Remote Sens. 2011, 3(8), 1614-1626; doi:10.3390/rs3081614

Effects of Individual Tree Detection Error Sources on Forest Management Planning Calculations

1 Department of Forest Sciences, University of Helsinki, P.O. Box 27 (Latokartanonkaari 7), FI-00014 Helsinki, Finland 2 Finnish Geodetic Institute, FI-02431 Masala, Finland 3 Simosol Oy, Asema-aukio 2, FI-11130 Riihimäki, Finland 4 Metsäteho Ltd., Helsinki, FI-00170, Finland 5 School of Science and Technology, Aalto University, FI-00076 Aalto, Finland
* Author to whom correspondence should be addressed.
Received: 12 April 2011; in revised form: 20 May 2011 / Accepted: 8 July 2011 / Published: 25 July 2011
(This article belongs to the Special Issue 100 Years ISPRS - Advancing Remote Sensing Science)
PDF Full-text Download PDF Full-Text [276 KB, uploaded 25 July 2011 17:58 CEST]
Abstract: The objective was to investigate the error sources of the airborne laser scanning based individual tree detection (ITD), and its effects on forest management planning calculations. The investigated error sources were detection of trees (etd), error in tree height prediction (eh) and error in tree diameter prediction (ed). The effects of errors were analyzed with Monte Carlo simulations. etd was modeled empirically based on a tree’s relative size. A total of five different tree detection scenarios were tested. Effect of eh was investigated using 5% and 0% and effect of ed using 20%, 15%, 10%, 5%, 0% error levels, respectively. The research material comprised 15 forest stands located in Southern Finland. Measurements of 5,300 trees and their timber assortments were utilized as a starting point for the Monte Carlo simulated ITD inventories. ITD carried out for the same study area provided a starting point (Scenario 1) for etd. In Scenario 1, 60.2% from stem number and 75.9% from total volume (Vtotal) were detected. When the only error source was etd (tree detection varying from 75.9% to 100% of Vtotal), root mean square errors (RMSEs) in stand characteristics ranged between the scenarios from 32.4% to 0.6%, 29.0% to 0.5%, 7.8% to 0.2% and 5.4% to 0.1% in stand basal area (BA), Vtotal, mean height (Hg) and mean diameter (Dg), respectively. Saw wood volume RMSE varied from 25.1% to 0.2%, as pulp wood volume respective varied from 37.8% to 1.0% when errors stemmed only from etd. The effect of ed was most significant for Vtotal and BA and the decrease in RMSE was from 12.0% to 0.6% (BA) and from 10.9% to 0.5% (Vtotal) in the most accurate tree detection scenario when ed varied from 20% to 0%. The effect of increased accuracy in tree height prediction was minor for all the stand characteristics. The results show that the most important error source in ITD is tree detection. At stand level, unbiased predictions for tree height and diameter are enough, given the present tree detection accuracy.
Keywords: airborne laser scanning; forest inventory; simulation; accuracy

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Vastaranta, M.; Holopainen, M.; Yu, X.; Hyyppä, J.; Mäkinen, A.; Rasinmäki, J.; Melkas, T.; Kaartinen, H.; Hyyppä, H. Effects of Individual Tree Detection Error Sources on Forest Management Planning Calculations. Remote Sens. 2011, 3, 1614-1626.

AMA Style

Vastaranta M, Holopainen M, Yu X, Hyyppä J, Mäkinen A, Rasinmäki J, Melkas T, Kaartinen H, Hyyppä H. Effects of Individual Tree Detection Error Sources on Forest Management Planning Calculations. Remote Sensing. 2011; 3(8):1614-1626.

Chicago/Turabian Style

Vastaranta, Mikko; Holopainen, Markus; Yu, Xiaowei; Hyyppä, Juha; Mäkinen, Antti; Rasinmäki, Jussi; Melkas, Timo; Kaartinen, Harri; Hyyppä, Hannu. 2011. "Effects of Individual Tree Detection Error Sources on Forest Management Planning Calculations." Remote Sens. 3, no. 8: 1614-1626.

Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert