates the problem of “night-time 
oriented” census information and new ways to derive spatio-temporally disaggregated 
population information.  
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At the personal level locational information—together with sensorial information—may be 
increasingly used to coordinate and adjust our plans on-the-fly and at a distance by receiving  
up-to-date information on our environment (e.g., transit schedules and traffic flow reports). Mainly in 
urban areas, sensor information is being more and more integrated and the notion of a “sensorial city 
planning” [6] is created. Additionally, the rapid growth in the deployment of Smartphone devices 
illustrates the way towards mass population mobile computing, networking and sensor technologies. 
This trend is supported by an increasing availability of wireless networks such as WiFi allowing for a 
remarkable mobility beyond traditional laptop computers. 

4.5. Thoughts on the Human-Environmental Processes 

Cities in their multilayered complexity in terms of social interactions, living space provision, 
infrastructure development and other crucial human factors of everyday life have re-gained importance 
in scientific research. This arises in-part from major scientific developments and technological 
innovations that have taken place within the urban context [138,139]. If the city is considered as a 
living entity, this it is clear that the limited roof top or façade view provided by remote sensing needs 
to be supplemented by providing a more “complete” view of such urban landscapes which integrates 
information from inside buildings, from under the canopy of trees, and from anywhere within 3D 
urban space at relatively high temporal and spatial scales.  

One may argue that a combination of in situ imagery like façade views (e.g., Google street view etc.) 
plus broader area remote sensing imagery will lead to increased demand for 3D urban perspectives. 
While Google SketchUp (http://sketchup.google.com/) provides an impressive 3D modelling 
environment to manually develop urban structures, at least for now, significant effort is required to 
derive realistic looking 3D city models. However, no matter how impressive these structures look, they 
are only snapshots in time and in space—that is, they end on rooftop and walls. What is really needed 
is a better understanding of human-environmental processes, i.e., direct measures of the impact of 
human activities on the environment and direct measures of environmental stressors on human 
functions. Such direct measures are needed to overcome the adherence of (remote) sensing to urban 
spatial patterns. 

In our definition, “high temporal scales” indicates that such scales may range from seconds to hours 
to days, depending on the phenomenon under investigation. A “high temporal resolution” may be used 
correspondingly when the availability of the data is sufficient for a decision maker to be able to react 
in time and with actual data when needed. This is sometimes called “near-real time” to distinguish it 
from the technical “real time” realm. The latter is measured in Microseconds. Both in electrical and 
mechanical engineering, for instance, hard real-time systems are used when it is imperative that an 
event is reacted to within a strict deadline. Real-time programs must execute within strict constraints 
on response time. In order to distinguish less mission-critical approaches, Resch and co-workers call 
this “live Geography” [140,141]. It should provide the possibility to start a synchronous conversation 
at a certain time, which might often be important for geographical monitoring applications, e.g., to 
enable the generation of an exact development graph for temporal pollutant dispersion over a defined 
period of time in precise intervals. At least for the present situation, Sensor Webs and the “collective 
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4.6. Beyond Remote Sensing 

Remote Sensing typically provides broad overviews with relatively high spatial and spectral details, 
however, the images are sparsely sampled data or snapshots in time. Many of the previously mentioned 
in situ systems (see Section 3) show high temporal resolution, but are limited to small areas or even 
points; consequently, each sensor or sensor network individually samples only a tiny proportion of the 
surrounding environmental phenomena Generally speaking, sensors-such as those that monitor urban 
pollution conditions-have a source area that depends on the characteristics of the sensor itself as well 
as atmospheric conditions and processes. Despite their small size, some sensors may sample a 
relatively large volume in a given time, and sensors for different elements may have different source 
areas. This leads to the importance of appropriate environmental sampling at multiple spatio-temporal 
scales. In Figure 9 we re-emphasized the communication metaphor inherent to Sensor Webs. 

Figure 9. Sensor Web with Inter-communicating Sensors. From Resch et al. [142]. 

 

As laid out in Section 3, the core idea of integrated sensor webs, for measuring different 
environmental parameters (e.g., water level, air temperature, air moisture, wind speed, soil moisture), 
is to answer user-specific questions and to derive new information rather than merely to concatenate 
sensor information. In Computer Science there is an increasing body of scientific literature describing 
the technical realms of large numbers of interlinked sensors [143]. Some of these approaches in 
“ubiquitous computing” or “pervasive computing” focus on sensory threads as a technologically 
mediated collective sensing expedition. While many of these approaches are beyond the scope of this 
article, we note that these approaches allow people to explore imperceptible phenomena in the world 
around them, which can potentially be linked with synoptic information from imagery. 

The discussion in this paper represents a selective focus on issues that are most critical to current 
urban remote sensing and in situ measurement networks and are most promising for advancing future 
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research. Clearly, this selective treatment reflects our interests, and is focused on urban applications. 
Urban applications have relied on remote sensing imagery for more than half a century. Airborne 
remote sensing has played an important role in exploring and mapping urban areas around the world 
and remains indispensable today for many applications. Satellite-derived information facilitates the 
day to day work of planners and decision makers, although a full exploitation of uncorrected data still 
requires expert image analysis knowledge. Increasingly, large-scale sensing efforts are being applied to 
urban planning with faster response times. Many of these efforts have relied upon custodial GIS and 
the majority of these base maps were limited to two-dimensional representations, with 3D 
functionalities being limited to a narrow set of applications (e.g., to assess the impact of natural 
disasters—which is out of the scope of this article). 

More recently, as population and urbanization expand, threats to quality of life issues (e.g., 
preservation of natural resources, green spaces, air quality, historic structures, quiet zones and disaster 
management/mitigation) will continue to intensify. As such, better sensing capabilities related to these 
topics will be needed. We have demonstrated that technological progress in remote sensing 
instruments is significant, but workflows for cross-sensor exploitations of large datasets involved in 
city-scale surveys pose significant challenges. Remote sensing based maps represent the basis, the 
strange attractor upon which layers of complimentary geospatial urban data are laid, viewed, queried, 
mined and modeled in-order to better understand these dynamic systems. 

Some of the approaches briefly discussed, are currently feasible as informed real-time decisions 
transform both the atmosphere of our cities and the hierarchy of our priorities on a daily basis [140]. 
For example, we are already using location-based services on mobile smart phones, to coordinate and 
adjust our plans on-the-fly and at a distance by receiving up-to-date information on our environment 
(e.g., transit schedules and traffic flow reports). Resch [140] concludes that the sensorial dimension 
beyond the prevalence of the vision—acoustic, olfactory, touch and other senses—which have not yet 
been integrated into urban spaces, is now becoming possible. It may even play an important role 
towards the development of “sensorial city planning” [6].  

4.7. Towards a New Terminology for Collective Sensing 

Collective sensing being a relatively new field it is not surprising that terminologies used may 
overlap or be used inconsistently. In Computer Science and in some electrical signal processing fields, 
the concept of location has gained popularity, partially in ignorance of mature Geographical concepts. 
In fact, localization and environment map building processes depend heavily on estimating the position 
of features within a surrounding [142,126]. This is different to “traditional” remote sensing where the 
sensor position plays an important role, but is carefully planned beforehand. This position is 
usuall  very important for geometric correction etc. but is less used as an exploratory variable to 
understand the investigated phenomena. Sensors, in the widest possible sense- including humans 
carrying day-to-day measuring devices, need to measure information while additional processing and 
analysis operations are usually seen as independent from the initial sensor (see Section 3). More 
recently, raw data are progressively filtered before being provided to the observer. Thus, in large and 
complex wireless sensor networks the final sensor information product is relatively sparse, compared 
to the number of sensor sources, and their initial data volumes. Many authors call this “intelligence” or  
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“geo-intelligence”, though we prefer the term “collective sensing”, which describes the simultaneous 
measuring, localization and mapping approaches that incorporate sensor networks. Various  
pre-processing and interpolation methods are incorporated within the Sensor Web; however a discussion 
of these technical options is beyond the scope of this paper. Though we note, that Ferscha et al. [144] 
propose context sensing, representation and delivery as a new approach called context-based 
computing: time and event-triggered context sensing for mobile devices.  

Throughout this paper, we compared the term “collective sensing” with three other terms frequently 
used in Computer Science and signal processing scientific literature. For the following four  
terms-including “collective sensing”-we did a survey using Google Scholar on how many articles use 
the respective terms and how often the five most influential articles for every term are cited by other 
articles. We also differentiated between the overall amount of citations and those for the time period 
beginning in 2007. Results show that “collective sensing” is less frequently used compared to the three 
most popular terms in Computer Science and signal processing, namely (i) “ambient sensing”;  
(ii) “context sensing”; and (iii) “ubiquitous sensing”. It can be stated that “collective sensing” arose 
latest and the share of recent publication is highest. 

 Collective sensing reveals 170 hits (50% of them are published since the year 2007) in 
Google scholar, with the five most cited articles accounting for 305 citations. 

 Ambient sensing reveals 403 hits (38% of them are published since the year 2007) in 
Google scholar, with the five most cited articles accounting for 138 citations. 

 Context sensing reveals 1,568 hits (39% of them are published since the year 2007) in 
Google scholar, with the five most cited articles accounting for 3,400 citations. 

 Ubiquitous sensing reveals 1,359 hits (48% of them are published since the year 2007) in 
Google scholar, with the five most cited articles accounting for 1,395 citations. 

5. Conclusions: Towards Collective Urban Sensing  

Enormous progress in geospatial technologies is undoubtedly being made. Some aspects of this 
progress have been briefly discussed herein. Despite increasing spatio-temporal resolution and 
availability of image data, and greater access to data and derived products, the understanding of urban 
systems will not be satisfied by remote sensing as a stand-alone technology. While the integration of 
remote sensing and GIS has consistently accelerated over the last years, the modelling of urban 
systems based on earth observation and geospatial information techniques needs to go beyond 2D 
mappable features. The combination of in situ data and mobile sensor derived information supports 
new applications when addressing human-environment interactions, particularly in Public Health and 
for security and safety applications.  

More and more classification systems match the fine-scale heterogeneity of city features and allow 
the expression of a multiplicity of scales. There are literally hundreds of examples of hierarchically 
organized, yet flexible systems that explicitly separate structure (land cover) from function (land use). 
Less so, we have classification systems at hand for holistic, integrative or even “collaborative” sensing 
approaches.  

Coincidentally, the miniaturization of components has enabled sensor systems to be nearly 
invisible, and sometimes wearable, so that individuals can move around and interact freely, supported 
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by their personal information domain. In this article we concentrated on the “collective use” and 
disregarded personal information systems. The “smartphone revolution” currently drives back the 
importance of laptops and personal digital assistants in this field while more and more taking over the 
role of organizational and personal information repositories. 

Generally speaking, fine-grained urban sensing coupled with well-established remote sensing 
mechanisms greatly enhances our knowledge of the environment by adding objective and non-visible 
data layers in real-time. These systems help us increase our capacity to observe and understand the 
city, and the impacts on and by society. This seems to be a very desirable state, as more accurate data 
about local air temperature, atmospheric humidity, air pollution, and traffic flow can positively 
influence areas such as public health, traffic management and emergency response. Apart from this 
information enrichment, accurate sensor measurements also have a much broader influence: 
considering, for example, that “air quality” is only a surrogate for the effects of pollutants on humans, 
which make a fine-grained air quality map a very sensitive information layer. We have also described 
technical realms aiming to support a better understanding of the urban environment and “ubiquitous-” 
or “collective-sensing” and the visions of “people as sensors” [145] or “citizen as sensors” [128] 
may become more realistic. Some computer scientists claim a people-centric paradigm for urban 
sensing [146].  

This article started from the hypothesis that while useful and important, traditional airborne and 
spaceborne remote sensing provides limited “snap-shots” of urban environments that are (currently) 
unable to fully capture urban dynamics. Urban areas are structurally complex 3D environments that 
evolve with time. Furthermore, the numerous activities within these environments are typically more 
dynamic than their physical structure. In an effort to better understand urban environments, we 
provided insight into two currently separate technologies: (i) remote sensing and (ii) in situ  
sensing-and argue that Sensor Webs and OGC standards provide the opportunity to combine the 
strengths of both, with potential to produce new, meaningful and useful “urban-intelligence”. At the 
moment, these two technologies remain predominantly separate but lay a foundation for a common 
use. A critical part of making sensors webs useful is an adherence to good measurement protocols: 
understanding the sensor, its source area and its siting, so that the user can understand what the 
measurement represents and how that fits with a particular application. Multiplying sensors (through 
lowered costs, better communications etc. [143]) does not solve this problem (i.e., more measurements 
does not necessarily equal better data). The intelligence part of sensor design could be critical here, but 
that intelligence must come from a specific understanding of what each sensor is measuring and the 
conditions under which measurements can be made so that they are useful. As an example, consider a 
city where hundreds of air temperature sensors are deployed to building rooftops. The resulting 
measurements would provide a huge data source compared to a single traditional airport measurement 
location. But neither the single airport nor the hundreds of rooftop sensors would adequately 
characterize the temperature of the urban area because, in the case of rooftop sensors, rooftops are a 
known thermal anomaly [147] and, in the case of the airport, it is likely to represent a rural temperature 
more accurately. So now you have a case of substantial sensor deployment that at best was a waste of 
resources and at worst provides unrepresentative data for subsequent decision-making, model 
development etc. [148]. 
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While available information will always be incomplete, decision makers can be better informed 
through such technology integration-even if loosely coupled. Standards-based Sensor Webs allow for 
more “intelligent” and tailored user-information more applicable to specific groups and related 
technologies. As widely appreciated, reality cannot be digitally measured and mapped exhaustively. 
This will also hold true for collective sensing approaches of the future. In general, it will be nearly 
impossible (and impractical) to obtain digital measurements for every point across an entire cityscape, 
or landscape. Still, our discussion has shown that we are increasingly developing from a society with 
sparsely sampled footprints, to a data-rich environment enabling on-demand analyses of various urban 
activities and their constituents in space and time. We suggest that the integration of remote sensing 
and sensor webs within an OGC framework can expedite this urban reality. 
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